Journal of Nutrition and Health (J Nutr Health) 2017; 50(1): 25 ~ 31 http://dx.doi.org/10.4163/jnh.2017.50.1.25 pissn 2288-3886 / eissn 2288-3959 Research Article LPS 에의해활성화된미세아교세포에서미역쇠추출물의신경염증보호효과 * 박재현 김성훈 이선령 제주대학교생물학과 Inhibitory effect of Petalonia binghamiae on neuroinflammation in LPS-stimulated microglial cells* Park, Jae Hyeon Kim, Sung Hun Lee, Sun Ryung Department of Biology, Jeju National University, Jeju 63243, Korea ABSTRACT Purpose: Neuroinflammation is mediated by activation of microglia implicated in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Inhibition of neuroinflammation may be an effective solution to treat these brain disorders. Petalonia binghamiae is known as a traditional food, based on multiple biological activities such as anti-oxidant and anti-obesity. In present study, the anti-neuroinflammatory potential of Petalonia binghamiae was investigated in LPS-stimulated BV2 microglial cells. Methods: Cell viability was measured by MTT assay. Production of nitric oxide (NO) was examined using Griess reagent. Expression of inducible NO synthase (inos) and cyclooxygenase-2 (COX-2) was detected by Western blot analysis. Activation of nuclear factor κb (NF-κB) signaling was examined by nuclear translocation of NF-κB p65 subunit and phosphorylation of IκB. Results: Extract of Petalonia binghamiae significantly inhibited LPS-stimulated NO production and inos/cox-2 protein expression in a dose-dependent manner without cytotoxicity. Pretreatment with Petalonia binghamiae suppressed LPS-induced NF-κB p65 nuclear translocation and phosphorylation of IκB. Co-treatment with Petalonia binghamiae and pyrrolidine duthiocarbamate (PDTC), an NF-κB inhibitor, reduced LPS-stimulated NO release compared to that in PB-treated or PDTC-treated cells. Conclusion: The present results indicate that extract of Petalonia binghamiae exerts anti-neuroinflammation activities, partly through inhibition of NF-κB signaling. These findings suggest that Petalonia binghamiae might have therapeutic potential in relation to neuroinflammation and neurodegenerative diseases. KEY WORDS: Petalonia binghamiae, neuroinflammation, microglia, nitric oxide, nuclear factor-κb 서론 뇌에서대식세포의역할을하는미세아교세포 (microglial cell) 는중추신경계 (central nervous system, CNS) 내면역반응을조절하는중요한효과세포 (effector cell) 이다. 이들의활성화는약물이나독소에의한이물질을제거하고신경성장인자를분비하여 CNS의항상성을유지하는데중요한역할을한다. 