Journal of Nutrition and Health (J Nutr Health) 2019; 52(2): 149 ~ 156 https://doi.org/10.4163/jnh.2019.52.2.149 eissn 2288-3959 Research Article 김치유산균 Lactobacillus plantarum CJLP55 섭취가성인남녀의피부산도및관련구성인자의변화에미치는영향 * 한상신 1, 신지혜 1, 임선희 1, 안희윤 2, 김봉준 2, 조윤희 1 1 경희대학교동서의학대학원의학영양학과, 2 CJ 제일제당식품연구소유용미생물팀 Dietary effect of Lactobacillus plantarum CJLP55 isolated from kimchi on skin ph and its related biomarker levels in adult subjects* Sangshin Han 1, Jihye Shin 1, Sunhee Lim 1, Hee Yoon Ahn 2, Bongjoon Kim 2 and Yunhi Cho 1 1 Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi 17104, Korea 2 CJ Foods R&D Center, CJ CheilJedang Corporation, Suwon, Gyeongggi 16495, Korea ABSTRACT Purpose: The skin ph is maintained by epidermal lactate, free fatty acids (FFAs), and free amino acids (FAAs). As a significant determinant of skin health, the skin ph is increased (less acidic) under abnormal and aged skin conditions. In a search for dietary alternatives that would promote an acidic skin ph, this study investigated the dietary effects of Lactobacillus plantarum CJLP55 isolated from Korean kimchi on the skin ph, and epidermal levels of lactate, FFAs, and FAAs in adult subjects. Methods: Seventy eight subjects (mean age 24.9 ± 0.5 years, range 19 ~ 37 years) were assigned randomly to ingest CJLP55, Lactobacillus strain from kimchi, (n = 39, CJLP group) or placebo supplements (n = 39, placebo group) for 12 weeks in a double-blind, placebo-controlled trial. Skin ph and epidermal levels of lactate, FFAs and FFAs were assessed at 0, 6 and 12 weeks. Results: Although significant decreases in skin ph were observed in both the CJLP and placebo groups at 6 weeks, the skin ph was decreased significantly only in the CJLP group at 12 weeks. In parallel, the epidermal level of lactate in the CJLP group was also increased by 25.6% at 12 weeks. On the other hand, the epidermal level of FAAs were not altered in the CJLP and placebo groups, but the epidermal level of total FFAs, including palmitic acid and stearic acid, was lower in the CJLP group than in the placebo group over 12 weeks. The changes in the other FFAs, such as palmitoleic acid and oleic acid, were similar in the CJLP and placebo groups over 12 weeks. Conclusion: Overall, a dietary supplement of CJLP55 promotes acidic skin ph with a selective increase in epidermal lactate in adult subjects. KEY WORDS: skin ph, Lactobacillus plantarum, lactate, free amino acid, free fatty acid 서론 피부의외각을구성하는표피 (epidermis) 층은 ph 4 ~ 6범위의약산성방어막을형성하여피부장벽의기능을한다 [1,2]. 이러한피부의약산성방어막은자외선및병원성미생물등외부요인으로부터신체적손상을보호할뿐아니라체온유지와수분조절의기능을하는데유리아미노산, 젖산및유리지방산의총함량에의해결정되는 것으로알려져있다 [3-5]. 젖산은피부산도 (ph) 에관여하는중요인자로젖산탈수소효소 (Lactate Dehydrogenase, LDH) 에의해생성되며 [6], 유리지방산은인지질의가수분해를통해생성되고유리아미노산은 filaggrin의분해과정에서생성되는것으로알려져있다 [7-10]. 이외에암모니아, 칼륨농도등이피부산도에다소영향을미치는것으로보고되어있으나유리아미노산, 젖산및유리지방산이피부산도에영향을미치는주요인자들로알려져있 Received: December 10, 2018 / Revised: February 14, 2019 / Accepted: February 14, 2019 * This study was supported by a grant from CJ Foods R&D Center, CJ CheilJedang Corporation in Suwon-si, Gyeongggi-do, Republic of Korea (KHU grant No. 20150943). To whom correspondence should be addressed. tel: +82-31-201-3817, e-mail: choyunhi@khu.ac.kr 2019 The Korean Nutrition Society This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons. org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
