한수지 52(2), 59-72, 209 Original Article Korean J Fish Aquat Sci 52(2),59-72,209 사료내일인산칼륨 (MKP) 수준이 Hybrid 바이오플락 (BFT) 아쿠아포닉시스템내메기 (Silurus asotus) 및엽채류 4 종의생산성과수질변화에미치는영향 이동훈 김진영 임성률 김달영 김주민 2 신승준 3 김정대 3 * 경기도해양수산자원연구소, 경기도농업기술원, 2 세븐필라, 3 강원대학교 Effect of Dietary Monobasic Potassium Phosphate Levels on Water Quality and the Growth of Far Eastern Catfish Silurus asotus and Four Leafy Vegetables in a Hybrid Biofloc Technology Aquaponic System Dong-Hoon Lee, Jin-Young Kim, Seong-Ryul Lim, Dal-Young Kim, Joo-Min Kim 2, Seung-Jun Shin 3 and Jeong-Dae Kim 3 * Gyeonggi Province Maritime and Fisheries Research Institute, Yangpyeong 253, Korea Gyeonggi-do Agricultural Research and Extension Services, Hwaseong 8274, Korea 2 Seven Pillars, Dangjin 3778, Korea 3 College of Animal Life Sciences, Kangwon National University, Chuncheon 2434, Korea This study investigated the effects of dietary monobasic potassium phosphate (MKP) on the growth of the far eastern catfish Silurus asotus and four leafy vegetables in a hybrid biofloc technology aquaponic system. To an experimental diet containing 45% protein and 7% lipid,, 2, 3 or 4% MKP was added and was designated as MKP, MKP2, MKP3, and MKP4, respectively. The optimum MKP levels were determined for the growth of fish and four leafy vegetables over 0 weeks. After the 0-week feeding trial, weight gain, feed efficiency, specific growth rate and protein efficiency ratio were higher in the fish groups fed MKP2 and MKP3 than in the other groups (P<0.05). The growth of the four leafy vegetables was also higher in the fish groups fed MKP2 and MKP3. Water quality [dissolved oxygen, ph, water temperature, electrical conductivity, turbidity, total ammonia nitrogen (TAN), NO 2 -N, NO 3 -N and PO 4 -P] was measured six times a week using a portable water quality meter and reagent measurements. The TAN (4.58-20.40 mg/l), NO 3 -N (24.2-52.40 mg/l) and PO 4 -P (20.38-48.48 mg/l) levels increased with time, while the NO 2 -N level remained below 0. mg/l throughout the study. Key words: Silurus asotus, Monobasic potassium phosphate (MKP), Aquaponics, Vegetables, Hybrid biofloc technology (HBT) 서론,. (NIFS, 203). (aquaponics). RAS (recirculating aquaculture system) BFT (biofloc technology) (FAO, 986; Avnimelech et al., 205). BFT 2000 *Corresponding author: Tel: +82. 33. 250. 8634 Fax: +82. 33. 259. 5572 E-mail address: menzang@gmail.com This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. https://doi.org/0.5657/kfas.209.059 Korean J Fish Aquat Sci 52(2), 59-72, April 209 Received 2 January 209; Revised 25 January 209; Accepted 3 February 209 저자직위 : 이동훈 ( 연구사 ), 김진영 ( 연구관 ), 임성률 ( 연구사 ), 김달영 ( 연구사 ), 김주인 ( 대표이사 ), 신승준 ( 연구원 ), 김정대 ( 교수 ) Copyright 209 The Korean Society of Fisheries and Aquatic Science 59 pissn:0374-8, eissn:2287-885
60 이동훈ㆍ김진영ㆍ임성률ㆍ김달영ㆍ김주민ㆍ신승준ㆍ김정대 NH 3 -N (, ) (C:N ) (biofloc), (, ). biofloc,,,,,,, (Avnimelech et al., 205). (RAS) 0% (Suh et al., 200). Russo et al. (98) RAS (dissolved oxygen, DO),, NH 3 -N CO 2, RAS NH 3 -N (,,,,,, ) (Losordo et al., 994; Reyes and Lawson, 995)., Scheider et al. (2006) RAS,, RAS. (aquaculture) (hydroponics), ( ) (heterotrophic and autotrophic microorganisms) (FAO, 204). 30% 70%, (Emerenciano et al., 207). 3 (N, P, K, S, Ca, Mg, Fe, Mn, Cu, Zn, B, Mo, Al) 0, Ca, K, Fe (Rakocy, 2007). Bittsanszky et al. (206) 3 P, K. (P),.,,,,, (Lall, 99). (monocalcium phosphate, MCP), (dicalcium phosphate, DCP) (tricalcium phosphate, TCP) (Kim et al., 998). (phosphate rock) TCP (Ogino et al., 979). (MCP, DCP TCP). UVI (university of virgin islands) (Rakocy et al., 2006; Bailey and Ferrarezi, 207). UVI RAS. (monobasic potassium phosphate, MKP), hybrid BFT. 재료및방법 실험사료의제조 4 45%, 7%, MKP, 2, 3 4% P K (Table ). ( ) 6 mm EP (extruded pellet), 20 kg (-20 ). 아쿠아포닉시스템설치 Fig. (L.5 m W.5 m H 0.6 m) 2, (L.5 m W.5 m H 0. m) 2, (0.5 HP) (Isan M Tech. Ltd., Korea), 4. 6 (30 cm), 2, 4