1 그러나손상된뉴런으로부터발생하는신호, 외부자극에의해변형된비정상적인형태의단백질의축적, 병원체의침투와같은유해한스트레스에노출되면미세아교세포의활성이지나치게증가되어과도한 신경염증반응을유도하게되고신경세포의손상을유발함으로써알츠하이머질환, 파킨슨질환, 다발성경화증, 뇌경색등과같은신경퇴행성질환들을일으킬수있다. 2-6 따라서, 신경세포손상을유도하는신경염증반응의제어가신경퇴행성질환의치료및예방의주요요인중의하나로인식되면서미세아교세포의과도한활성억제를위한소재개발연구가다양하게진행되고있다. 포도잎에서분리한 quercetin-3-o-glucuronide 7 과뽕나무에서분리한 morin 8 은신경염증반응을억제하였고녹차유래폴리페놀인 epigallocatechin gallate (EGCG) 9 의경우신경염증반응을억제함과동시에신경세포손상을보호하는효과를 Received: December 8, 2016 / Revised: December 20, 2016 / Accepted: January 18, 2017 *This work was supported by the project PoINT of Jeju National University in 2015. To whom correspondence should be addressed. tel: 82-64-754-3522, e-mail: srlee@jejunu.ac.kr 2017 The Korean Nutrition Society This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
26 / 미역쇠추출물의항신경염증효과 나타내었고미세아교세포의과도한활성으로인한식균활성 (phagocytic activity) 또한억제됨을보여주어신경퇴행성질환의제어가능성을제시하였다. 10 미세아교세포의과도한활성화는 lipopolysccharides (LPS), β-amyloid related proteins, human immunodeficiency virus (HIV) 의외부단백질인 gp120과같은물질들에의해일어나는것으로알려져있으며, nitric oxide (NO), prostaglandin E 2 (PGE 2 ), interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) 등과같은염증성매개인자및활성산소종 (reactive oxygen species, ROS) 의분비를촉진하여신경독성을유발한다. 11,12 LPS에의한신경염증반응은 Toll-like receptor 4 (TLR 4) 신호전달경로의활성화에의해조절되거나독성물질로작용하는 NO나 PG의생성에영향을미치는 inducible nitric oxide synthase (inos), cyclooxygenase-2 (COX-2) 에의해조절되기도하는데이러한일련의과정은 nuclear fator (NF)- κb와 activator protein (AP)-1의신호전달조절기전과밀접한연관성이있는것으로알려져있다. 9,13 비타민, 미네랄, 식이섬유등이풍부하여예로부터 medicinal herb로사용되어온해조류는제주도연안에약 520여종이분포하는것으로보고되어있다. 14 특히, 갈조류의경우 fucoidan과 laminarin이라는성분을다량가지고있으며 15,16 이는항암과항염증등의생리활성뿐아니라 DNA 손상및신경세포손상을보호하는효과를가지는것으로보고되어있다. 17 최근많은연구자들에의해갈조류에대한기능성이알려지면서기능성식품으로서의관심이점차증가되었고생리적기전에대한연구가활발히진행되고있다. 갈조류중의하나인감태 (Ecklonia cava) 분획물은항산화및암세포증식을억제하는효과가입증되었고 18 비틀대모자반 (Sargassum sagamianum) 의 farnesylacetone 유도체는치매예방효능을보여주었다. 19 톳이나꽈배기모자반 (Sargassum siliquastrum) 추출물및셀만모자반 (Sargassum kjellmanianum) 에서분리한 phlorotannin의경우과산화지질생성억제효과가있는것으로보고되어져있다. 20,21 미역쇠 (Petalonia binghamiae, PB) 는너비 20~30 mm, 길이 250 mm 정도의잎을가지고있는미역과 (Alariaceae) 에속하는갈조류이다. 조간대바위에서군락을이루어서식하며한국과일본등태평양연안에주로분포한다. 14 미역쇠는예로부터민간에서당뇨나염증성관련질환에긍정적인효과가있는것으로전해져오면서다양한먹거리로사용되어왔으나최근에들어서그효능이검증되기시작하였고이를천연물소재로활용하기위해많은연구들 이진행되고있다. Kang 등 22,23 의연구에따르면미역쇠는비만을저해할뿐아니라지방세포의분화를억제하여당뇨와같은대사성질환을조절하는데중요한작용을하는것으로보고되었으나아직까지염증유도성뇌신경혈관계질환의효능에관련된미역쇠의생리활성연구는매우미흡한실정이다. 그외, 미역쇠는항산화작용과함께타이로시네이즈의활성을조절하여미백활성을가지는것으로보고되어있다. 24 따라서본연구에서는염증성관련퇴행성뇌질환에미치는미역쇠의효능을알아보고자뇌신경혈관계를구성하는미세아교세포인 BV2 세포를이용하여 LPS에의한미세아교세포의활성화를유도하여미역쇠추출물이신경염증에미치는효능및조절기전을조사하였다. 