150 / 김치유산균섭취와피부산도 다. 피부건강지표로인식되어있는피부산도는질병발생이나피부노화가진행됨에따라증가되는데이는표피의유리아미노산, 젖산및유리지방산의함량의감소가병행된다. 즉아토피피부염환자에서의유리아미노산과젖산의감소가피부산도증가와병행됨이확인되었으며, 피부노화가진행됨에따라피부산도가증가됨이확인되었다 [11-14]. 최근에다양한식이소재들이피부관련건강기능식품소재로개발되고있다 [15]. 피부건강에도움을주는건강기능식품의원료로히알루론산나트륨, 소나무껍질추출물등복합물, 지초추출분말, 곤약감자추출물, 쌀겨추출물, 홍삼 사상자 산수유복합추출물, N-아세틸글루코사민, AP 콜라겐효소분해펩타이드, 스피루리나, 알로에겔, 클로렐라, 클엽록소함유식품이기능성원료로인정받고있는데, 그중에서도프로바이오틱스 (probiotics) 는장내미생물들의구성을바꾸고항균물질을생산하며신체의면역기능을개선할뿐아니라, 피부보습을증진하고, 노화억제및아토피피부염의가려움증을개선하는등피부건강을조절하는것으로알려지고있다 [16,17]. 여러프로바이오틱스중특히우리나라김치의발효과정에서생성되는 Lactobacillus plantarum은표피층에서피부수분을증가시키고표피두께를감소시켜피부노화를예방하고, 진피층에서는피부선천면역및아토피피부염개선에관여하며화상피부의회복에효능이있음이보고되었다. 또한김치유산균은면역과민반응에대한피부가려움을개선하며, 유산균증식, 유해균억제및배변활동원활에도움을주는것으로보고되었다 [18-20]. 흥미롭게도 In vitro 연구에서는 Lactobacillus plantarum이쌀발효에서산도를낮출뿐아니라, ph 2 ~ 3 에서도탁월한생존효과를갖는것으로보고되었으나섭취에의한피부산도개선효능에대한연구보고는전무하다 [21,22]. 이에본연구는피부노화가시작되는 20 ~ 30대성인남녀를대상으로김치에서추출한 Lactobacillus plantarum 섭취가피부산도및표피의유리아미노산, 젖산과유리지방산의함량변화에미치는영향을알아보고자하였다. 연구방법 연구대상본연구는 20 ~ 30대건강한성인남녀 90명을모집하여동의를얻은후진행하였고 12주간의섭취기간동안항생제복용및피부과시술을받은대상자를제외한최종 78명을대상으로실시하였다. 시료는 ( 주 ) 제일제당에서제공받았다. 무작위로선정된피험자에게김치유산균 [CJLP Group: Lactobacillus plantarum CJLP55 10 10 Colony Forming Unit (CFU) 함유분말 9%, 말토덱스트린 45.5%, 분말포도당 45.5%] 또는위약분말 [Placebo Group: 말토덱스트린 50%, 분말포도당 50%] 을 2 g/1회 /1일복용방법으로 12주간섭취하게하였다. 연구기간동안순응도는매주전화로모니터링을하였다. 본연구는경희대학교생명윤리위원회승인을받았다 ( 승인번호 : KHSIRB 2018-016). 피부산도측정세안후온도 18 ~ 26 C, 습도 26 ~ 53% 가유지된공간에서 30분동안경과후동의한피험자에한하여 ph meter (PH905, Courage-Khazaka, Germany) 를이용하여이마부위에총 5회측정해평균값을사용하였다. 측정시피험자의이마부분을가볍게눌러나타낸수치를기록하였다. 표피시료채취및전처리이마부위에 5개의원형테잎 (22-mm D-SQUAME Tape; Cu-Derm Corporation, USA) 을 10분간이마에부착후떼어내어분석전까지 -20 C에보관하였다. 원형테잎에 Methanol 10 ml를가하고상온에서 5분간초음파처리하여테잎에서각질층을채취하였다. 원심분리후상층은 Lowry 방법을응용하여 [23] 단백질을정량하였으며, 하층은기존에제시된방법으로 [24] 지질을추출하였다. 추출된상층샘플 3 ml를취하고 Cold trap/vaccum pump/modulspin 40 (speed vac) 을이용하여증발시킨후 1% SDS/phosphate buffer saline (PBS) 300 μl를가하여전처리하였다. 유리아미노산함량분석전처리에서얻어진상층추출액을 L-Amino Acid Quantitation Colorimetric/Fluorometric Kit (Biovision Co., South Milpitas Boulevard, CA, USA) 을이용하여유리아미노산함량을측정하였다. 농도별 L-Amino Acid Standard 및추출액 30 μl를 96well plate에분주한후각 well에 L-Amino Acid Assay Buffer를 20 μl를가하고, 이어서 L-Amino Acid Oxidase가함유된 L-Amino Acid Enzyme Mix 50 μl를가하였다. Plate를호일에싸서 37 C에서 30 분간방치하여 L-Amino Acid Oxidase 효소에의해유리아미노산이 α-keto Acid와암모니아 (ammonia, NH 3) 및과산화수소 (hydrogen peroxide, H 2O 2) 로산화되고, 이어서 H 2O 2 가 Colormetric Probe와 1:1 산화반응하여생성된청색의 formazan의함량을 Perkin Elmer 2030 Multilabel Reader (PerkinElmer Life and Analytical Sciences, Turku, Finland) 을이용하여 570 nm 파장에서측정하였다. 유리아미노산함량은단백질정량과함께 nmol/μg protein으로표시하였다.