일인산칼륨의 아쿠아포닉스 생산성 개선 효과 6 A B E D C Fig.. Compartments of the experimental design (left). (A) two vegetable beds(l.5 W.5 m H 0.6 m per bed), (B) two fish rearing tanks(l.5 m W.5 m H 0.6 m per tank), (C) sump tank, (D) pump (0.5HP), (E) biohelix filter tank (80 L). Water flow, (A) (B) (C) (D) (E) (A). Four experimental groups were composed of two replicates each (right). Ingredient MKP MKP2 MKP3 MKP4 Fish meal 37.00 37.00 37.00 37.00 Wheat flour 24.20 23.20 22.20 2.20 Soybean meal 5.00 5.00 5.00 5.00 하였다. 시스템 내 사육수는 직경(외경) 50 mm PVC관을 통해 어류사육수조, 섬프수조와 여과기를 거쳐 직경(외경) 25 mm PVC관을 통해 식물베드지로 유입된 후 다시 어류 사육지로 순 환되도록 하였다. 또한, 우천 시 대비하여 식물베드 위에 광이 (B) 잘 투과되는 비닐을 설치하여 실험기간 동안 유지하였다. Corn gluten meal 실험사료의 성분분석 Table. Ingredient composition of the experimental diets (A) 0.00 0.00 0.00 0.00 Blood meal 5.00 5.00 5.00 5.00 Fish oil 4.80 4.80 4.80 4.80 Dried yeast.00.00.00.00 MKP.00 2.00 3.00 4.00 Vitamin. mix2 Methionine 00% 0.22 0.22 0.22 0.22 아쿠아포닉스 생산성 비교 시험 Salt Choline-liquid (50%) Taurine 실험에 사용된 메기는 경기도에 위치한 세종수산(여주시)에 서,000마리를 구입한 후, 50-20 g의 개체 480마리를 선별 (D) 하여 사용하였다. 본 사육실험에 앞서 어류들은 제작된 MKP2 사료에 적응되었으며, 실험 전 24 h 절식한 후 어류의 체중 측 정이 수행되었다. 어체 측정은 개별 측정하였으며, 2반복 4개 시험구 8개 수조에 평균 86 g 내외 개체 60마리가 각각 수용 되었다. 사료공급은 미섭취 사료에 의한 식물생산성의 오차 배 제를 위해 어체중 당 0.5%로 제한하여 일 2회 공급하였다. 실 험은 0주간 진행되었으나 엽채류는 어류의 사료 적용 6주 후 입식되어, 0주간의 어류성장 실험과 4주간의 엽채류 성장 시 험이 진행되었다. 실험에 사용된 엽채류는 상추 4 품종 롤로로 사(Lollo-rossa), 아바타(Avatar), 카이피라(Caipira), 흑로메인 (Heuk-Romaine)이었으며, 경기도농업기술원 육묘용 온실에 서 육묘한 개체를 입식하여 사용하였고, 각 시험구별 4종 엽채 류 96개체가 사용되었다. (C) Mineral. mix3 0.0 0.0 0.0 0.0 Antioxidant 0.05 0.05 0.05 0.05 Stay C 0.03 0.03 0.03 0.03 KCI MKP, Monobasic potassium phosphate. 2Vitamin added to supply the following (per kg diet): vitamin A, 22,000 IU; vitamin D3, 4,400 IU; vitamin E, 320 IU; vitamin K3, 24 mg; thiamine HCl, 50 mg; riboflavin, 60 mg; D-Ca pantothenate, 20 mg; biotin, 2 mg; folic acid, 20 mg; vitamin B2, 00 mg; niacin, 300 mg; pyridoxine HCl, 30 mg; inositol, 600 mg; ethoxyquin, 67 mg. 3Mineral added to supply the following (per kg diet): copper sulfate (25.4% Cu), 0 mg; zinc sulfate (22.7% Zn), 60 mg; manganous sulfate (32.5% Mn), 50 mg; magnesium sulfate (24.3% Mg), cobalt chloride (24.8% Co), 2 mg; potassium iodide (76.4% I), 2.0 mg; sodium selenite (45.6% Se), 0.75 mg. 실험사료 4종의 수분(moisture), 조단백질(crude protein), 조 지방(crude lipid), 조회분(crude ash), 조섬유(crude fiber), Mg, Fe, Cu, Mn, Zn, K, Ca 및 P 성분분석은 부경대학교 사료영양 연구소에 의뢰하여 분석하였다.
62 이동훈ㆍ김진영ㆍ임성률ㆍ김달영ㆍ김주민ㆍ신승준ㆍ김정대 시료측정 24 h, MS- 222 (Wojin B&G Ltd., Korea). 4,,,. 어체분석 MKP. 2 6. 수질관리 0 (Bacillus subtilis, B. amuloliquefaciens, B. licheniformis, Cellumomona sp., Cellulomanas biazotea, Pseudomonas stutzeri, P. denitrificans, Rhodopseudomonas palustris, Nitrobacter winogradskyi Nitrosomonas europaea) BFT-ST (EgeeTech, Ltd., USA) hybrid BFT 4 Emerenciano et al. (207) BFT. ( ) ph 6.0 (2 0 ). 2-3, ph 6.0 NO 2 -N,. 수질분석 6 (DO, mg/l), ph, ( ), (electrical conductivity, EC; s/cm), (NTU), TAN mg/l, NO 2 -N mg/l, NO 3 -N mg/l PO 4 -P mg/l. DO, ph,, EC YSI PRODSS (YSI Inc., USA), TAN, NO 2 - N, NO 3 -N PO 4 -P (NitraVer X Reagent Set 2605345-KR, Low Range Ammonia Reagent Set 2604545- KR, NitriVer 3 Reagent Set 2608345-KR, PhosVer 3 Phosphater Reagent, HACH Ltd., USA) DR5000 (HACH Ltd., USA). 4, K (mg/l), Ca (mg/l), Mg (mg/l), Na (mg/l), Fe (mg/l), Zn (mg/l), Mn (mg/l) Cu (mg/l) (ICP-OES Optima 8300, Perkin Elmer Co., USA), Cl (mg/l) SO 4 (mg/l) (930 Comact IC Flex, Metrohm Co., USA). 혈액분석 0, (Monobasic potassium phosphate, MKP) 4 24 h. MS-222 (Wojin B&G Ltd., Korea) (Heparin sodium salt from porcine intestinal mucosa, K3333-0KU, Sigma-Aldrich., Germany) cc 6. Hemoglobin (Hb, g/dl) PCV (Hematocrit, %), 4, 2,000 rpm, 0 min (Centrifuge 545 R, Eppendorf Ltd., Germany) (plasma) glutamic oxaloacetic transaminase (GOT, U/L), glutamic pyruvic transaminase (GPT, U/L), glucose (GLU, mg/dl), inorganic phosphorus (Pi, mg/ dl), Na (meq/l), K (meq/l) Cl (meq/l). PCV HAEMATOKRIT 20 (Hettich Ltd., Germany), Hb (Fuji DRI-CHEM slide, Fuji photo film co. Ltd., Japan) (DRI-CHEM 3500 I, Fujifilm Ltd., Japan). 통계처리 [,,, (feed efficiency, FE), (specific growth rate, SGR), (protein efficiency ratio, PER), (daily feed intake, DFI),, ] SPSS Version 0 (SPSS, 999) (one-way ANOVA). (homogeneity of variance) Cochran s test (Sokal and Rohlf, 995)., Duncan s multiple range test (Duncan, 955). MKP 2, 5% (P<0.05). 결과 실험사료 4 종의성분분석 4,,,, Ca, P, Mg, Fe, Cu, Mn, Zn K Table 2. 44.5% (MKP) 46.46% (MKP3) 6.60% (MKP3) 7.20% (MKP2)