연구방법 시료연구에사용된미역쇠는제주조간대에서채취하여흐르는물로씻어염분을제거한후동결건조및분쇄하였다. 미역쇠분말중량의 10배에해당하는 80% 에탄올을첨가하여 48시간상온에서침출한후 Whatmann paper (No. 2) 로여과하여불순물을제거하였고위과정을 2회반복하였다. 회수된 80% 에탄올추출물은회전농축기 (Buchi Labortechnik, Flawil, Switzerland) 를이용하여감압농축한후동결건조하여사용하였다. 세포배양 Mouse microglial BV2 세포는제주의대생리학연구실에서분양받아사용하였다. 10% fetal bovine serum (FBS) 와 1% penicillin/streptomycin이첨가된 Dulbecco's modified eagle's medium (DMEM, Gibco, Carlsbad, CA, USA) 배지를사용하여 37 o C, 5% CO 2 조건하에서배양하였다. MTT assay 세포독성을확인하기위해 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) 를이용하여세포생존율을측정하였다. 24 well plate에서 12시간배양한세포 (2 10 5 cells/ml) 에 LPS 또는농도별로희석한미역쇠추출물을처리하고 24시간배양한다음, MTT 용액을각 well에 0.4 mg/ml의농도로처리하였다. 4시간반응시킨후, dimethyl sulfoxide (DMSO) 로 formazan crystals을녹여 ELISA reader (Molecular devices, sunnyvale, CA, USA) 를이용하여 540 nm에서흡광도를측정하였다.
Journal of Nutrition and Health (J Nutr Health) 2017; 50(1): 25 ~ 31 / 27 Nitric oxide (NO) assay NO 생성량은 griess reagent (1% sulfanilamide, 0.1% naphthlethylene diamine, 2.5% phosphoric acid) 를이용하여측정하였다. 2 10 5 cells/ml의밀도로심은세포에각농도별미역쇠추출물을 30분전처리한후 100 ng/ml의 LPS 를처리하였다. 24 시간배양후, 배지의상층액 100 μl 와 Griess 시약 100 μl 를혼합하여 10 분동안반응시킨후 540 nm에서 ELISA reader를이용하여흡광도를측정하였다. 생성된 NO의양은 sodium nitrite (NaNO 2 ) 를이용하여측정한표준곡선과비교하여분석하였다. Western blot analysis 세포단백질을추출하기위해 phosphate buffered saline (ph 7.4) 으로수세한세포에 protease inhibitor가첨가된 RIPA buffer (1 M Tris HCl (ph 7.4), 1 M Nacl, 0.5 M EDTA, 100% NP-40, 20% SDS) 를이용하여 30분간반응하였고 14,000 rpm에서 15분간원심분리하여단백질을얻었다. 세포의핵내에존재하는핵단백질의분리는 NE- PER nuclear and cytoplasmic extraction reagents (Thermo scientific, Rockford, IL, USA) 를이용하였다. PBS로수세한세포를 cytoplasmic extraction reagent (CER) I에서 10분, CERⅡ에서 1분간반응한후 15,000 rpm에서 5분간원심분리하여얻은상층액은세포질분획으로사용하였다. 남은 cell pellet은 nuclear extraction reagent (NER) 을넣어 40분동안반응하여 15분간원심분리 (4 o C, 15,000 rpm) 를통해핵분획단백질을추출하였다. 얻어진단백질은 Bradford assay를통해정량화하였고 30 μg의단백질은 10% SDS-polyacrylamide gel에서전기영동하여 nitrocellulose membrane에전이시킨후 anti-mouse COX-2 (BD biosciences, Franklin, NJ, USA), anti-rabbit inos (Santa Cruz Biotech, Dallas, TA, USA), anti-rabbit phospho Iκ-B, anti-rabbit NF-κB (Cell signaling, Danvers, MA, USA), anti-mouse β-actin (Sigma, St. Louis, MO, USA) 항체를이용하여반응하였고 enhanced chemiluminescence kit (ECL) 방법으로각단백질의발현정도를분석하였다. 결 미역쇠추출물의세포독성 BV2 미세아교세포에서미역쇠추출물의독성정도를확인하기위해 MTT assay를수행하였다. 2 10 5 cells/ml 의세포에미역쇠에탄올추출물을 10~200 μg/ml 농도로 24시간처리하여세포생존율을확인한결과, 농도가증가하더라도 90% 이상의생존율을나타내어세포독성이없음을확인하였다 (Fig. 1). 