ORIGINAL ARTICLE http://dx.doi.org/10.5371/hp.2012.24.2.102 Comparison of Femoral Morphology and Bone Mineral Density between Femoral Neck Fractures and Trochanteric Fractures in 65+ Females Sung Soo Kim, MD, Myung Jin Lee, MD, Hyeon Jun Kim, MD, Jung Mo Kang, MD Department of Orthopedic Surgery, College of Medicine, Dong-A University, Busan, Korea Purpose: To analyze, by radiograph, the difference in bone mineral density (BMD) and the proximal femoral morphology of females who are over 65 years old and have had either an intertrochanteric fracture or a femoral neck fracture. Material and Methods: One hundred twenty-five females over 65 years of age with femoral neck fractures or intertrochanteric fractures were examined for bone mineral density using computed tomography from April 2008 to March 2011. The bone mineral density was measured by dual-energy x-ray absorptiometry (DEXA). The morphology of the proximal femur was also measured by computed tomography in the unaffected hip. Results: In the femoral neck fracture group, the mean BMD value was 0.563 g/cm 2 in the femoral neck region and 0.753 g/cm 2 in the intertrochanteric region. In the intertrochanteric fracture group, the mean BMD value was 0.457 g/cm 2 in the femoral neck region and 0.656 g/cm 2 in the intertrochanteric region. There are statistically significant differences between the femoral neck fracture and intertrochanteric fracture groups (P=0.029, 0.030). The mean cortical index was 0.59 in the femoral neck fracture group and 0.51 in the intertrochanteric fracture group. There are statistical differences between the femoral neck fracture and intertrochanteric fracture groups (P=0.001). Conclusion: The BMD of the proximal femoral neck and intertrochanteric regions of the intertrochanteric fracture group were significantly lower than that of the femoral neck fracture group. The cortical index was also significantly lower in the intertrochanteric fracture group than the femoral neck fracture group. BMD and computed tomography seem useful to check in women older than 65 who have fractures of the proximal femur. Key Words: Femoral neck fracture, Intertrochanteric fracture, Bone mineral density, Cortical index Submitted: January 19, 2012 1st revision: February 3, 2012 2nd revision: May 3, 2012 3rd revision: May 18, 2012 Final acceptance: May 23, 2012 Address reprint request to Hyeon Jun Kim, MD Department of Orthopedic Surgery, College of Medicine, Dong-A University, 1 Dongdaesin-dong 3-ga, Seo-gu, Busan 602-715, Korea TEL: +82-51-240-2757 FAX: +82-51-254-6757 E-mail: hyeonjun@dau.ac.kr 본논문은동아대학교학술연구비지원에의하여연구되었음. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons. org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 102 Copyright c 2012 by Korean Hip Society
Sung Soo Kim et al.: Morphology and BMD between femoral neck and trochanteric fractures 서 론 의료기술의향상으로인한인구의고령화로근위대퇴부골절은그빈도가증가추세에있으며, 치료및재활기술의발전에도불구하고높은합병증발생률과그로인한사망률로인하여개인및사회적경제비용의증가를가져오고있다 1,2). 대퇴전자간골절과대퇴경부골절은대표적인근위대퇴부골절로, 주로고령의여성에서저에너지손상으로발생되며, 이는나이의증가에따른골밀도의감소가주요한원인으로지적되고있다 3,4). 근위대퇴부골절은연령이증가할수록경부보다전자부에서많이발생하며대퇴경부골절은대퇴골두의무혈성괴사, 대퇴경부의불유합발생가능성이많고, 대퇴전자간골절은부정유합이나전신적인합병증을많이동반한다 5). 현재골다공증의진단및정도를평가하기위한방법에는여러가지가있으며, 이중에너지방사선흡수측정법 (Dual Energy X-ray Absortionmetry, DEXA) 과정량적전산화단층촬영법 (Quantitative Computed Tomography, QCT) 이흔히사용되고있다 6,7). 이에저자들은 65 세이상의여성전자간골절환자와경부골절환자간의골밀도및골구조를측정하여방사선적결과를비교, 분석하여이들사이의상관관계를알아보고자하였다. 대상및방법 2008 년 4 월부터 2011 년 3 월까지대퇴경부골절및전자간부골절로내원하여골밀도검사및전산화단층검사를시행한 65 세이상여성중, 가능한비슷한연령대와체중을가진 125 명을대상으로하였다. 이중대퇴경부골절이 60 명, 전자간부골절이 65 명이었다. 보행또는직립시낙상등의저에너지손상으로발생한골절이며건측의고관절은정상인환자들로제한하였으며, 대사성질환이나스테로이드복용환자, 염증성관절염환자, 병적골절, 단순낙상외의고에너지손상, 고관절부골절과거력이있는환자는제외하였다. 골밀도는이중에너지방사선흡수측정법 (DEXA) 으로측정하였으며 Hologic QDR Discovery-Wi (Hologic Inc., Bedford, MA, USA) 를이용하여골밀도수치는컴퓨터에의해자동으로산출되어그수치가그래프와함께 g/cm 2 단위로표시되며, 대퇴근위부의경부, 전자부, 전자간부, Ward 삼각의골밀도를측정하였다. 골구조는모든환자에서골절수상 2 일이내에전산화단층촬영을통해고관절의형태를건측에서측정하였다. 다분석전산화단층촬영기 (Light Speed CT; GE Medical Systems, Easton, CT) 로촬영지표는 120 kvp, 350 ma 이고 2.5 mm 의간격으로촬영하였다. 전산화단층촬영기를통한촬영시하지의회전에따른고관절장축의변화를없 애기위해건측의근위대퇴골부위를슬개골이정면을향하도록하여 20 내회전을주고촬영하는동안검사자가직접하지를고정한상태에서촬영하였으며, 전산화단층촬영전후면사진의선택은대퇴경부및협부가정확한평면에위치한관상면사진을얻기위해 3 차원입체영상소프트웨어 (Rapidia; 3DMED, Seoul, Korea) 를통해전체전산화단층촬영이미지를 3 차원입체영상으로구현하여이미지회전을통해대퇴경부및협부의좀더정확한전후면관상면사진을획득하였다. 전산화단층촬영전후면사진에서고관절장축길이 (hip axis length, HAL) 는골반골의내측벽에서대퇴경부의외측벽까지의거리를측정하였으며, 대퇴경부장축길이 (femoral neck axis length, FNAL) 는대퇴경부의중심에서대퇴수질의축사이의거리를측정하였다. 경부 - 간부각 (neck shaft angle, NSA) 은대퇴간부의중심축과대퇴경부의장축이만나이루는각을측정하였으며대퇴골두오프셋 (head offset) 은대퇴골두의중심에서대퇴수질의중심축을수직으로가로지르는선의최단거리로측정하였다. 대퇴부골간의직경 (femoral shaft diameter) 은전산화단층촬영전후면사진상대퇴간부에수직인선을그어피질골외면과만나는두점사이의거리를측정하였으며수질내직경 (medullary diameter) 은피질골내면과만나는두점사이의거리를측정하였다 (Fig. 1). 