일인산칼륨의아쿠아포닉스생산성개선효과 63. MKP P K, MKP P.58%, K 0,626 ppm, MKP2 P.89%, K 4,28 ppm, MKP3 P 2.3%, K 6,499 ppm, MKP4 P 2.47%, K 8,984 ppm. 실험제작사료 4 종의아쿠아포닉스생산성비교시험 MKP 0 Table 2. Chemical composition of the experimental diets Composition (%) MKP MKP2 MKP3 MKP4 Moisture 6.26 7.09 5.87 6.53 Crude protein 44.5 46.30 46.46 46.28 Crude lipid 6.60 7.20 6.69 6.68 Crude ash 9.78 0.72.55 2.3 Crude fiber 2.07.77 2.05.74 Ca 2.27 2.37 2.38 2.49 P.58.89 2.3 2.47 Composition (ppm) MKP MKP2 MKP3 MKP4 Mg 2,09.74 2,090.57 2,090.57,964.66 Fe 287.64 32.75 320.45 29.28 Cu 5.79 6.20 6.87 5.88 Mn 39.57 26.87 37.2 34.74 Zn 2.95 20.79 22.78 09.3 K 0,626 4,28 6,499 8,984 Values are means of 2 determinations. MKP, Monobasic potassium phosphate. Table 3. MKP2 WG 9.34 0.3%, FE 59.25.76%, SGR 0.27 0.00% PER.9 0.04% (P<0.05), MKP3 (P>0.05). DFI 0.45% (MKP2, MKP3) 0.46% (MKP, MKP4). 4 Table 4. 4 24 ( 96 ),. MKP2 MKP3 4 9,46.80 g ( 8,52.24 g), 9.407.88 g ( 8,096.94 g) MKP, MKP4. MKP 3.569.23 g ( 3,87.07 g) 3. 어체분석 MKP 0, Table 5., (P>0.05). MKP 5.30 0.56% (P<0.05), K MKP 0.0 0.0% (P<0.05). P MKP3 0.7 0.25% (P<0.05). Table 3. Growth performance of far eastern catfish Silurus asotus fed diets with graded levels of monobasic potassium phosphate (MKP) for 0 weeks Growth performance Diets MKP MKP2 MKP3 MKP4 Initial average weight of total fish 88.±4.9 ns 87.9±6.8 86.5±7.0 87.±5.5 Final average weight of total fish 225.5±4.3 ns 23.0±4.9 228.8±5.4 227.±3.2 WG (%) 2 6.35±.08 a 9.34±0.3 c 8.90±0.64 c 8.6±0.03 b FE (%) 3 49.5±2.2 a 59.25±.76 c 58.0±.34 c 55.03±.27 b SGR (%) 4 0.23±0.0 a 0.27±0.00 c 0.26±0.0 bc 0.25±0.00 b PER 5.04±0.04 a.9±0.04 c.8±0.03 c.±0.03 b DFI 6 0.46±0.0 ns 0.45±0.02 0.45±0.0 0.46±0.02 Survival rate (%) 7 00 ns 00 00 00 Values (means±se of two replicates) with different superscripts in the same row are significantly different (P<0.05). 2 Weight gain (%)=[final weight -initial weight ] 00/initial weight. 3 Feed efficiency (%)=wet weight gain /dry feed intake 00. 4 Specific growth rate (%)=(Ln final weight -Ln initial weight )/experimental days 00. 5 Protein efficiency ratio=wet weight gain /protein intake. 6 Daily feed intake (%/av. wt/d)=dry feed intake (g/fish)/[(initial wt+final wt)/2]/experimental days 00. 7 Survival rate (%)=final fish number/initial fish number 00. ns, nonsignificant; MKP, Monobasic potassium phosphate.
64 이동훈ㆍ김진영ㆍ임성률ㆍ김달영ㆍ김주민ㆍ신승준ㆍ김정대 Table 4. Growth of four leafy vegetables in aquaponic system for 23 days Diet MKP Individual No. Total weight Root weight Growth factor Leaf No. Stem weight Leaf weight Individual leaf length (No. 30) Lollo-rossa 26 72.82 63.40 289 26.92 622.50 0.89±0.55 Avatar 22 90.34 65.45 402 33.83 8.06 2.6±.6 Caipira 24,245.59 68.82 467 37.59,39.8 0.26±0.79 Heuk-Romaine 24 700.48 40.69 340 45.46 64.33 5.60±0.53 Sum 96 3,569.23 238.36,498 43.8 3,87.07 MKP2 Individual No. Total weight Root weight Leaf No. Stem weight Leaf weight Individual leaf length (No. 30) Lollo-rossa 22,203.33 88.74 262 28.57 986.02 2.76±0.54 Avatar 26 2,687.40 278.36 563 74.94 2,334.0 4.8±0.89 Caipira 25 2,785.64 220.00 544 58.68 2,506.96 2.76±0.54 Heuk-Romaine 23 2,785.43 36.7 405 44.0 2,325.6 20.82±.40 Sum 96 9,46.80,003.27,774 306.29 8,52.24 MKP3 Individual No. Total weight Root weight Leaf No. Stem weight Leaf weight Individual leaf length (No. 30) Lollo-rossa 25,478.80 203.55 274 4.95,233.30 2.62±0.86 Avatar 24 2,576.89 245.8 560 76.96 2,254.75 5.52±.03 Caipira 24 2,69.7 93.24 497 69.3 2,428.62 2.02±0.79 Heuk-Romaine 23 2,66.02 303.37 356 77.38 2,80.27 20.59±.4 Sum 96 9,407.88 945.34,687 365.6 8,096.94 MKP4 Individual No. Total weight Root weight Leaf No. Stem weight Leaf weight Individual leaf length (No. 30) Lollo-rossa 3,596.33 29.80 342 4.06,335.47 2.32±0.84 Avatar 24 2,83.58 224.38 496 64.68,894.52 4.56±.68 Caipira 7,843.36 52.5 39 5.56,639.65.93±0.66 Heuk-Romaine 24 2,653.92 263.6 363 43.40 2,247.36 2.82±.48 Sum 96 8,277.9 859.49,520 300.7 7,7.00 MKP, Monobasic potassium phosphate. Table 5. Proximate composition (%, as-is basis) of whole body of far eastern catfish Silurus asotus fed diets with graded levels of monobasic potassium phosphate (MKP) for 0 weeks Diet Initial fish MKP MKP2 MKP3 MKP4 Moisture (%) 75.29±.73 ns 77.50±.39 76.87±2.79 75.66±2.28 76.79±.09 Crude protein (%) 7.0±.07 b 5.30±0.56 a 5.60±.47 ab 6.7±.34 ab 6.5±.9 ab Crude lipid (%) 4.2±.8 ns 3.26±.06 3.82±.69 3.44±0.99 2.83±0.7 Crude ash (%) 3.80±0.60 ns 3.29±0.39 3.47±0.54 3.7±0.40 3.67±0.9 K (%) 0.4±0.0 b 0.0±0.0 a 0.4±0.0 b 0.2±0.0 b 0.7±0.02 c P (%) 0.66±0.2 a 0.45±0.09 a 0.52±0.0 a 0.7±0.25 b 0.58±0.0 a Values (means±sd of six replicates) with different superscripts in the same row are significantly different (P<0.05). ns, nonsignificant; MKP, Monobasic potassium phosphate.