미역쇠추출물의항신경염증효과미역쇠추출물이미세아교세포의활성화에의한신경염증에미치는효능을알아보기위해 LPS로미세아교세포의활성화를유도한후염증반응의표지인자로사용되는 NO의생성량과 inos 및 COX-2 단백질의발현양상을분석하였다. 먼저, 미역쇠추출물이 NO 생성에미치는효과를확인하기위해 100 ng/ml의 LPS로활성화된 BV-2 미세아교세포에세포독성이나타나지않는범위의미역쇠추출물을농도별 (10~200 μg/ml) 로처리하여분비되는 NO 양을측정하였다. LPS 처리군의경우대조군에비해약 3배정도 NO 생성량이증가되었고미역쇠추출물처리군에서는농도의존적으로 NO 분비량이유의적으로감소되는것을확인하였다 (Fig. 2A). 미역쇠추출물이 NO 및 PG의분비를조절하는효소단백질발현에미치는영향을확인하기위해 inos와 COX-2의발현양상을 western blot 으로분석하였다. Fig. 2B에서보는바와같이 LPS 처리에의해증가된 inos와 COX-2 단백질의발현은미역쇠추출물에의해농도의존적으로감소하는양상을나타내었다. 이는미역쇠추출물의 NO 생성억제효과와일치되는 과 통계처리모든실험의결과는 3회이상반복하여평균치와표준편차 (mean ± SD) 로나타내었고 SPSS (statistical package for social science, ver. 18) 를이용하여통계처리하였다. 각실험군간의비교는 one-way ANOVA 로분석한후 p < 0.05 수준에서 Duncan s multiple range test로검증하였다. Fig. 1. Effect of Petalonia binghamiae (PB) on the viability of BV-2 microglial cells. Cells were incubated with the indicated concentrations of PB for 24 h and cytotoxicity of PB was examined by MTT assay. Data are represented as mean ± SD of three independent experiments.
28 / 미역쇠추출물의항신경염증효과 Fig. 2. Inhibitory effect of Petalonia binghamiae (PB) on LPSinduced NO production (A) and inos/cox-2 protein expression (B). The cells were incubated with the indicated concentrations of PB for 30 min before treatment of LPS. Data are represented as mean±sd of three independent experiments. Means with different letter in superscript are significantly different (p < 0.05) by ANOVA and Duncan s multiple range test. Fig. 3. Effect of Petalonia binghamiae (PB) on the LPS-induced activation of NF-κB (p65) and IκB. The cells were treated with LPS (100 ng/ml) for 30 min in the absence and/or presence of PB (100 μg/ml). The cytoplasmic (C) and nuclear (N) extracts were prepared to determine translocation of NF-κB p65 and IκB activity was measured by levels of phosphorylated IκB protein. 결과로미역쇠추출물이항신경염증활성을가지는것으로확인할수있었다. NF-κB signaling에미치는미역쇠추출물의효과미역쇠추출물의 inos의발현저해에따른 NO 생성억제가항염증활성의상위신호전달기전으로작용하는 NF-κB 신호전달과연관성이있는지를알아보기위해 NFκB와 IκB의활성정도를분석하였다. NF-κB는염증성단백질의발현을조절하는전사인자로핵으로의 translocation 과 IκB 의인산화를통해이들의활성화가조절된다. 9-14 LPS 로활성화된 BV2 cell에서 NF-κB 단백질의 translocation을확인하기위해 LPS와미역쇠추출물이 30분동안처리된세포를세포질분획과핵분획으로나누어 NF-κB 단백질의발현량을조사하였다. 세포질분획의경우, 대조군과비교하여 LPS 처리군에서는 NF-κB 발현량이감소하였고 미역쇠추출물처리군에서는 LPS 처리군에비해 NF-κB 발현량이증가되는양상을보였다. 핵분획의경우, LPS의처리는핵으로의 translocation을촉진하여 NF-κB의발현량증가를유도한반면, 미역쇠추출물은 LPS 처리군에비해 NF-κB 발현량이감소되어세포질분획에서의발현양상과상반되는결과를나타내었다 (Fig. 3A). 이러한결과는미역쇠추출물의항신경염증효능조절이 LPS에의해유도되는 NF-κB의핵으로의 translocaton을억제함으로써이루어지고있음을보여주는것이다. NF-κB의핵으로의전이는 IκB의인산화를통해조절되므로 IκB의인산화에미치는미역쇠추출물의효과를확인한결과 LPS에의해유의적으로증가한 IκB의인산화는미역쇠추출물에의해억제되는것으로나타났다 (Fig. 3B). 미역쇠추출물의신경염증저해작용이 NF-κB 신호전달경로를통해일어나는지를검증하기위해 NF-κB inhibitor인 pyrrolidine dithiocarbamate (PDTC) 를사용하