피질골계수 (cortical index, CI) 는대퇴부협부에서대퇴부골간의직경에수질내직경을뺀값을골간의직경으로나눈값으로정의하여측정하였다 (Fig. 2). Fig. 1. Measurement made on computed tomography of morphologic features of the hip. Hip axis length defined as the length of head axis from the lateral aspect of the greater trochanter to the inner pelvic rim (AE), femoral neck axis length defined as the length of neck axis between the head center and the femoral medullary axis (BF), neckshaft angle defined as the angle between femur shaft axis and femur neck axis (AFG), head offset defined as the length of head center from axis of femoral shaft. (BB ). www.hipandpelvis.or.kr 103
골구조측정시관찰자간의일치도를높이기위해같은전산화단층촬영전후면사진을이중맹검법으로 3 명의정형외과의사가각각 3 회측정하여평균값을측정하였으며관찰자내일치도를높이기위해처음측정후 2 주뒤같은전산화단층촬영전후면사진으로그평균을측정하였으며관찰자간의결과에대한합의는양호하였다 (kappa= 0.81). 통계분석은 SPSS 17.0(SPSS Inc., Chicago, IL, USA) 를이용하였다. 골밀도의분석에서연령, 신체질량지수 (body mass index, BMI), 신장및체중의영향은다중회귀분석을시행하였고, 대퇴골골절유형에따른골밀도와해부학적특성의차이를 Mann-Whitney U test 로검증하였으며, 통계학적유의수준은 P<0.05 로정하였다. 결 과 평균연령은경부골절군이 71.3 세 (65-77 세 ), 전자간부골절군이 72.8 세 (65-88 세 ) 였으며, 평균신장, 체중, 신체질량지수, 연령등은각각임상적으로유의한차이를보이지않았다 (Table 1). 평균신장, 체중, 신체질량지수, 연령중신장을제외하고는대부분골밀도에영향을미치지않았다 (Table 2). 대퇴경부골절군에서의대퇴경부및전자부골밀도평균치는 0.563 g/cm 2 와 0.753 g/cm 2 로나타났고, 대퇴전자 Fig. 2. Cortical index defined as the ratio between the cortex diameter of the proximal femur and the total diameter of the proximal femur (Cortical index = (I-H)/I). Table 1. Patient Distribution of Age, Height, Weight and BMI between Femoral Neck Fracture and Intertrochanteric Fracture Groups Parameter Femoral Neck Fracture (n=60) Trochanteric Fracture (n=65) P-value Age (years) 71.3±6.5 72.8±6.4 0.064 Height (cm) 158.2±7.40 156.3±8.20 0.537 Weight (kg) 52.7±5.9 56.3±8.3 0.217 BMI* (kg/m 2 ) 21.0±2.3 22.1±2.9 0.122 *BMI = Body Mass Index Values are mean ± SD Table 2. Predicting Variables and Multiple Regression Analysis Data on BMD* of Femoral Neck Fracture and Intertrochanteric Fracture Groups Parameter Variables Femoral Neck Fracture (n=60) Trochanteric Fracture (n=65) F value P-value F value P-value Neck Height 5.913 0.018 12.551 0.001 Weight No No 12.551 0.001 Trochanter Height No No 12.177 0.001 Intertrochanter Age No No 20.881 0.001 Height 8.468 0.005 20.881 0.001 Ward s Triangle BMI 4.071 0.048 No No *BMD=Bone Mineral Density, BMI=Body Mass Index 104 www.hipandpelvis.or.kr