일인산칼륨의아쿠아포닉스생산성개선효과 65 수질분석 0 ( ) hybrid BFT Table 6 7. DO 7.22 8.36 mg/l, 25.0 30.8. ph 4 7.65 7.99, 6.88 5.8. (EC) MKP 32.8 s/cm 630.6 s/cm, MKP2 33.0 686.2 s/cm, MKP3 32.8 662.0 s/cm MKP4 32.5 69.4 s/cm MKP2 EC. MKP 0.2 2.2 NTU, MKP2 0. 2. NTU, MKP3 0. 2.6 NTU MKP4 0. 2.8 NTU. NO 3 -N MKP 3.30 mg/ L 49.22 mg/l, MKP2 3.33 52.40 mg/l, MKP3 3.63 48.00 mg/l MKP4 3.60 49.60 mg/l. TAN MKP 0.0 mg/l 9.2 mg/l, MKP2 0.2 20.40 mg/l, MKP3 0.07 20.22 mg/l MKP4 0.08 8.62 mg/l 6. NO 2 -N MKP 0.26 mg/l 0.090 mg/l, MKP2 0.245 0.055 mg/l, MKP3 0.322 0.036 mg/l MKP4 0.320 0.06 mg/l 6 0. mg/l. PO 4 -P MKP 0.48 mg/l 44.54 mg/l, MKP2 0.56 47.98 mg/l, MKP3 0.58 46.48 mg/l MKP4 0.56 48.48 mg/l,. 혈액분석 0, 24 h Table 8. PCV (%) 45.33 2.94 (MKP4) 45.83 7.3 (MKP), Hb (g/dl) 4.03.4 (MKP2) 4.50.02 (MKP4), GOT (U/L) 76.83 9.58 (MKP) 88.33 8.26 (MKP2), GPT (U/L) 5.50 5.09 (MKP4) 22.33 6.9 (MKP2), GLU (mg/ dl) 55.7 2.29 (MKP2) 70.7 7.45 (MKP3), Pi (mg/dl) 4.2 0.65 (MKP4) 5.72 0.46 (MKP2), Na (meq/l) 40.00.0 (MKP4) 40.83.7 (MKP3), K (meq/l) 0.57 0.08 (MKP) 0.92 0.9(MKP3) Cl (meq/l) 9.7 2.32 (MKP) 20.67.5 (MKP4). Pi K (P>0.05), Pi K MPK2 MKP3 (P<0.05). 고찰 UVI,, ( ) ( ) semi-pilot. 0 4, MKP (, 2, 3, 4%) MKP2 MKP3. Yoon et al. (207). Na 2 HPO 4 KH 2 PO 4, WG,,, (Antony et al., 203)., MCP, DCP TCP (Kim et al., 988; Hernandez et al., 2005; Nwanna et al., 2009; Liu et al., 202). Ogino et al. (979) (rainbow trout), (common carp) monobasic sodium phosphate, monobasic potassium phosphate monobasic calcium phosphate di- tribasic calcium phosphate 2, Lampila (203) (potassium phosphates). Bittsanszky et al. (206), P, Ca, Fe K. K P MCP, DCP TCP (MKP), KCl 0.5%. MKP 0 MKP2 MKP3, MKP MKP4 (WG, FE, PER, SGR). MKP, 2 MKP 2.77% (Fig. 2).
66 이동훈ㆍ김진영ㆍ임성률ㆍ김달영ㆍ김주민ㆍ신승준ㆍ김정대 Table 6. Change of water quality (DO, ph, Temperature, EC and Turbidity) of MKP, MKP2, MKP3 and MKP4 groups in aquaponic system with hybrid BFT (biofloc tech) for 0 weeks Diet Week DO (mg/l) ph Temperature ( ) EC (μs/cm) Turbidity (NTU) MKP MKP2 MKP3 MKP4 8.35±0.2 7.87±0.09 25.±.3 32.8±5.4 0.6±0.2 2 7.76±0.4 7.84±0.26 29.2±. 52.6±7.7 0.2±0. 3 7.47±0.8 7.99±0.4 30.6±0.3 7.8±4.3 0.2±0. 4 7.22±0.0 7.76±0.08 30.8±0.6 88.5±4.9 0.4±0.3 5 7.24±0.6 6.8±0.77 30.3±0.8 240.4±35.7 0.6±0.2 6 7.59±0.5 6.00±0.2 27.8±0.6 340.9±25.8.6±0.5 7 7.78±0.04 5.60±0.5 27.2±0.4 405.±.4.5±0. 8 7.72±0.08 5.66±0.24 27.3±0.5 452.0±.50.8±0.4 9 7.95±0.07 5.76±0.2 26.9±0. 52.4±3.3.9±0. 0 (3day) 8.±0.25 5.77±0. 25.8±.5 630.6±55.6 2.2±0.6 8.30± 7.80±0.09 25.2±.4 33.0±5.3 0.5±0.2 2 7.77±0.4 7.56±0.2 29.0±.0 5.3±7.2 0.±0. 3 7.47±0.5 7.84±0.0 30.5±0.4 70.5±4.8 0.±0. 4 7.23±0.08 7.65±0.06 30.7±0.6 89.9±6.0 0.2±0. 5 7.23±0.4 6.69±0.79 30.3±0.8 245.6±36.0 0.6±0.3 6 7.60±0.2 5.83±0.2 27.7±0.6 355.5±30.8 2.0±0.6 7 7.76±0.06 5.40±0.6 27.4±0.6 442.4±8.9 2.±0. 8 7.67±0.09 5.26±0.3 27.5±0.3 509.3±8.8.9±0. 9 7.87±0.08 5.30±0.9 27.0±0.3 563.6±.3.9±0. 0 (3day) 8.09±0.28 5.23±0.04 25.5±.8 686.2±55.9.5±0. 8.36±0.2 7.79±0.09 25.±.5 32.8±5.2 0.5±0.3 2 7.79±0.7 7.57± 28.9±. 5.4±7. 