Journal of Nutrition and Health (J Nutr Health) 2017; 50(1): 25 ~ 31 / 29 Fig. 4. Involvement of NF-κB signaling on LPS-stimulated NO production. The cells were treated with LPS (100 ng/ml) for 24 h after treatment of PB (100 μg/ml) and/or PDTC (25 μm) for 30 min. Data are represented as mean ± SD of three independent experiments. Means sharing the same superscript letter are not are significantly different (p < 0.05) by ANOVA and Duncan s multiple range test. 여 NO 생성에미치는효과를확인하였다. 미역쇠추출물처리군과 PDTC 처리군에서분비되는 NO의양은 LPS에의해증가된 NO의분비량과비교해볼때거의유사하게감소하였으며이들을동시에처리하였을경우 NO 분비량이현저히감소하여대조군과유사한 NO 생성량을확인할수있었다 (Fig. 4A). 또한, 이들의처리는세포생존율에는별다른영향을미치지않았다 (Fig. 4B). 고 염증은유해물질이나감염등외부자극에대한손상을방어하려는반응으로대식세포가분비하는사이토카인이나염증매개물질에의해조절된다. 25 뇌에서의대식세포인미세아교세포는식세포작용을통해죽거나손상받은세포를제거함으로써중추신경계를보호하는작용을한다. 1 감염이나손상으로인해미세아교세포는활성화되고 찰 세포내신호전달을조절하여 NO, COX-2, IL-1, IL-6 등의전염증매개체를분비하여뇌경색과같은뇌손상을보호한다. 2 그러나과도하게활성화된미세아교세포로인한염증매개인자의비정상적인분비는지속적으로신경염증을유발하여신경세포를손상시킴으로써오히려퇴행성신경질환을일으킬수있다. 특히, 미세아교세포활성화에의해과도하게분비되는 NO의경우비정상적으로작용하여뇌혈관장벽 (blood-brain barrier) 파괴를촉진하고산화적손상을야기하기도하여뇌경색을악화시키기도한다. 26,27 알츠하이머질환이나파킨슨질환을가진환자에서증가된염증성사이토카인들 (IL-1β, IL-6) 이발견되기도하고파킨슨질환의뇌에서정상보다높은 inos가발현되기도한다. 28 또한, inos 발현을억제하는동물모델은 dopaminergic neuron의사멸을억제하여신경염증을완화시켜줌으로써파킨슨질환의조절이가능함을보여주었다. 29 따라서본연구에서는미세아교세포의활성화에의한과도한신경염증반응을억제하여신경퇴행성질환의진행을조절하는데긍정적인효과를가지는천연물소재를발굴하고자예로부터먹거리로활용되는갈조류의하나인미역쇠의효능과그작용기전을분석하였다. 미세아교세포의활성화를유도하는것으로알려진 LPS를이용하여 BV2세포에서과도한신경염증을유발하였고미역쇠의항신경염증효능을확인하기위해염증반응의대표지표물질인 NO의생성량을측정하였다. 정상적인 NO는신경보호나뇌발달에있어서매우중요하다. 30,31 선택적인 NOS inhibitor인 L-NAME의처리는 NO가중재하는신경보호효과를저해하였고 30 NO가중재한단백질의 s-nitrosylation 과정은신경세포의분화및성숙을유도하기도한다. 31 그러나과도한 NO의생성은산화적손상이나 blood-brain-barrier 붕괴와같은다양한과정을통해뇌신경질환에연관되어져있다. Fig. 2에서제시한바와같이미역쇠추출물은 LPS에의한과도한 NO 생성을현저히감소시켜항신경염증효능이있음을보여주었고이는염증매개물질인 inos와 COX-2의발현저해를통해이루어짐을확인하였다. 이러한결과는뽕나무에서분리한 morin, 포도잎으로부터분리한 quercetin, 녹차의폴리페놀에서나타나는항신경염증효능 7-9 과비교하여볼때유사한효능을나타내었다. 또한, 미역쇠에의한 inos의억제는 inos 발현이억제된동물모델에서신경염완화효과 29 가나타나는이전의보고와마찬가지로뛰어난항신경염활성을가지는미역쇠추출물이미세아교세포의활성화를억제하여뇌신경질환을제어할수있는가능성을보여주는것으로생각된다. LPS에의한신경염증반응은세포막에존재하는 LPS 특