Sung Soo Kim et al.: Morphology and BMD between femoral neck and trochanteric fractures 간골절군에서는 0.457 g/cm 2 와 0.656 g/cm 2 로나타나대퇴전자간골절군에서통계학적으로유의하게낮게측정되었다 (P=0.029, 0.030)(Table 3). 대퇴골두오프셋은대퇴경부골절군에서평균 34.9 mm, 대퇴전자간골절군에서는 29.3 mm 로측정되었으며대퇴경부골절군에서통계학적으로유의하게높게측정되었다 (P=0.044). 대퇴경부장축길이 (FNAL) 는대퇴경부골절군에서는평균 49.7 mm, 대퇴전자간골절군에서는 38.2 mm 로측정되었으며대퇴전자간골절군에서통계학적으로유의하게낮게측정되었다 (P=0.032). 대퇴경부골절군에서대퇴경간각 (NSA) 은평균 136.7, 대퇴전자간골절군에서는 130.2 로측정되었으며대퇴경부골절군에서통계적으로유의하게높게측정되었다 (P=0.045). 대퇴경부골절군에서피질골지수의평균치가 0.59 로나타났고대퇴전자간골절군에서는 0.51 로나타나대퇴전자간골절군에서통계학적으로유의하게낮게측정되었다 (P=0.001)(Table 4). 고 찰 근위대퇴골골절은심한외상에의한경우에는전연령층에서발생할수있으나, 경미한외상이나뚜렷한외상없 이발생하는골절은골다공증이동반된고령인구층에서주로발생한다 8-10). 따라서노년층의근위대퇴골골절과밀접한연관된골다공증에대한이해가필요하다. 골소실로인한골다공증은근골격계불균형을초래하고생역학적기능을감소하게한다. Johnson 과 Epstein 11) 은골다공증은골량이감소된상태로서경한외상으로도골절이유발되는골의역학적인쇠약상태라고정의하였고, Lane 과 Vigota 12) 는골다공증을골량이손상된상태로서방사선소견상미만성의골감소증의형태로나타나거나혹은임상적으로골절을유발하는상태라고포괄적으로정의하였다. 대퇴골근위부골절은대퇴경부골절과전자간골절로나누어볼수있으며이들에서근위대퇴부의골밀도가정상인보다낮다는보고는많이있다. Melton 등 2) 은골밀도가감소할수록대퇴경부골절은제곱으로증가하고, 대퇴전자간골절은세제곱으로증가한다고하면서, 골밀도가 0.1 g/cm 2 차이가나면골절의위험도는 3 배로증가한다고하였다. 골밀도감소와골절의증가가관련있는것으로유추해보면골량은대퇴경부의강도나골질의저하에영향을미치는것으로알려져있으며, Jang 등 13) 은근위대퇴골골절을가진경우가비골절군보다더낮은골밀도를가진다고하였으며, Dennison 등 14) 은대퇴전자간골절이대퇴경부 Table 3. Comparison of Hip BMD* at Different Region between Femoral Neck Fracture and Intertrochanteric Fracture Groups Parameter (g/cm 2 ) Femoral Neck Fracture (n=60) Trochanteric Fracture (n=65) P-value Neck 0.563±0.143 0.457±0.100 0.029 Trochanter 0.507±0.095 0.423±0.114 0.071 Intertrochanter 0.753±0.149 0.656±0.107 0.030 Ward s Triangle 0.707±0.157 0.661±0.061 0.085 Total (Hip) 0.683±0.174 0.607±0.135 0.144 *BMD=Bone Mineral Density Values are mean±sd Table 4. Comparison of Hip Morphology between Femoral Neck Fracture and Intertrochanteric Fracture Groups. Parameter Femoral Neck Fracture (n=60) Trochanteric Fracture (n=65) P-value Neck width (mm) 27.2±6.90 25.1±3.4 0.018 Anteversion ( ) 29.3±12.9 28.12±6.40 0.267 Head offset (mm) 34.9±9.40 29.3±6.9 0.044 HAL* (mm) 86.6±20.0 82.6±8.5 0.320 FNAL (mm) 49.7±11.1 38.2±7.2 0.032 NSA ( ) 136.7±7.500 130.2±6.90 0.045 Cortical Index 0.59±0.08 0.51±0.07 0.001 *HAL: Hip Axis Length FNAL: Femoral Neck Axis Length NSA: Neck Shaft Angle www.hipandpelvis.or.kr 105
골절보다더골다공증과관련이있다고하였다. 그러나 Cook 등 15) 은낮은외부자극에대한신체보호반응, 근력의감퇴등이골다공증외에도근위대퇴골골절의중요한요소라고하였다. 또한 Jahng 등 16) 도대퇴전자간골절군에서대퇴경부골절군보다낮은골밀도수치를나타냈지만통계적유의성은없다고하였다. 본연구에서는연령및체질량지수가비슷한환자군으로선택하여비교하였으며대퇴전자간골절군에서의대퇴경부및전자부골밀도평균치가대퇴경부골절군에서의평균치보다통계학적으로유의하게낮게측정되었다 (P=0.029, 0.030). 한편대퇴전자간골절군과대퇴경부골절군사이의비교에서근위대퇴부의모든구역에서전자간골절군이모두더낮은골밀도수치를나타내었으나이중대퇴경부와전자부에서통계적으로유의한차이를보였다. 