Synthesis and Characterization of Conjugated Dendrons with Triazine Moiety. 2003 2
Synthesis and Characterization of Conjugated Dendrons with Triazine Moiety. 2003 2
20032
...,.,.,,. triazine t-butyl G0 4-Bromomagnesium styrenecyanuric chloride t-butylphenol. 3,5-Dibromobenzaldehyde aldehydevinyl. 0, 1, 2, core xylene. 1 H,
13 C MR, MALDI-TF. melting point, FT-IR, uvvis spectrophotometerpl(photoluminescence) spectometer. Dendrimers are highly branched spherical macromolecules with the defined size and structure and numerous functional groups at the outer shell of molecules. Dendrimers possess a multibranched structure that radiates out from a central core. The synthesis and characterization of these unique molecules have been the focus of attention of current polymer chemistry. These molecules are not only aesthetically appealing but also possess some interesting physical properties, such as unusual glass transition behavior and viscosity, and an isolating effect with certain functional molecules (e.g., porphyrin and rare earth ions). A wide range of synthetic methodologies have been applied toward the efficient syntheses of dendritic macromolecules. Two general approaches have been developed to synthesize these molecules: a divergent growth
approach and a convergent growth approach. For the synthesis of well-defined dendritic molecules, the convergent approach is preferred, as exemplified by the excellent works of Frechet, Moore, and others. A general feature of these works is that the synthesis of each generation of dendrons involves the protection and deprotection of certain functional groups. Zimmerman disclosed an orthogonal approach in which aromatic moieties are alternatively linked by flexible ester linkage and rigid acetylene linkages. However, this approach leads to the formation of dendrimers that are not homogeneous in chemical constituents due to the presence of different linkages. In this thesis, synthesis and characterization of conjugated dendrons with t-butyl and triazine peripheral groups were described. T-butyl groups enhanced the processability and 1,3,5-s-triazine groups have well electron transfer efficient. First, we made standard dendron building block G0-vinyl. And than grew the generation of dendron by using 3,5-dibromobenzaldehyde as repeating unit. We characterized the dendron by 1H, 13C MR, MALDI-TF, GPC, PL spectrum, UV-vis spectrum, FT-IR etc.
Chapter 1. General Introduction A. B. 1. 1.1 Divergent approach 1.2 Convergent approach 2. 2.1 Molecular box 2.2 Sugar ball 2.3 Self-assembly 2.4 2.5 Conjugated dendrimer Chapter 2. Synthesis and Characterization of Conjugated Dendrons with Triazine moiety
Chapter 3. UV-vis and PL spectrum of Conjugated dendrons Chapter 4. Summary and utlook References
Chapter 1. General Introduction dendron' polymer'. 3 globular., 1,.. 1-3 Tomalia ewkome PAMAM Arborol. 4,5 Moore, Frèchet
,, 6,7,,,, -.
β
H 2 H H 2 + H H 1 2 2 H H H H H H H F 3 CC 2 H H 2 H 2 H H H H 2 H 2 3 excess Monomer H H H H H H H H H H H H H H 4
H 2 HC CH H 2 H 2 H 2 H 3 (A) CH 2 CH C 2 Me (B) H 2 CH 2 CH 2 H 2 (excess) CH 1st Generation H 2 H 2 Starbranched ligomer Repeat step (A) & (B) H 2 H 2 H 2 Dendrimer Repeating Unit H 2 H 2 H 2 H 2 H 2 1st H 2 H 2 H 2nd 2 3rd H 2 ( Etc. ) H 2 H 2 H 2 2nd Generation H 2 H 2 H 2 Terminal Groups Starburst ligomers " Dendrimers " Initiator Core