Journal of Nutrition and Health (J Nutr Health) 2019; 52(2): 149 ~ 156 / 151 젖산함량분석전처리에서얻어진상층추출액을 Lactate Colorimetric/ Fluorometric Assay Kit (Biovision Co., South Milpitas Boulevard, CA, USA) 을이용하여젖산함량을분석하였다. 농도별 L(+)-Lactate Standard 및추출액 15 μl를 96 well plate에분주한후각 well에 Lactate Assay Buffer 35 μl와젖산탈수소효소 (Lactate Dehydrogenase, LDH) 및 Nicotinamide Adenine Dinucleotide (NAD) 가함유된 Lactate Enzyme Mix 50 μl를가하였다. Plate를호일로싸서상온에서 30분간방치하여, LDH에의해젖산이피루브산 (Pyruvic acid) 으로전환될때생성되는 NADH에비례하여환원되는붉은색의 formazan의함량을 Perkin Elmer 2030 Multilabel Reader (PerkinElmer Life and Analytical Sciences, Turku, Finland) 을이용하여 570 nm 파장에서측정하였다 [25,26]. 젖산함량은단백질정량과함께 nmol/μg protein으로표시하였다. 유리지방산함량측정전처리에서얻어진하층의지질추출물을 folch 용액 (CHCl 3:MeOH = 2:1, v/v) 에녹인뒤 silica gel glass plates (10 10 cm; HX54710531, EMD Millpore Co., Germany) 에점적하고, high performance thin-layer (HPTLC) 분석법을응용하여유리지방산을분획하였다. 즉유리지방산 (Free Fatty Acid, FFA) 은전개액 Hexane: Diethyl ether: Acete acid (7:3:0.1, v/v/v) 을 9.5 cm까지전개시켜분획하였다 [27]. 분획된유리지방산을박층으로부터긁어낸후 Folch 용액에녹여추출하고 internal standard인 methyl C15:0 (Pentadecanoic, methyl, N-15-M, Nu-check, USA) 첨가후 6% HCl을함유한 Methanol을가하여지방산을 methylation 시켰다 [28]. 이어서 Gas chromatograph (GC) (GC-17A, Shimazu, Japan) 에주입하고 SPB-225 fused silica capillary column (30 m 0.25 mm 0.15 μm: Supelco, Bellefonte, PA, USA) 를이용하여각유리지방산의함량을분석하였다. GC 분석조건은 260 C detector (flameionization detector) port, 250 C injector port에서 oven 온도를 190 C로 5분간유지시켰으며 4 C/min로온도를상승시켜 240 C에서 15 분간유지시켰다. 분리된각유리지방산의함량은단백질정량과함께 nmol/μg protein으로표시하였다. 통계분석모든통계결과는 SPSS, Ver. 21.0 program (statistical package for social science, SPSS) 을사용분석하였다. 결과는평균 (mean) ± 표준오차 (standard error; SEM, n = 39/Group) 로나타냈다. 0주를기준으로각군의피부산도 및유리아미노산, 젖산, 유리지방산함량의 6주차및 12주차의변화는 non-paired student s t-test로 p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) 수준에서검증하였다. 군간의 6주차및 12주차의 percent change 또는 absolute change는 paired student s t-test로 p < 0.05 (#) 수준에서검증하였다. 결과 일반적특성최종대상자 78명 (CJLP Group: n = 39명, 남자 17명, 여자 22명, 나이 25.38 ± 0.72; Placebo Group: n = 39명, 남자 26명, 여자 13명, 나이 24.62 ± 0.59) 의동의를얻은후본연구를진행하였다. 두군의신장과체중은 CJLP Group 166.77 ± 1.15 cm, 64.17 ± 1.42 kg, Placebo Group 169.38 ± 1.26 cm, 67.76 ± 1.94 kg로군간유의성이없었다. 체질량지수 (Body Mass Index, BMI) 는 CJLP Group 23.02 ± 0.39, Placebo Group 23.46 ± 0.46로정상에서경증비만사이에분포하였으며, 이또한군간유의성이없었다. 김치유산균식이공급에따른피부산도변화김치유산균 Lactobacillus plantarum을섭취한 CJLP 군의피부산도는 0주차 5.18 ± 0.07, 6주차 5.01 ± 0.05로, 12 주차에는 4.80 ± 0.06으로 0주차에비해 6주및 12주에유의적으로감소하였다 (6주 : p = 0.008, 12주 : p = 0.000). Placebo 군의피부산도는 0주차 5.28 ± 0.07, 6주차 5.05 ± 0.05로, 12주차에는 5.14 ± 0.05로 0주차에비해 6주차에유의적으로감소하였으나 12주차에는유의적인변화가없었다. 그결과군간비교시 CJLP 군에서 12주차에피부산도가유의적으로감소한것으로나타났다 (p = 0.025) (Fig. 1). 12주차의변화를남녀구분하여보았을경우남성의경우 0주차 5.23 ± 0.09, 12주차 4.74 ± 0.10으로여성의경우 0주차 5.15 ± 0.11, 12주차 4.85 ± 0.06으로남성의피부산도의변화가더컸다. 김치유산균식이공급에의한표피젖산의함량변화 CJLP 군의젖산함량은 0주차에비해 6주차및 12주차에변화가없었다. Placebo 군또한 0주차에비해 6주차및 12주차에유의적변화가없었다. 그러나 0주차에서 12주차의함량변화에대한군간비교시, CJLP 군의 12주차의젖산함량이 0주차에비해 25.56 ± 13.65% (absolute change: 0.22 ± 0.12 nmol/μg protein) 증가한반면 Placebo 군에서는 9.76 ± 9.70% (absolute change: -0.12 ± 0.12 nmol/μg protein) 감소하여이들변화에대한유의성이 p<0.05 수준에서나타났다 (Table 1).