30 / 미역쇠추출물의항신경염증효과 이수용체인 TLR-4, MAPKs, NF-κB, AP-1 등의신호전달경로의활성화에의해조절된다. p50과 p65라는 2개의단백질이량체형태로되어있는 NF-κB는이들의활성을억제시키는단백질인 IκB와결합하여비활성형상태로세포질에존재한다. 염증반응이일어나게되면 IκB는인산화되면서 NF-κB와의결합이떨어져분해되며활성화된 NF-κB는세포질에서핵내부로전이되어염증성매개인자인 inos와 COX-2 등의발현과 IL-1β, IL-6, TNF-α 등의사이토카인발현을유도하여 NO 생성을조절한다. 32-35 본연구에서도미역쇠의신경염증저해작용이 IκB의인산화를억제하여 NF-κB의핵으로의전이를억제시키는 NF-κB의활성화조절을통해이루어짐을확인하였다 (Fig. 3과 4). NF-κB의활성조절은알츠하이머질환을유발하는신경염진행과정에중요한역할을수행한다. 36 미역쇠에의한 NF-κB 활성의적절한조절은염증으로촉발되는신경질환제어에효율적으로적용될수있을것으로생각된다. 미세아교세포의지나친활성화에의한신경염증반응은결국신경세포사멸을유도하여뇌손상과같은신경질환으로이어지게되므로신경염증반응의저해는뇌손상의예방과치료에있어서매우중요한일이다. 본연구결과에서보여준미역쇠추출물의항신경염효과는미역쇠가미세아교세포의활성을억제하여신경염증반응을효율적으로제어할수있는활용가능한잠재적후보로서의가능성을제시하였다. 그러나향후보다더정확한검증을위해알츠하이머질환이나파킨슨질환, 뇌경색등의신경뇌질환동물모델을이용한미역쇠추출물의효능검증과그작용기전에대한추가연구가계속진행되어야할것으로사료된다. 요 퇴행성뇌신경질환의원인이되는것으로알려진미세아교세포의과도한활성화에의한신경염증반응에미치는미역쇠의보호효과를알아보기위해 LPS를처리한 BV2 세포에서미역쇠에서얻은에탄올추출물을이용하여실험을수행하였다. 미세아교세포의활성화를유도하는 LPS의처리는신경염증반응의지표인 NO의생성량과이들을조절하는 inos, COX-2의발현을증가시켰다. 미역쇠추출물의처리는 LPS가유도하는 NO의생성량을농도의존적으로억제하였고 inos와 COX-2의발현을억제하여 NO 생성량저해와유사한양상의결과를나타내었다. 미역쇠추출물의신경염증반응저해효과가 NF-κB의활성화조절을통해일어나는지를알아보기위해 NF-κB 약 의핵으로의전이, IκB 의인산화, NF-κB 억제제인 PDTC 를이용한 NO의생성량에미치는효과를확인하였다. 미역쇠추출물처리에의해핵분획물에서의 NF-κB 발현은현저히감소하였고 IκB의인산화를억제하였으며 PDTC 의처리로 NO의생성량은감소하였다. 이상의결과는미세아교세포의활성화로인해발생되는신경염증반응에미역쇠추출물이 NF-κB의활성억제를통해 NO의생성을저해함으로써항신경염증효과가있음을보여주는것으로미역쇠추출물이신경염증관련뇌신경질환의제어하는데있어서치료효과를가지는소재로서이용가능성에대한정보를제공할것으로사료된다. References 1. Nakagawa Y, Chiba K. Role of microglial m1/m2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel) 2014; 7(12): 1028-1048. 2. Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010; 87(5): 779-789. 3. Griffin WS. Inflammation and neurodegenerative diseases. Am J Clin Nutr 2006; 83(2): 470S-474S. 4. Chung YC, Ko HW, Bok E, Park ES, Huh SH, Nam JH, Jin BK. The role of neuroinflammation on the pathogenesis of Parkinson's disease. BMB Rep 2010; 43(4): 225-232. 5. González H, Elgueta D, Montoya A, Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 2014; 274(1-2): 1-13. 6. Whitney NP, Eidem TM, Peng H, Huang Y, Zheng JC. Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem 2009; 108(6): 1343-1359. 7. Yoon CH, Kim DC, KO WM, Kim KS, Lee DS, Kim DS, Cho HK, Seo J, Kim SY, Oh H, Kim YC. Anti-neuroinflammatory effects of Quercetin-3-O-glucuronide isolated from the leaf of Vitis labruscana on LPS-induced neuroinflammation in BV2 cells. Korean J Pharmacogn 2014; 45(1): 17-22. 8. Dilshara MG, Jayasooriya RG, Lee S, Choi YH, Kim GY. Morin downregulates nitric oxide and prostaglandin E2 production in LPS-stimulated BV2 microglial cells by suppressing NF-κB activity and activating HO-1 induction. Environ Toxicol Pharmacol 2016; 44: 62-68. 