0.±0. 3 7.50±0.4 7.83±0.07 30.4±0.2 68.9±4.5 0.2±0.2 4 7.33±0.27 7.74±0.06 30.6±0.5 84.8±3.5 0.3±0.2 5 7.26±0.6 6.77±0.78 30.4±0.9 235.3±33.4 0.6±0.3 6 7.67±0.2 5.86±0.22 27.6±0.8 336.5±27.7.4±0.3 7 7.83±0.05 5.46±0.0 27.±0.4 43.7±8.5.9±0.5 8 7.74±0.09 5.37±0.5 27.2±0.4 476.6±7.5 2.0±0.2 9 7.93±0.08 5.32± 26.8±0.2 540.6±2. 2.6±0.3 0 (3day) 8.5±0.32 5.23±0.04 25.3±2.0 662.0±56.7.6±0.3 8.34±0.22 7.78±0.09 25.0±.5 32.5±5.8 0.8±0.4 2 7.79±0.6 7.69±0.2 28.8±. 5.4±6.9 0.±0. 3 7.45±0.3 7.90±0.08 30.4±0.4 68.8±4.3 0.±0. 4 7.27±0.09 7.78±0.05 30.6±0.6 84.2±4. 0.3±0.3 5 7.28±0.7 6.74±0.94 30.±0. 233.6±26.5.±0.8 6 7.66±0.5 5.88±0.22 27.5±0.7 325.6±26.5.9±0.3 7 7.82±0.05 5.49±0.0 27.±0.6 407.9±7.4 2.2±0.5 8 7.69±0.08 5.54±0.27 27.3±0.4 456.7±8.4 2.6±0.2 9 7.89±0.09 5.48±0.32 26.8±0.3 499.0±3.5 2.8±0.5 0 (3day) 8.±0.30 5.8±0.06 25.4±.9 69.4±57.6.6±0.2 Values represent the mean±sd for 7 days. MKP, Monobasic potassium phosphate.
일인산칼륨의아쿠아포닉스생산성개선효과 67 Table 7. Change of water quality (TAN, NO 2 -N, NO 3 -N and PO 4 -P) of MKP, MKP2, MKP3 and MKP4 groups in aquaponic system with hybrid BFT (biofloc tech) for 0 weeks Diet Week TAN (mg/l) NO 2 -N (mg/l) NO 3 -N (mg/l) PO 4 -P (mg/l) MKP MKP2 MKP3 MKP4 0.0±0.06 0.26±0.30 3.30±0.37 0.48±0.23 2 0.06±0.0 0.228±0.25 3.68±0.48 0.75±0.5 3 0.08±0.04 0.047±0.04 4.38±0.76 0.93±0.08 4 0.4±0.04 0.5±0.030 6.06±0.58.63±0.30 5 0.9±0.93 0.8±0.072 3.92±4.62 6.20±2.97 6 4.96±.28 0.044±0.024 24.54±2.49 20.38±5.9 7 8.28±0.75 0.033±0.003 3.22±3.00 32.38±2.07 8 0.92±.5 0.058±0.02 37.20±.64 30.0±.32 9 3.80±0.34 0.070±0.005 38.20±.48 35.44±0.8 0 (3day) 9.2±2.77 0.090±0.034 49.22±5.59 44.54±3.80 0.2±0.07 0.245±0.32 3.33±0.48 0.56±0.9 2 0.04±0.0 0.397±0.46 3.20±0.80 0.46±0.07 3 0.07±0.02 0.092±0.045 4.03±0.97 0.72±0.2 4 0.3±0.04 0.099±0.06 6.22±0.70.69±0.37 5.00±.0 0.0±0.039 4.74±4.23 7.43±3.59 6 5.34±.49 0.046±0.07 24.2±2.0 26.00±5.69 7 9.40±0.9 0.026±0.004 34.66±3.45 38.30±2.50 8 2.82±0.97 0.032±0.008 4.20±.48 38.92±3.48 9 4.66± 0.045±0.009 39.40±4.77 4.56±2.06 0 (3day) 20.40±2.8 0.055±0.05 52.40±7.40 47.98±6.24 0.07±0.04 0.322±0.99 3.63± 0.58±0.32 2 0.03±0.0 0.89±0.03 3.36±0.5 0.42±0.09 3 0.07±0.02 0.035±0.08 3.83±0.54 0.6±0.05 4 0.0±0.02 0.077±0.02 4.86±0.38.2±0.8 5 0.70±0.85 0.44±0.038 3.62±5.04 6.34±3.58 6 5.0±.67 0.058±0.035 24.24±2.00 27.4±5.90 7 8.56±.02 0.034±0.00 3.70±3.99 38.42±2.20 8.80±0.77 0.034±0.009 38.40±2.5 34.66±.93 9 4.42±0.54 0.032±0.008 39.20±3.27 42.92±.6 0 (3day) 20.22±3.66 0.036±0.0 48.00±4.74 46.48±4.37 0.08±0.05 0.320±0.88 3.60±0.22 0.56±0.3 2 0.04±0.0 0.269±0.04 3.6±0.38 0.39±0.07 3 0.06±0.0 0.09±0.030 3.72±0.63 0.55±0.07 4 0.±0.03 0.02±0.023 4.42±0.83.3±0.22 5 0.56±0.63 0.23±0.057 3.26±4.28 8.29±6.52 6 4.58±.73 0.046±0.027 24.30±2.08 28.84±4.70 7 8.06±.06 0.027±0.006 33.48±6.94 37.28±2.67 8.4±0.85 0.043±0.008 36.00±2.24 34.68±2.67 9 2.82±0.62 0.045±0.00 35.80±.30 40.58±.48 0 (3day) 8.62±3.54 0.06±0.030 49.60±9.66 48.48±5.3 Values represent the mean±sd for 7 days. MKP, Monobasic potassium phosphate.