152 / 김치유산균섭취와피부산도 Fig. 1. Altered skin ph in groups. Skin surface ph was measured by skin ph meter. All values are means ± SEM (n = 39 / group). Differences from 0 week within CJLP or Placebo groups were evaluated by Student's paired t-test ( * p < 0.05, ** p < 0.01, *** p < 0.001). Differences between CJLP and Placebo groups were evaluated by Student's unpaired t-test ( # p < 0.05). Table 1. Altered lactate levels in the skin surface of groups Parameters Lactate (nmol/μg protein) Experimental Groups CJLP (n = 39) Placebo (n = 39) p-value 3) 0 week 0.86 ± 0.15 1) 1.25 ± 0.15 6 week 0.97 ± 0.16 1.53 ± 0.22 Absolute change 0.11 ± 0.14 0.28 ± 0.20 0.479 Percent change 12.64 ± 16.25 22.47 ± 15.66 0.665 p-value 2) 0.441 0.159 0 week 0.86 ± 0.15 1.25 ± 0.15 12 week 1.08 ± 0.18 1.13 ± 0.14 Absolute change 0.22 ± 0.12-0.12 ± 0.12 0.045 Percent change 25.56 ± 13.65-9.76 ± 9.70 0.038 p-value 0.069 0.320 1) Values are means ± standard error mean (SEM). 2) p-value for difference from 0 week within CJLP or Placebo groups by student's paired t-test. 3) p-value for difference between CJLP and Placebo groups by student's unpaired t-test. 김치유산균식이공급에의한표피총유리아미노산의함량변화 CJLP 군의총유리아미노산함량은 0주차에비해 6주차 94.6 ± 32.4% 및 12주차 51.5 ± 17.6% 으로유의적으로증가하였다. Placebo 군의총유리아미노산함량은 0주차에비해 6주차 50.8 ± 17.7% 로유의적으로증가하였으나 12 주차에는 30.79 ± 16.98% 로유의적인변화가없었다. 그러나 0~12주간의 CJLP 군및 Placebo 군의총유리아미노산함량은모두증가하는양상을나타내어군간비교시유의성이나타나지않았다 (Table 2). 김치유산균식이공급에의한표피유리지방산의함량변화 CJLP 군의총유리지방산함량은 0 주차에비해 12 주차 에서유의적으로감소하였다 (p = 0.029). 개별유리지방산의함량분석결과 Palmitic acid (PA) (C16:0) > Stearic acid (SA) (C18:0) > Palmitoleic acid (C16:1 n-9) > Oleic acid (C18:1 n-9) 순으로파악되었는데, CJLP 군의 PA (C16:0) 및 SA (C18:0) 은 0주차에비해 12주차에유의적으로감소하였다 (PA: p = 0.026, SA: p = 0.028). Palmitoleic acid (C16:1 n-9) 함량또한 6주차및 12주차에유의적으로감소하였으나 Oleic acid (C18:1 n-9) 의함량은 6주차및 12주차에변화가없었다. 반면 Placebo 군에서는 0~12주차간총유리지방산의함량변화가없었으며개별유리지방산분석결과 Palmitoleic acid (C16:1 n-9) 이 12주차에서유의적으로감소하는것외에는다른개별유리지방산의함량변화는없었다. 이들변화에대한군간유의성파악결과 CJLP 군에서 12주차에 PA (C16:0) 및 SA (C18:0) 및
Journal of Nutrition and Health (J Nutr Health) 2019; 52(2): 149 ~ 156 / 153 Table 2. Altered free amino levels in the skin surface of groups Parameters Free amino acids (nmol/μg protein) Experimental Groups CJLP (n = 39) Placebo (n = 39) p-value 3) 0 week 1.05 ± 0.09 1) 1.16 ± 0.15 6 week 2.04 ± 0.34 1.75 ± 0.24 Absolute change 0.99 ± 0.34 0.59 ± 0.21 0.314 Percent change 94.66 ± 32.43 50.81 ± 17.76 0.239 p-value 2) 0.006 0.007 0 week 1.05 ± 0.10 1.16 ± 0.15 12 week 1.59 ± 0.21 1.52 ± 0.21 Absolute change 0.54 ± 0.18 0.36 ± 0.20 0.502 Percent change 51.54 ± 17.65 30.79 ± 16.98 0.400 p-value 0.006 0.078 1) Values are means ± standard error mean (SEM). 