즉, 대퇴전자간골절군에서대퇴전자간부만이, 대퇴경부골절군에서대퇴경부만이유의하게골밀도가감소되어골절이발생하는것이아니라, 골절을일으킬정도의골밀도감소를다른부위에도보이고있으나외력이대퇴전자간부혹은경부에작용하여골절을발생시키며특히대퇴경부와전자부, 골밀도가더낮은경우대퇴경부골절보다는전자부골절이호발할수있음을예측할수있다. Suh 17) 등에의하면한국의정상성인의근위대퇴골형태에서대퇴골경간각은대퇴골두오프셋과는역상관관계에있으며, Im 등 18) 에의하면대퇴경부골절이있는환자의대퇴경부장축길이는대퇴전자부골절환자보다대퇴경부장축길이가더길고대퇴경간각이작다고밝힌바있다. 본연구에서는골구조의측정에서대퇴경부골절군에서대퇴경부장축길이가더길고대퇴경간각이더큰것으로나타났다. 그러나대퇴경부장축길이는연령이높아질수록길어지며, 피질골의두께는더얇아진다고알려져있으며대퇴경부골절의위험도를예측하는인자로서의사용은논리적근거가부족해적절치못하다 19-23). 생체역학적연관성은이러한대퇴경부장축길이및대퇴경간각의골절위험도예측인자로서의역할을지지해주는것으로보이나, 실험대상자의선정및전산화단층촬영당시의자세및정위치가아닌전산화단층촬영사진의선택등에서분명한차이가존재하기때문이다 24,25). 그러나본연구에서는 65 세이상여성으로나이및성별의효과를통제하였으며체질량지수등의측정을통하여가능한비슷한체격을가진환자들로제한하였다. 또한전산화단층촬영을통한촬영시건측의근위대퇴골부위를슬개골이정면을향하도록하여 20 내회전을주고촬영하는동안검사자가직접하지를고정한상태에서촬영함으로써이러한차이를최대한줄여한계점을줄였다. 골다공증이있는노인에서대퇴골근위부골절이일어나는데는외력이골절역치보다커야하는데이때의대부분의외력은서있는높이에서의낙상, 즉중등도이하의약한 외력으로발생한다고알려져있다. 외력이일정할때 Lotz 와 Hayes 26) 는골밀도이외의대퇴골근위부의형태학적차이에의해서도골절이발생할수있는데, Ferris 등 27) 은대퇴골근위부를경부 - 간부각이최소화되도록촬영한다음측정한경부길이를비교하였을때대퇴전자간골절군에서대퇴경부골절군에서보다짧은경부길이를가진다고보고한바있으나연령적비교의차이가많았고, 비교군의숫자가많지는않았다. 본연구에서도대퇴전자간골절군에서 38.2 mm, 대퇴경부골절군에서 49.7 mm 로대퇴경부골절군에서더길었으며통계적으로유의한차이를보였다. 하지만본연구에서는두군간의연령의차이가없었고, Ferris 등 27) 의연구보다비교군의숫자가많았다. Dorr 등 28) 에의하면피질골지수는피질골의강도를나타낸다고알려져있으며대퇴전자간골절군에서대퇴경부골절군에서보다피질골강도가의미있게낮았다고하였다. 이러한골절유형의차이는골밀도의차이라기보다는피질골강도의차이에서발생하는것으로보인다고하였으며, 낮은골밀도값은골절유형에서이차적으로기여한다고주장하였다. 본연구에서도피질골지수는대퇴전자간골절군에서통계학적으로유의하게낮은값을보였으며골밀도평균치역시대퇴전자간골절군에서통계학적으로유의하게낮은값을보여피질골지수와피질골의강도는연관이있는것으로보인다. 이번연구의제한점은골구조및골밀도가손상받지않은반대편부위에서측정되었다는점이다. 하지만손상받지않은부위가예전의외상병력이나골염증성질환등이없었다면일반적으로양측의측정치는비슷하게측정될것이다. 또한자세한병력청취를통해골절이전에외상병력이나골염증성질환병력이없으며정상보행이가능하였던환자를선택하였으며, 손상된부위와반대편의손상받지않은부위에서의대퇴골두의골밀도와피질골계수를비교했을때큰차이가없다는것을확인했다. 또한총환자수가적고이외골밀도수치및골절에영향을줄수있는흡연력, 음주력, 식습관, 운동습관등은연구에고려되지않았다. 그러나 65 세이상여성으로나이및성별의효과를통제하였으며체질량지수등의측정을통하여가능한비슷한체격을가진환자들로제한함으로써적은환자수로발생하는통계적한계점을보강하였다. 또한골밀도수치에영향을줄수있는연령, BMI, 신장, 체중에대한다중회귀분석을시행하여신장이외에는골밀도수치에대부분영향을끼치지않음을확인하였으며, 신장의경우두집단의평균신장의차이는 1.9 cm 으로다중회귀분석을통한비표준화계수및표준오차는최대 0.007±0.002 g/cm 2 으로평균신장의차이가골밀도수치에끼치는영향을배제할수는없지만그수치가전체결과에끼치는영향은적음을확인하였다. 본연구에서대조군을설정하는데있어 65 세이상여성 106 www.hipandpelvis.or.kr
Sung Soo Kim et al.: Morphology and BMD between femoral neck and trochanteric fractures 에서낙상등의저에너지손상으로 3 차의료기관을방문하여단순타박상으로전산화단층촬영을시행하였던환자수가부족하여새로운대조군을설정하는데어려움이있었다. 또한대조군없이두가지골절형태에따른골밀도와해부학적특성만을분석하여골절예측의인자로다소부족한면이있다. 이는현재고령의정상성인에서골밀도수치와골구조의자세한연구는부족한실정이며, 추후건강한고령의성인에서골밀도수치및골구조의특징에대한자세한연구가필요할것으로사료된다. 결 론 65 세이상의여성의대퇴전자간골절군에서대퇴경부골절군에비해대퇴경부및전자부에서낮은골밀도소견을보였고대퇴전자간골절군에서더짧은레버암 (lever arm, 지렛대길이 ) 소견을보였다. 이는골절과의연관성이있어골절의위험도평가시대퇴경부및전자부의골밀도와고관절의형태측정이유용할것으로보인다. 