9. Park E, Chun HS. Green tea polyphenol Epigallocatechine gallate (EGCG) prevented LPS-induced BV-2 micoglial cell activation. J Life Sci 2016; 26(6): 640-645. 10. Min JS, Lee DS. A screen for dual-protection molecules from a natural product library against neuronal cell death and microglial cell activation. J Life Sci 2015; 25(6): 656-662. 11. Galea E, Reis DJ, Fox ES, Xu H, Feinstein DL. CD14 mediate endotoxin induction of nitric oxide synthase in cultured brain glial cells. J Neuroimmunol 1996; 64(1): 19-28. 12. Laflamme N, Rivest S. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-
Journal of Nutrition and Health (J Nutr Health) 2017; 50(1): 25 ~ 31 / 31 negative bacterial cell wall components. FASEB J 2001; 15(1): 155-163. 13. Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 2009; 4(4): 399-418. 14. Lee YP, Kang SY. A catalogue of the seaweeds in Korea. Jeju: Jeju National University Press; 2002. 15. Noda H, Amano H, Arashima K, Hashimoto S, Nisizawa K. Studies on the antitumour activity of marine algae. Bull Jpn Soc Sci Fish 1989; 55(7): 1259-1264. 16. Schwartsmann G, Brondani da Rocha A, Berlinck RG, Jimeno J. Marine organisms as a source of new anticancer agents. Lancet Oncol 2001; 2(4): 221-225. 17. Shin DB, Han EH, Park SS. Cytoprotective effects of Phaeophyta extracts from the coast of Jeju island in HT-22 mouse neuronal cells. J Korean Soc Food Sci Nutr 2014; 43(2): 224-230. 18. Athukorala Y, Kim KN, Jeon YJ. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem Toxicol 2006; 44(7): 1065-1074. 19. Ryu G, Park SH, Kim ES, Choi BW, Ryu SY, Lee BH. Cholinesterase inhibitory activity of two farnesylacetone derivatives from the brown alga Sargassum sagamianum. Arch Pharm Res 2003; 26(10): 796-799. 20. Park JC, Choi JS, Song SH, Choi MR, Kim KY, Choi JW. Hepatoprotective effect of extracts and phenolic compound from marine algae in bromobenzene-treated rats. Korean J Pharmacogn 1997; 28(4): 239-246. 21. Park KE, Jang MS, Lim CW, Kim YK, Seo Y, Park HY. Antioxidant activity on ethanol extract from boiled-water of Hizikia fusiformis. J Korean Soc Appl Biol Chem 2005; 48(4): 435-439. 22. Kang SI, Kim MH, Shin HS, Kim HM, Hong YS, Park JG, Ko HC, Lee NH, Chung WS, Kim SJ. A water-soluble extract of Petalonia binghamiae inhibits the expression of adipogenic regulators in 3T3-L1 preadipocytes and reduces adiposity and weight gain in rats fed a high-fat diet. J Nutr Biochem 2010; 21(12): 1251-1257. 