2) p-value for difference from 0 week within CJLP or Placebo groups by student's paired t-test. 3) p-value for difference between CJLP and Placebo groups by student's unpaired t-test. Fig. 2. Altered free fatty acid (FFA) levels in the skin surface of groups. Individual FFA was fractionated by high-performance thin-layer chromatography, eluted, and further analyzed by gas chromatography after acid methanolysis. All values are mean ± SEM (n = 39 / group). Differences from 0 week within CJLP or Placebo groups were evaluated by paired Student's t-test ( * p < 0.05, ** p < 0.01, *** p< 0.001). Differences between CJLP and Placebo groups were evaluated by unpaired Student s t-test ( # p < 0.05). 총유리지방산함량이 Placebo 군에비해유의적으로감소하였다 (Fig. 2). 고찰 피부산도는성별, 인종, 유전적배경및연령에따라변화되는데검은피부가하얀피부보다낮고 [29], 남성이여성보다더낮았으며 [30], 염증이있는사람보다건강한 피부표면의산도가낮다. 신생아는출생후피부산도가점차감소하여 6개월이후에는성인의산도와유사한수준인 4.0 ~ 5.0가되고, 피부노화가진행됨에따라 ph가점차높아지는것으로알려져있다 [31-33]. 피부산도가피부건강에미치는중요성에비해관련소재연구가미흡한실정이나한동물실험에서 10주간자외선조사와함께병행된 1% 수준의녹차추출물의식이공급은젖산및유리아미노산의증가와함께자외선조사에의해증가된피부
154 / 김치유산균섭취와피부산도 산도를정상대조군과유사한수준으로감소시켜피부산도를개선할수있는소재로서의개발가능성을보여주었다 [34]. 본연구에서는김치유산균 Lactobacillus plantarum을 12주간섭취한 CJLP 군에서피부산도가유의적으로감소되었는데이결과는김치유산균 Lactobacillus plantarum 식이소재의섭취에의해서산도가개선될수있음을의미한다. 피부산도는표피의유리아미노산, 젖산및유리지방산인자들의총함량에의해결정된다 [35]. 표피에도포된유리아미노산, 젖산및유리지방산이피부의정상적인복원유지또는각질층의장벽재생에중요한역할을하는것으로보고되었다 [13]. 이들인자중유리아미노산은표피의에너지원으로사용되며피부산도의산성화와보습에관여하는중요인자로 [13,35] peptidyl arginine deiminase (PADs) 및 caspase 등에의한 filaggrin의분해과정을통해생성된다 [9,10]. 유리아미노산은각질층전체무게의 40% 또는표피내자연보습인자 (natural moisturizing factor, NMF) 의 48% 정도를차지하며피부산도의산성화와보습에관여하는중요인자로서 [13], 정상인에비해아토피피부염환자의표피에서유리아미노산의함량이감소하는것으로알려져있다 [36]. 그러나 CJLP 군의유리아미노산함량이 Placebo 군에비해 0주에서 12주간에유의적으로증가에도불구하고군간의함량변화에대한유의성은나타나지않았다 (Table 1). 이는김치유산균 Lactobacillus plantarum의섭취에따른산도개선은유리아미노산함량변화와는무관한것으로여겨진다. 유리지방산은 Phospholipase A2 (PLA2) 효소에의한인지질의가수분해를통해생성되고각질층의피부장벽및산도에영향을미치는주요인자로파악되고있다 [7]. 0 ~ 12주간의비교시, CJLP 군의총유리지방산함량및 PA와 SA의개별유리지방산이 Placebo 군에비해유의적으로감소하였다. 여드름환자의표피에서중성지방 (triglyceride; TG) 의함량뿐아니라 SA 및 Palmitoleic acid의함량이감소됨이보고되어있으나 [37] 본연구에서는김치유산균섭취후총유리지방산뿐아니라표피의주요개별유리지방산으로파악된 PA와 SA의함량이감소되는것으로파악되었다. 즉김치유산균 Lactobacillus plantarum의섭취에따른산도개선은유리지방산함량의감소와는관련이없는것으로여겨진다. 젖산생성에관여하는젖산탈수소효소 (Lactate Dehydrogenase, LDH) 의표피조직내단백질발현이진피에비하여높으며 [38], 호기적인상태에서도강한활성을갖는다 [39]. 12주간의 Lactobacillus plantarum 섭취젖산함량이유의적으로증가되었는데이는김치유산균 Lactobacillus plantarum의섭취에의한피부산도개선은젖산함량증가에의해초래되었음을의미한다. 젖산생산에관여하는 LDH의 mrna 전사는 protein kinase A (PKA) 와 protein kinase C (PKC) 경로를통해활성화된다 [40,41]. 또한섭취된 Lactobacillus plantarum은장내젖산의생성에의한장내산도감소와더불어위장관점막연관림프조직 (Gut Associated Lymphoid Tissue, GALT) 과여러면역세포에서의 interleukin-10 (IL-10) 와 tumor necrosis factor-α, (TNF-α) 등의사이토카인또는항체분비를유도한다 [42]. 