68 이동훈ㆍ김진영ㆍ임성률ㆍ김달영ㆍ김주민ㆍ신승준ㆍ김정대 Weight gain (%) 20 9 8 7 6 9.5 y = -0.9325x 2 + 5.65x + 2.277 R² = 0.906 2.77 5 0 2 3 4 5 MKP concentration (%) in diet Fig. 2. Polynomial regression analysis on weight gain (WG, %) of far eastern catfish Silurus asotus by dietary monobasic potassium phosphate (MKP) levels. MKP 2-3% (MKP2, MKP3) (Table 4), MKP (Fig. 3). (hydroponics) PO 4 3-36.9 6.2 mg/l, Total N 32 6.2 mg/l, K 340 0 mg/l, Ca 60 0 mg/l, Mg 40.9 3.3 mg/l, SO 4 2-34 53 mg/l, B 0.573 0.34 mg/l, Co 0.0065 mg/l, Cu 0.0420 0.074 mg/l, Mn.83 0.96 mg/l, MO 0.0872 0.0374 mg/l, Zn 0.455 0.374 mg/l (Murashige and Skoog, 962; Trejo-Téllez and Gomez-Merino, 202). Ha and Jeong (207) P.34%, K 3,6 ppm 4 (Cyprinus carpio) (Lactuca sativa L) NO 3 -N 89. mg/l, PO 4 -P 0. mg/l K 0.9 mg/l P K. 0 ( 23 ) (Table 9), PO 4 -P 42.2 (MKP) 46.5 (MKP4) mg/l, K 3.5 (MKP) 6.4 (MKP4) mg/l, Ha and Jeong (207) P K, K. MKP4 (MKP), K MKP2 MKP3 Fe, Thorarinsdottir (205) Fe Fe., MKP2 MKP3 MKP4 Fe. MKP Fe (0.0092 mg/l)., 20 (Liebig s law) algorithms (Parent et al., 203; Baxter, 205).. Table 8. Hematological analysis of far eastern catfish Silurus asotus fed graded levels of monobasic potassium phosphate (MKP) in aquaponic system with hybrid BFT (biofloc tech) for 0 weeks Blood parameters Diets MKP MKP2 MKP3 MKP4 Average Fish weight (n=6) 203.±26.6 ns 226.7±25.0 27.2±33.2 22.8±.5 PCV (%) 2 45.83±7.3 ns 45.33±4.23 45.67±4.89 45.33±2.94 Hb (g/dl) 3 4.3±.85 ns 4.03±.4 4.47±.99 4.50±.02 GOT (U/L) 4 76.83±9.58 ns 88.33±8.26 8.7±5.32 8.83±8.2 GPT (U/L) 5 20.83±9.75 ns 22.33±6.9 9.00±6.99 5.50±5.09 GLU (mg/dl) 6 65.67±7.22 ns 55.7±2.29 70.7±7.45 62.33±.48 Pi (mg/dl) 7 4.8±0.83 a 5.72±0.46 b 5.47±0.52 b 4.2±0.65 a Na (meq/l) 40.7±.47 ns 40.33±.03 40.83±.7 4.00±.0 K (meq/l) 0.57±0.08 a 0.80±0. b 0.92±0.9 b 0.72±0.08 b Cl (meq/l) 9.7±2.32 ns 9.33±2.94 9.50±.64 20.67±.5 Values (means±sd of six individuals) with different superscripts in the same row are significantly different (P<0.05); ns=nonsignificant. 2 Hematocrit. 3 Hemoglobin. 4 Glutamic oxaloacetic transaminase. 5 Glutamic pyruvic transaminase. 6 Glucose. 7 Inorganic phosphorus. MKP, Monobasic potassium phosphate.
일인산칼륨의 아쿠아포닉스 생산성 개선 효과 (A) (B) (C) (D) 69 Fig. 3. Growth of four leafy vegetables in aquaponic system for 23 days. (A) MKP, (B) MKP2, (C) MKP3, (D) MKP4. MKP, Monobasic potassium phosphate. 수산생물과 식물이 함께 양식 및 재배되는 아쿠아포닉 시스 템에서는 양 쪽의 수질 환경을 생물학적 한계 내 적정 범위로 유지하는 것은 중요하다(FAO, 204). 특히 ph는 식물 성장에 Table 9. Nutrient concentrations in fish tank and vegetable bed of each experimental group for 0 weeks Diet Water quality parameter MKP MKP2 MKP3 MKP4 NO3-N (mg/l) 49.0 5.4 47.5 44.9 PO4-P (mg/l) 42.2 42.8 42.8 46.5 K (mg/l) 3.5 4.2 4.6 6.4 Ca (mg/l) 36.2 42.7 39.3 36.7 Mg (mg/l) 6.7 7.5 7.2 6.7 Na (mg/l) 25.5 26. 24.0 24. Cl (mg/l) 26.0 24.0 25.0 9.0 SO4 (mg/l) 42.0 44.0 4.0 38.0 Fe (mg/l) 0.0092 0.048 0.0233 0.029 Zn (mg/l).298.4392.3226.4265 Mn (mg/l) 0.0392 0.0270 0.083 0.06 Cu (mg/l) 0.0705 0.325 0.337 0.0955 Values are means of 2 determinations. MKP, Monobasic potassium phosphate. 있어 가장 중요한 요소 중 하나로 식물의 영양염 흡수와 직결 되며, 수경재배에서 생산되는 식물의 경우 대다수 다량광물질 (N, P, K, Ca, S 및 Mg)은 ph 6.5에서 7.0 범위에서 잘 흡수되 는 반면 미량광물질(Fe, B, Cu, Zn, Mn 및 Mo)는 ph 6.5 이 하에서 흡수가 잘 되므로 적절 ph 범위를 6.5 이내로 설정하 고 있다(FAO, 204; Thorarinsdottir RI, 205). 또한 어류의 경 우 ph 4.0 이하에서는 생존하지 못하며 ph 4.0에서 5.0 범위 에서는 성장이 일어나지 않아 생산성이 없고, ph 9.0에서.0 은 성장이 늦고, ph 이상에서는 폐사개체가 출현한다고 하 였다(Thorarinsdottir RI, 205). ph는 질산화 과정과 매우 연 관성이 높은 것으로, 암모니아에서 아질산 및 질산염으로 전환 되는 질산화 과정에서 수소이온(H+)이 생성되면서 ph 가 낮아 지고 물이 산성화된다. 이러한 질산화 과정에 참여하는 미생물 중 암모니아를 아질산으로 전환하는 세균은 Nitrosomonas, Nitrosococcus 와 Nitrosospira가 있고, 아질산을 질산염으로 산화 하는 세균은 Nitrobacter, Nitrospina, Nitrococcus와 Nitrospira 속들(genera)이 대표적이다. 일반적으로Nitrosomonas 및 Nitrobacter의 질산화 과정을 수행하는 ph 범위는 6.0에서 8.5로 알려져 있으며, 이러한 질산화 세균은 독립영양세균(autotrophic microorganism)으로 무기 탄소원이 필요하다(Delwiche and Finstein, 965; AWWA, 2002; FAO, 204). Lee and Lee (204)의 보고에 의하면 972년 종속영양성 질산화과정을 수