R H H H 1) ClCH 2 C 2 H t Bu -, t BuH 2) MeH, H + R C 2 CH 3 C2CH3 C 2 CH 3 1) LiAlH 4 2) TsCl, Py R Ts Ts Ts H2C(CH2H)3 R C(C 2 Et) 3 C(C 2 Et) 3 C(C 2 Et) 3 ac(c2et)3 K 2 C 3 H HHH H H H H H H H H H H H R H H H H H H H H H H H H H H H H H H H HH
C H 2 H 2 C C C C Raney Co H 2 4 + C C C C C C C C C C C C C C CC C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C CC C
Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si
H K 2 C 3 CBr 4 Br H H 18-C-6 H PPh 3 Br 8 9 10 K 2 C 3 18-C-6 H K 2C 3 CBr 4 18-C-6 [G-3]-H PPh 3 H
TMS
C H H C H Me Me 2 S 4 SCl 2 C H C H C Cl Me C Cl F AlCl 3 F C Me (1) C F H Me H (1) C C 1) AlCl 3 (1) C C K 2 C 3 2) H 2 K 2 C 3 C Me C 1) AlCl 3 2) H 2 C H C (1) K 2 C 3 C C C C C C C C Me C C C C C C C C C C C C C C
R 4 + R 4 + R 4 + - - 2 C R 4 + 2 C - - 2 C R 4 + 2 C - 2 C R 4 + - 2 C R 4 + R 4 + - 2 C - 2 C + R 4 + R 4 + R 4 + R 4 C - 2 C - C - 2 + R 2 4 C -C - 2 2 C - + R 4 2 C 2 - C 2 - C 2 - C 2 - + R 4 + R 4 + R 4 + R 4 R 4 + R 4 + - 2 C - 2 C C 2 - C 2 - + R 4 R 4 + - 2 C R 4 + - 2 C - 2 C - 2 C R 4 + - C 2-2 C R C 4 + C - 2 R 4 + R 4 + R4 + R4 + C - 2 + R 4 C - 2 + R 4 C - R 4 2 C - C - 2 2 C - R 4 2 + R 4 + R 4 + R 4
CH 3 (CH 2 ) 11 (CH 2 ) 11 CH 3 CH 3(CH 2) 11 CH 3 (CH 2 ) 11 CH 3 (CH 2 ) 11 H CH 3(CH 2) 11 CH 3 (CH 2 ) 11 CH 3 (CH 2 ) 11 H CH 3 (CH 2 ) 11 CH 3 (CH 2 ) 11 CH 3 (CH 2 ) 11 (CH 2 ) 11 CH 3
G d G d G d Gd G d G d G d L ys Lys Gd Gd Lys Lys Lys G d G d L ys Lys L ys L ys G d G d G d Lys L ys c entral moie ty L ys L ys Gd G d L ys L ys L ys G d G d Lys L ys G d G d G d G d Gd G d
ν anode cathode
Conjugated Polymers
Dendrimer A. Tri(distyrylbenzenyl)amine cored dendrimer with three distyrylbenzene(dsb) units. Dendrimer B. 3G 1,3,5-tris(distyrylbenzenyl) cored dendrimer Dendrimer C. Meso-substituted first generation platinum porphyrin(ptpr) dendrimer J. M. Lupton et al. 76(a). t-butyl THFChloroform spin coating. Frechet et al...1.triblock copolymer 76(b)
2. Lanthanide cored Dendrimers complexes. 76(c)
Polymers Small molecules Difficult purity control Difficult reproducible synthesis Spin-coating Incorporation of diverse functions Aggregate formation : luminescence quenching Vacuum deposition Well-defined structure High quality control
Pillow et al. Macromolecules, Vol. 32, o. 19, 1999
A.,... t-butyl.., t-butyl, spin coating print coating. convergent. B. 1. : 4-tert Butylphenol, Mg, 4-Bromostyrene, Cyanuric chloride, Tetramethylammonuim bromide (TMABr), Sodium hydroxide
(ah), Sodium carbonate (a 2 C 3 ), Magnesium Sulfate anhydrous (MgS 4 ), 3,5- Dibromobenzaldehyde, Paladium( ) acetate (Pd(Ac) 2 ), 2,6-Di-tert-butylcresol, Potassium tert-butoxide, Methyltriphenylphosphonium iodidealdrich, TCI, ACRS. THF, Cloroform, DMF(,-Dimethylformamide), DMAc(,-Dimethylacetamide),. : Conjugated 1 H, 13 C MR AC 250 spectrometer 400MHz TMS(0.00ppm). MALDI-TFpolystyrenestandard THF pore size10 2, 500, 10 3 10 4 Åmicrostyragel column Waters 410 RI detector510 HPLC pump GPC. Elution solventthf, flow rate1ml/min. UV-Vis Hewlett Packard HP8452, solution THF chloroform, film glass spin coating.