본연구에서는 LDH의 mrna 발현을파악하지않았으나김치유산균 Lactobacillus plantarum의섭취가 IL-10 과 TNF-α의분비변화와더불어세포의 PKA와 PKC 경로를활성화시켜간접적으로 LDH의 mrna 전사및단백질발현증가를통해젖산의생성을증가시켰을가능성을제안한다. 추후동물실험을통해김치유산균 Lactobacillus plantarum 섭취에의한 cytokine 및 PKA, PKC의활성변화에대한연구가필요한것으로여겨진다. 또한함량이절대적으로큰유리지방산의감소에도불구하고 PA의 1/10 수준인젖산의함량증가에의해피부산도가감소하는지심도있는연구가필요한것으로여겨진다. 요약 본연구에서는 12주간김치에서추출한유산균 Lactobacillus plantarum 섭취가피부의산도및관련인자인유리아미노산, 젖산및유리지방산의함량을변화시키는지파악하였다. CJLP 군에서 12주차에피부산도가대조군에비해개선되었다. 표피의유리아미노산함량은대조군에비해변화하지않았으며, 총유리지방산및 Stearic acid (C18:0), Palmitic acid (C16:0) 의함량은감소하였다. 그러나 CJLP 군에서젖산의함량은대조군에비해 12주차에유의적으로증가하였다. 즉김치유산균 Lactobacillus plantarum 섭취는 CJLP 군에서젖산함량증가와함께산도를개선하였다. ORCID 한상신 : https://orcid.org/0000-0002-9217-1573 신지혜 : https://orcid.org/0000-0003-0270-0409 임선희 : https://orcid.org/0000-0001-7587-099x 안희윤 : https://orcid.org/0000-0002-8188-0446 김봉준 : https://orcid.org/0000-0002-1568-4682 조윤희 : https://orcid.org/0000-0001-6916-4482
Journal of Nutrition and Health (J Nutr Health) 2019; 52(2): 149 ~ 156 / 155 References 1. Fluhr JW, Elias PM. Stratum corneum ph: formation and function of the acid mantle. Exogenous Dermatology 2002; 1(4): 163-175. 2. Schmid-Wendtner MH, Korting HC. The ph of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol 2006; 19(6): 296-302. 3. Thurmon FM, Ottenstein B. Studies on the chemistry of human perspiration with especial reference to its lactic acid content. J Invest Dermatol 1952; 18(4): 333-339. 4. Rawlings AV, Harding CR. Moisturization and skin barrier function. Dermatol Ther 2004; 17 Suppl 1: 43-48. 5. Garidel P, Fölting B, Schaller I, Kerth A. The microstructure of the stratum corneum lipid barrier: mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems. Biophys Chem 2010; 150(1-3): 144-156. 6. Goffin P, Lorquet F, Kleerebezem M, Hols P. Major role of NAD-dependent lactate dehydrogenases in aerobic lactate utilization in Lactobacillus plantarum during early stationary phase. J Bacteriol 2004; 186(19): 6661-6666. 7. Fluhr JW, Kao J, Jain M, Ahn SK, Feingold KR, Elias PM. Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol 2001; 117(1): 44-51. 8. Suzuki N, Ishizaki J, Yokota Y, Higashino K, Ono T, Ikeda M, et al. Structures, enzymatic properties, and expression of novel human and mouse secretory phospholipase A 2s. J Biol Chem 2000; 275(8): 5785-5793. 9. Matsui T, Miyamoto K, Kubo A, Kawasaki H, Ebihara T, Hata K, et al. SASPase regulates stratum corneum hydration through profilaggrin-to-filaggrin processing. EMBO Mol Med 2011; 3(6): 320-333. 10. Sandilands A, Sutherland C, Irvine AD, McLean WH. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci 2009; 122(Pt 9): 1285-1294. 11. Eberlein-König B, Schäfer T, Huss-Marp J, Darsow U, Möhrenschlager M, Herbert O, et al. Skin surface ph, stratum corneum hydration, trans-epidermal water loss and skin roughness related to atopic eczema and skin dryness in a population of primary school children. Acta Derm Venereol 2000; 80(3): 188-191. 