또한골다공증으로인한골밀도의감소가대퇴골의강도나골질의저하에영향을미쳐피질골의두께저하를일으키며골절의위험도평가시전산화단층촬영을통한피질골의두께측정이유용할것으로생각한다. REFERENCES 01.Hwang KT, Yoo BW, Kim YS, Choi IY, Kim YH. Persistency and change of the bone mineral density with alendronate treatment after hip fracture. J Korean Hip Soc. 2010;22:312-8. 02. Melton LJ 3rd, Wahner HW, Richelson LS, O Fallon WM, Riggs BL. Osteoporosis and the risk of hip fracture. Am J Epidemiol. 1986;124:254-61. 03.Riggs BL, Melton LJ 3rd. Evidence for two distinct syndromes of involutional osteoporosis. Am J Med. 1983; 75:899-901. 04.Cheng X, Li J, Lu Y, Keyak J, Lang T. Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture. Bone. 2007;40:169-74. 05.Singh M, Nagrath AR, Maini PS. Changes in trabecular pattern of the upper end of the femur as index of osteoporosis. J Bone Joint Surg Am. 1970;52:457-67. 06. Cameron JR, Sorenson J. Measurement of bone mineral in vivo: an improved method. Science. 1963;142:230-2. 07.Carter DR, Hayes WC. Bone compressive strength: the influence of density and strain rate. Science. 1976;194: 1174-6. 08.Naimark A, Kossoff J, Schepsis A. Intertrochanteric fracture: current concepts of an old subject. AJR Am J Roentgenol. 1979;133:889-94. 09.Newton-John HF, Morgan DB. The loss of bone with age, osteoporosis, and fractures. Clin Orthop Relat Res. 1970;71:229-52. 10.Nordin BE. The definition and diagnosis of osteoporosis. Calcif Tissue Int. 1987;40:57-8. 11.Johnson CC Jr, Epstein S. Clinical, biochemical, radiographic, epidemiologic, and economic features of osteoporosis. Orthop Clin North Am. 1981;12:559-69. 12.Lane JM, Vigorita VJ. Osteoporosis. Orthop Clin North Am. 1984;15:711-28. 13.Jang J, Kim WL, Kang SB, Lee JH, Yoon KS. The relationship of osteoporosis and hip fractures in elderly patients. J Korean Hip Soc. 2008;20:299-304. 14.Dennison E, Mohamed MA, Cooper C. Epidemiology of osteoporosis. Rheum Dis Clin North Am. 2006;32:617-29. 15.Cook PJ, Exton-Smith AN, Brocklehurst JC, Lempert- Barber SM. Fractured femurs, falls and bone disorders. J R Coll Physicians Lond. 1982;16:45-9. 16.Jahng JS, Yoo JH, Sohn JS. The relationship between the fractures of the hip and the bone mineral density over fifty years. J Korean Orthop Assoc. 1997;32:46-52. 17.Suh KT, Lee SH, Cho BM. Radiological analysis of the proximal femoral morphology in normal Korean adults. J Korean Orthop Assoc. 1999;34:891-7. 18.Im GI, Lim MJ. Proximal hip geometry and hip fracture risk assessment in a Korean population. Osteoporos Int. 2011;22:803-7. 