70 이동훈ㆍ김진영ㆍ임성률ㆍ김달영ㆍ김주민ㆍ신승준ㆍ김정대 Arthrobacter sp., Alcaligenes faecalis, Bacillus sp., Diaphorobacteria sp., Acinetobacter calcoaceticus, Agrobacterium sp., Pseudomonas putida, P. stutzeri, Microvirgula aerodenitrificans., ph, (Marazioti et al., 2003)., Kim et al. (205) Bacillus strains,. BFT, BFT biofilm, (Emerenciano et al., 203)., ph 2 6 6.0, (Rakocy et al., 2006; Rakocy, 2007) ph (6.5 7.0) ph (5.8 6.00). Hybrid BFT TAN, NO 2 -N NO 3 -N., 3 CO 2, ph. NO 2 -N 6, NO 3 -N TAN. Kim et al. (205), ph 6.0, (Thorarinsdottir RI, 205). 3 Bacillus. NH 3 ( ) NH 4 + ( ) ph. (TAN) (Purwono et al., 207). NH 3 NH 4+, (NH 3 ) NH 4 +..5 mg/l, 0.025 mg/l,,,,,,,, ph (Avnimelech et al., 205). ph (NH 4+ -N) (Purwono et al., 207). EC (hydroponics) (0.5.2 s/cm), biofilm. Lee et al. (208) BFT 50%. ph ph hybrid BFT 4 23, MKP. Hybrid BFT, Yoon et al. (204) (far eastern catfish) PCV (35.3 37.7%), Hb (9.0 0.4 g/ dl), GPT (6.2 8.0 IU/L). Pi (.4 3.6 mg/ dl), GOT (67.2 98.3 IU/L). Leard et al. (998) channel catfish PCV 2%, GLU 26.9 mg/dl, Na 34 meq/l, K 4.43 meq/l Cl 20 meq/l. Adedeji et al. (200) African catfish (Clarias gariepinus) PCV 37.25%, Hb 0.0 g/dl, Yelwa and Solomon (206) African catfish 90 Na 20 meq/l, K 4.0 meq/l Cl 85.4 meq/l. African catfish PCV Hb 36.2 4.3% 4.86 6.99 g/dl (Akinrotimi et al., 20). PCV Hb. ph. K Leard et al. (998)
일인산칼륨의아쿠아포닉스생산성개선효과 7 K. 25-30. 4 23. MKP P K, Fe. hybrid BFT ph RAS,. 사사 ( : 8049-03--HD020). References Adedeji OB. 2009. Effect of diazinon on blood parameters in the African catfish (Clarias gariepinus). Afr J Biotechnol 8, 3940-3946. Akinrotimi OA, Bekibele DO and Orokotan OO. 20. Select hematological values of the African catfish (Clarias gariepinus) raised in a water recirculating aquaculture system. Int J Rec Aquaculture 2, -2. https://doi.org/6/ijra. v2i.35. Antony Jesu Prabhu P, Schrama JW and Kaushik SJ. 203. Quantifying dietary phosphorus requirement of fish-a meta-analytic approach. Aquac Nutr 9, 233-249. https://doi. org/0./anu.2042. Avnimelech Y, De-Schryver P, Emmereciano M, Kuhn D, Ray A and Taw N. 205. Overview of aquaculture systems. In: Biofloc Technology. Tomasso J. ed. The world Aquaculture Society Press, Louisiana, U.S.A., 9-20. AWWA (American Water Works Association). 2002. Nitrification. United States Environmental protection agency, Washington DC, U.S.A., 3-3. Bailey DS and Ferrarezi RS. 207. Valuation of vegetable crops produced in the UVI commercial aquaponic system. Aquaculture Reports 7, 77-82. http://dx.doi.org/0.06/j. aqrep.207.06.002. Baxter I. 205. Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits. J Exp Bot 66, 227-23. http://dx.doi. org/0.093/jxb/erv040. Bittsanszky A, Uzinger N, Gyulai G, Mathis A, Junge Ranka, Morris V, Kotzen B and Komives T. 206. Nutrient supply of plants in aquaponics systems. Ecocycles 2, 7-20. https:// doi.org/0.9040/ecocycles.v2i2.57. Delwiche CC and Finstein MS. 965. Carbon and energy sources for the nitrifying autotroph Nitrobacter. J Bacteriol 90, 02-07. https://jb.asm.org/content/jb/90//02.full.pdf. Duncan DB. 955. Multiple range and multiple F tests. Biometrics, -42. http://garfield.library.upenn.edu/classics977/ A977DM0260000.pdf. Emerenciano MGC, Martínez-Córdova LR, Martínez-Porchas M and Miranda-Baeza A. 207. Biofoc technology(bft) : A tool for water quality management in aquaculture. IN- TECH, 9-09. http://dx.doi.org/0.5772/6646. FAO (Food and Agriculture Organization). 986. Flow-through and recirculation systems. Report of the working group on terminology, format and units of measurement. EIFAC Technical paper 49, -27. FAO (Food and Agriculture Organization). 204. Small-scale aquaponic food production integrated fish and plant farming. FAO Fisheries and aquaculture technical paper 589, -9. Ha HJ and Jeong GS. 207. A study on the application of aquaponics in Korea. JFMSE 29, 225-234. http://dx.doi. org/0.3000/jfmse.207.29.4.225. Hernandez A, Satoh S and Kiron V. 2005. Effect of monocalcium phosphate supplementation in a low fish meal diet for rainbow trout based on growth, feed utilization, and total phosphorus loading. Fish Sci 7, 87-822. https://doi. org/0./j.444-2906.2005.0032.x. Kim JD, Kim KS, Song JS, Lee JY and Jeong KS. 998. Optimum level of dietary monocalcium phosphate based on growth and phosphorus excretion of mirror carp, Cyprinus carpio. Aquaculture 6, 337-344. https://doi.org/0.06/ S0044-8486(97)0028-0. Kim JK, Park KJ, Cho KS, Nam SW, Park TJ and Bajpai R. 205. Aerobic nitrification-denitrification by heterotrophic Bacillus strains. Bioresour Technol 96, 897-906. https:// doi.org/0.06/j.biortech.2005.0.040. Lall SP. 99. Digestibility, metabolism and excretion of dietary phosphorus in fish. In: Nutritional strategies and aquaculture wastes. Cowey CB and Cho CY, eds. University of Guelph, Ontario, Canada, 2-36. Lampila LE. 203. Applications and functions of food-grade phosphates. Ann NY Acad Sci 30, 37-44. https://doi. org/0./nyas.2230. Leard AT, Wagnerr BA, Camp KL, Wise DJ and Gao XD. 998. Seasonal values of selected blood parameters of farm-raised channel catfish (Ictalurus punctatus) in the Mississippi Delta. J Vet Diagn Invest 0, 344-349. Lee EY and Lee CW. 204. Isolation and nitrogen removal