12. Choi EH, Man MQ, Xu P, Xin S, Liu Z, Crumrine DA, et al. Stratum corneum acidification is impaired in moderately aged human and murine skin. J Invest Dermatol 2007; 127(12): 2847-2856. 13. Nakagawa N, Sakai S, Matsumoto M, Yamada K, Nagano M, Yuki T, et al. Relationship between NMF (lactate and potassium) content and the physical properties of the stratum corneum in healthy subjects. J Invest Dermatol 2004; 122(3): 755-763. 14. Béke G, Dajnoki Z, Kapitány A, Gáspár K, Medgyesi B, Póliska S, et al. Immunotopographical differences of human skin. Front Immunol 2018; 9: 424. 15. Bourrie BC, Willing BP, Cotter PD. The microbiota and health promoting characteristics of the fermented beverage kefir. Front Microbiol 2016; 7: 647. 16. Guéniche A, Philippe D, Bastien P, Blum S, Buyukpamukcu E, Castiel-Higounenc I. Probiotics for photoprotection. Dermatoendocrinol 2009; 1(5): 275-279. 17. Valdéz JC, Peral MC, Rachid M, Santana M, Perdigón G. Interference of Lactobacillus plantarum with Pseudomonas aeruginosa in vitro and in infected burns: the potential use of probiotics in wound treatment. Clin Microbiol Infect 2005; 11(6): 472-479. 18. Lee DE, Huh CS, Ra J, Choi ID, Jeong JW, Kim SH, et al. Clinical evidence of effects of Lactobacillus plantarum HY7714 on skin aging: a randomized, double blind, placebocontrolled study. J Microbiol Biotechnol 2015; 25(12): 2160-2168. 19. Kim H, Kim HR, Jeong BJ, Lee SS, Kim TR, Jeong JH, et al. Effects of oral intake of kimchi-derived Lactobacillus plantarum K8 lysates on skin moisturizing. J Microbiol Biotechnol 2015; 25(1): 74-80. 20. Giri SS, Sen SS, Saha S, Sukumaran V, Park SC. Use of a potential probiotic, Lactobacillus plantarum L7, for the preparation of a rice-based fermented beverage. Front Microbiol 2018; 9: 473. 21. Lew LC, Liong MT. Bioactives from probiotics for dermal health: functions and benefits. J Appl Microbiol 2013; 114(5): 1241-1253. 22. Šeme H, Gjuračić K, Kos B, Fujs Š, Štempelj M, Petković H, et al. Acid resistance and response to ph-induced stress in two Lactobacillus plantarum strains with probiotic potential. Benef Microbes 2015; 6(3): 369-379. 23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-275. 24. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957; 226(1): 497-509. 25. Di Giorgio J. Determination of serum lactic dehydrogenase isoenzymes by use of the Diagnostest cellulose acetate electrophoresis system. Clin Chem 1971; 17(4): 326-331. 26. Imahashi D. Quantitation of LDH isoenzymes by the fluorimetric and colorimetric methods. Can J Med Technol 1968; 30(6): 235-248. 27. Uchida Y, Hara M, Nishio H, Sidransky E, Inoue S, Otsuka F, et al. Epidermal sphingomyelins are precursors for selected stratum corneum ceramides. J Lipid Res 2000; 41(12): 2071-2082. 