19. Yang RS, Wang SS, Liu TK. Proximal femoral dimension in elderly Chinese women with hip fractures in Taiwan. Osteoporos Int. 1999;10:109-13. 20. Michelotti J, Clark J. Femoral neck length and hip fracture risk. J Bone Miner Res. 1999;14:1714-20. 21.Glüer CG, Cummings SR, Pressman A, et al. Prediction of hip fractures from pelvic radiographs: the study of osteoporotic fractures. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1994;9:671-7. 22.Dretakis EK, Papakitsou E, Kontakis GM, Dretakis K, Psarakis S, Steriopoulos KA. Bone mineral density, body mass index, and hip axis length in postmenopausal cretan women with cervical and trochanteric fractures. Calcif Tissue Int. 1999;64:257-8. 23.De Laet CE, Van Hout BA, Burger H, Weel AE, Hofman A, Pols HA. Hip fracture prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner Res. 1998;13:1587-93. 24.Maeda Y, Sugano N, Saito M, Yonenobu K. Comparison of femoral morphology and bone mineral density between femoral neck fractures and trochanteric fractures. Clin Orthop Relat Res. 2011;469:884-9. 25.Crabtree N, Lunt M, Holt G, et al. Hip geometry, bone mineral distribution, and bone strength in European men and women: the EPOS study. Bone. 2000;27:151-9. 26.Lotz JC, Hayes WC. The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Joint Surg Am. 1990;72:689-700. 27. Ferris BD, Kennedy C, Bhamra M, Muirhead-Allwood W. Morphology of the femur in proximal femoral fractures. J Bone Joint Surg Br. 1989;71:475-7. 28.Dorr LD, Faugere MC, Mackel AM, Gruen TA, Bognar B, Malluche HH. Structural and cellular assessment of bone quality of proximal femur. Bone. 1993;14:231-42. www.hipandpelvis.or.kr 107
국문초록 65 세이상의여성에서발생한대퇴경부골절과전자간부골절환자간의골밀도및골구조비교 김성수 이명진 김현준 강정모동아대학교의과대학정형외과학교실 목적 : 65 세이상의여성에서발생한대퇴경부골절및전자간부골절환자간의골밀도및골구조에대하여방사선학적결과를분석하였다. 대상및방법 : 2008 년 4 월부터 2011 년 3 월까지대퇴경부골절및전자간부골절로내원하여골밀도검사및전산화단층검사를시행한 65 세이상여성, 125 명을대상으로하였다. 골밀도는이중에너지방사선흡수측정법으로측정하였으며, 골구조는전산화단층촬영을통해건측고관절의형태를측정하였다. 결과 : 대퇴경부골절군에서의대퇴경부및전자부골밀도평균치는 0.563 g/cm 2 와 0.753 g/cm 2, 대퇴전자간골절군에서는 0.457 g/cm 2 와 0.656 g/cm 2 로나타나전자간골절군에서통계학적으로유의하게낮게측정되었다 (P=0.029, 0.030). 대퇴경부골절군에서피질골지수의평균치가 0.59, 대퇴전자간골절군에서는 0.51 로나타나각각대퇴전자간골절군에서통계학적으로유의하게낮게측정되었다 (P=0.001). 결론 : 대퇴전자간골절군에서경부골절군에비해낮은골밀도소견을보였고대퇴골이얇은피질골소견을보였다. 65 세이상근위대퇴골절여성에있어서골밀도측정및전산화단층촬영은유용한검사라생각한다. 색인단어 : 대퇴경부골절, 대퇴전자간부골절, 골밀도, 피질골지수 108 www.hipandpelvis.or.kr