23. Kang SI, Jin YJ, Ko HC, Choi SY, Hwang JH, Whang I, Kim MH, Shin HS, Jeong HB, Kim SJ. Petalonia improves glucose homeostasis in streptozotocin-induced diabetic mice. Biochem Biophys Res Commun 2008; 373(2): 265-269. 24. Yoon HS, Koh WB, Oh YS, Kim IJ. The Anti-melanogenic effects of Petalonia binghamiae extracts in α-melanocyte stimulating hormone-induced B16/F10 murine melanoma cells. J Korean Soc Appl Biol Chem 2009; 52(5): 564-567. 25. Lee SG, Kim MM. Anti-inflammatory effect of scopoletin in RAW264.7 macrophages. J Life Sci 2015; 25(12): 1377-1383. 26. Jiang Z, Li C, Arrick DM, Yang S, Baluna AE, Sun H. Role of nitric oxide synthases in early blood-brain barrier disruption following transient focal cerebral ischemia. PLoS One 2014; 9(3): e93134. 27. Wang JY, Lee CT, Wang JY. Nitric oxide plays a dual role in the oxidative injury of cultured rat microglia but not astroglia. Neuroscience 2014; 281: 164-177. 28. Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients. Neurosci Lett 1995; 202(1-2): 17-20. 29. Li M, Dai FR, Du XP, Yang QD, Chen Y. Neuroprotection by silencing inos expression in a 6-OHDA model of Parkinson's disease. J Mol Neurosci 2012; 48(1): 225-233. 30. Gulati P, Singh N. Pharmacological evidence for connection of nitric oxide-mediated pathways in neuroprotective mechanism of ischemic postconditioning in mice. J Pharm Bioallied Sci 2014; 6(4): 233-240. 31. Okamoto S, Lipton SA. S-nitrosylation in neurogenesis and neuronal development. Biochim Biophys Acta 2015; 1850(8): 1588-1593. 32. Verstrepen L, Beyaert R. Receptor proximal kinases in NF-κB signaling as potential therapeutic targets in cancer and inflammation. Biochem Pharmacol 2014; 92(4): 519-529. 33. Carmody RJ, Chen YH. Nuclear factor-kappab: activation and regulation during toll-like receptor signaling. Cell Mol Immunol 2007; 4(1): 31-41. 34. Hatziieremia S, Gray AI, Ferro VA, Paul A, Plevin R. The effects of cardamonin on lipopolysaccharide-induced inflammatory protein production and MAP kinase and NFkappaB signalling pathways in monocytes/macrophages. Br J Pharmacol 2006; 149(2): 188-198. 35. Gasparini C, Feldmann M. NF-κB as a target for modulating inflammatory responses. Curr Pharm Des 2012; 18(35): 5735-5745. 36. Zhou W, Hu W. Anti-neuroinflammatory agents for the treatment of Alzheimer's disease. Future Med Chem 2013; 5(13): 1559-1571. 37. Duarte J, Francisco V, Perez-Vizcaino F. Modulation of nitric oxide by flavonoids. Food Funct 2014; 5(8): 1653-1668.