28. Tang W, Ziboh VA. Reversal of epidermal hyperproliferation in essential fatty acid deficient guinea pigs is accompanied by rapid generation of inositol triphosphate. Arch Dermatol Res 1988; 280(5): 286-292. 29. Wesley NO, Maibach HI. Racial (ethnic) differences in skin properties: the objective data. Am J Clin Dermatol 2003; 4(12): 843-860. 30. Jacobi U, Gautier J, Sterry W, Lademann J. Gender-related differences in the physiology of the stratum corneum. Dermatology 2005; 211(4): 312-317. 31. Visscher MO, Chatterjee R, Munson KA, Pickens WL, Hoath SB. Changes in diapered and nondiapered infant skin over the first month of life. Pediatr Dermatol 2000; 17(1): 45-51.
156 / 김치유산균섭취와피부산도 32. Hoeger PH, Enzmann CC. Skin physiology of the neonate and young infant: a prospective study of functional skin parameters during early infancy. Pediatr Dermatol 2002; 19(3): 256-262. 33. Zlotogorski A. Distribution of skin surface ph on the forehead and cheek of adults. Arch Dermatol Res 1987; 279(6): 398-401. 34. Lee B, Kim J, Hwang J, Cho Y. Dietary effect of green tea extract on epidermal levels of skin ph related factors, lactate dehydrogenase protein expression and activity in UV-irradiated hairless mice. J Nutr Health 2016; 49(2): 63-71. 35. Sugawara T, Kikuchi K, Tagami H, Aiba S, Sakai S. Decreased lactate and potassium levels in natural moisturizing factor from the stratum corneum of mild atopic dermatitis patients are involved with the reduced hydration state. J Dermatol Sci 2012; 66(2): 154-159. 36. Cabanillas B, Novak N. Atopic dermatitis and filaggrin. Curr Opin Immunol 2016; 42: 1-8. 37. Akaza N, Akamatsu H, Numata S, Matsusue M, Mashima Y, Miyawaki M, et al. Fatty acid compositions of triglycerides and free fatty acids in sebum depend on amount of triglycerides, and do not differ in presence or absence of acne vulgaris. J Dermatol 2014; 41(12): 1069-1076. 38. Lewis C Jr, Schmitt M, Hershey FB. Heterogeneity of lactic dehydrogenase of human skin. J Invest Dermatol 1967; 48(3): 221-225. 39. Ronquist G, Andersson A, Bendsoe N, Falck B. Human epidermal energy metabolism is functionally anaerobic. Exp Dermatol 2003; 12(5): 572-579. 40. Boussouar F, Grataroli R, Ji J, Benahmed M. Tumor necrosis factor-alpha stimulates lactate dehydrogenase A expression in porcine cultured sertoli cells: mechanisms of action. Endocrinology 1999; 140(7): 3054-3062. 41. Huang D, Hubbard CJ, Jungmann RA. Lactate dehydrogenase A subunit messenger RNA stability is synergistically regulated via the protein kinase A and C signal transduction pathways. Mol Endocrinol 1995; 9(8): 994-1004. 42. Haza AI, Zabala A, Morales P. Protective effect and cytokine production of a Lactobacillus plantarum strain isolated from ewes' milk cheese. Int Dairy 2004; 14(1): 29-38.