72 이동훈ㆍ김진영ㆍ임성률ㆍ김달영ㆍ김주민ㆍ신승준ㆍ김정대 characteristics of heterotrophic nitrification-aerobic denitrifying bacteria, Stenotrophomonas sp. CW-4Y. Korean Soc Biotechnol Bioeng J 29, 72-80. http://dx.doi.org/0.784/ ksbbj.204.29..72. Lee DH, Kim JY, Lim SY and Kim SG. 208. Environmentfriendly complex aquaculture technology study. In: 207 Test research project report. Dongyang printing office. Incheon, Korea, 35-50. Liu LW, Su J and Luo Y. 202. Effect of partial replacement of dietary monocalcium phosphate with neutral phytase on growth performance and phosphorus digestibility in gibel carp, Carassius auratus gibelio (Bloch). Aquac Res 43, 404-43. https://doi.org/0./j.365-209.20.02944.x. Losordo TM, Westerman PW and Liehr SK. 994. Water treatment and wastewater generation in intensive recirculating fish production systems. Bull Natl Res Inst Aquaculture Suppl, 27-36. Marazioti C, Kornarons M and Lyberatos G. 2003. Kinetic modeling of a mixed culture of Pseudomonas denitrificans and Bacillus subtilis under aerobic and anoxic operating conditions. Water Res 37, 239-25. https://doi.org/0.06/ S0043-354(02)00463-3. Murashige T and Skoog F. 962. A Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 5, 473-497. https://doi.org/0./j.399-3054.962. tb08052.x. NIFS (National Institute of Fisheries Science). 203. 202 FAO world fisheries trends. In: Myeong JI, Min BH, Park NB, Park MS, Park JJ, Shin YK, Lee KA, Lee JH, Jeon JC and Hwang HG. eds. Koran Grapefice, Busan, Korea, 94-205. Nwanna LC, Adebayo IA and Omitoyin BO. 2009. Phosphorus requirements of African catfish, Clarias gariepinus, based on broken-line regression analysis methods. Science Asia 35, 227-233. https://doi.org/0.2306/scienceasial53-874.2009.35.227. Ogino C, Takeuchi L Takeda H and Watanbe T. 979. Availability of dietary phosphorus in carp and rainbow trout. Bull Jap Soc Sci Fish 45, 527-532. https://doi.org/0.233/suisan.45.527. Parent SÉ, Parent LE, Egozcue JJ, Rozane DE, Hernandes A, Lapointe L, Hébert-Gentile V, Naess K, Marchand S, Lafond J, Mattos D, Barlow P and Natale W. 203. The plant ionome revisited by the nutrient balance concept. Front Plant Sci 22, 4-39. https://doi.org/0.3389/fpls.203.00039. Purwono, Rezagama A, Hibbaan M and Budihardjo AB. 207. Ammonia-nitrogen (NH3-N) and ammonium-nitrogen (NH4 + -N) equilibrium on the process of removing nitrogen by using tubular plastic media. J Mater Environ Sci 8, 495-4922. Rakocy JE. 2007. Ten guidelines for aquaponics systems. 0 th Anniversary Issue. Aquaponics J 46, 4-7. Rakocy JE, Masser MP and Losordo TM. 2006. Recirculating aquaculture tank production systems: aquaponics-integrating fish and plant culture. Retrieved from http://www.gemstone.umd.edu/team-sites/classof204/mega/documents/ Rakocy_RAS.PDF on May 6, 208. Reyes AAD and Lawson TB. 995. Combination of a bead filter and rotating biological contactor in a recirculating fish culture system. Aquacult Eng 5, 27-39. https://doi. org/0.06/044-8609(95)00005-y. Russo RC, Thurston RV and Emerson K. 98. Acute toxicity of nitrate to rainbow trout (Salmo gairdneri). Canadian J Fish Aqua Sci 38, 387-393. https://doi.org/0.39/f8-054. Schneider O, Blancheton JP, Varadi L, Eding EH and Verreth JAJ. 2006. Cost price and production strategies in European recirculation systems. Linking Tradition & Technology Highest Quality for the Consumer. WAS, Firenze, Italy. Sokal RR and Rohlf FJ. 995. Nested analysis of variance. In: Biometry. Freeman WH. 3 rd ed. New York, NY, U.S.A., 272-342. Suh KH, Kim BJ and Jeon IG. 200. Design and development of intergrated recirculating aquaculture system. J Korean Fish Soc 34, 70-76. Trejo-Tellez LI and Gomez-Merino FC. 202. Nutrient solutions for hydroponic systems. In: Hydroponics-A standard methodology for plant biological researches. Asao T, ed. In- Tech, Croatia, -22. http://dx.doi.org/0.5772/225. Thorarinsdottir RI. 205. Aquaponics guidelines. Haskolaprent, Reykjavik, Iceland, 33-39. Yelwa ST and Solomon RJ. 206. Effect of weight and length on electrolyte of catfish (Clarias gariepinus). Intl J Farm Alli Sci 5, 295-307. Yoon TH, Lee DH, Won SG, Ra CS and Kim JD. 204. Optimal incorporation level of dietary alternative phosphate (MgH- PO 4 ) and requirement for phosphorus in juvenile Far eastern catfish (Silurus asotus). Asian Australas J Anim Sci 28, - 9. https://doi.org/0.573/ajas.4.0378. Yoon TH, Won SG, Lee DH, Jeong GS, Choi JW, Ra CS and Kim JD. 207. Phosphorus requirement and optimum level of dietary supplementation with magnesium hydrogen phosphate (MgHPO4) recovered from swine manure for juvenile carp Cyprinus carpio. Korean J Fish Aquat Sci 50, 46-52. https://doi.org/0.5657/kfas.207.046.