2. Conjugated dendrons Conjugated convergent. mild work-up... 4-Bromomagnesium styrene (1). 150ml 2 neck round bottom flaskmagnetic bar condenser, gas flower, dropping funnelmg(2.39g, 90.1mmol) reduced vacuum pressure flame burning. 2 dried THF 80ml4-Bromosyrene (liquid)(15g, 81.9mmol)dropping funnel 2 neck round bottom flask dropping RT 12hr.. Mg. (15g, 89 % yield) 2,4-Dichloro-6-(4-vinylphenyl)-1,3,5-s-triazine (2). 250ml 2 neck round bottom flaskmagnetic bar condenser, gas flower, dropping funnel dropping funnelrubber. Dried THF 100mlcyanuric chloride (12g, 65.5mmol) 4-Bromomagnesium styrene (1) rubber double tip needle (1) (15g, 72.3mmol)dropping funnel. ice bath
5 dropping 24hr. Cyanuric chloride styrene. solvent Crude productsilica gel MC/Hexane (3:7) eluentcolumn. vacuum 6hr drying. UV light (254nm) product. (14g, 84.8% yield) 1 H MR (400MHz, CDCl 3 ) ä 5.33-5.36 (d, 1H, -C6H4-CH=CH2-), 5.82-5.87 (d, 1H, -C6H4-CH=CH2-), 6.69-6.76 (q, 1H, -C6H4-CH=CH2-), 7.43-7.45 (d, 2H, CH2=CH-C=CH-CH=C-), 8.27-8.29 (d, 2H, CH2=CH-C=CH-CH=C-), 13 C MR (400MHz, CDCl 3 ) ä 174.31, 171.98, 143.75, 135.82, 134.38, 131.77, 130.26, 129.68, 126.75, 126.56, 117.60, MALDI-TF 252.10 Mass(m/z) 2,4-di-t-butylphenyl-6-(4-vinylphenyl)-1,3,5-s-Triazine ( EL-G0-vinyl ) (3). 500ml erlmmayert-butylphenol (33.3g, 222.1mmol)Tetramethylammonium bromide (TMABr) (3.42g, 22.21mmol), Sodium hydroxide (ah) (8.88g, 222.1mmol) distilled water 100ml. 2,4-Dichloro-6-(4-vinylphenyl)-1,3,5-s-triazine (2) (14g, 55.5mmol) dried Chloroform 100ml. Condenser60 24hr stirring. CHCl 3 0.25M ah extraction.
water layer. MgS4 anhydrous. Filtering evaporation CHCl 3 / MeH. 2 vacuum 12hr drying. needle type product. (21g, 79.2% yield) 1 H MR (400MHz, CDCl 3 ) ä 1.20-1.40 (s, 18H, -CH3-), 5.33-5.36 (d, 1H, -C6H4-CH=CH2-), 5.82-5.87 (d, 1H, -C6H4-CH=CH2-), 6.69-6.76 (q, 1H, -C6H4-CH=CH2-), 7.13-7.15 (d, 4H, - -CH=CH-CH-C(CH3)3-), 7.38-7.40 (d, 4H, --CH=CH-CH-C(CH3)3-), 7.43-7.45 (d, 2H, CH2=CH-C=CH-CH=C-), 8.27-8.29 (d, 2H, CH2=CH-C=CH-CH=C-), 13 C MR (400MHz, CDCl 3 ) ä 168.9, 168.14, 150.05, 134.57, 134.47, 121.86, 114.55, 113.53, 61.07, 43.25, 40.60, MALDI-TF 479.023 mass(m/z) EL-G1-CH dendron (4). anhydrous DMAc solvent 100mlstirring vacuum Deoxygenation. 2, 3,5-Dibromobenzaldehyde (5.0g, 19.2 mmol), anhydrous a2c3 ( 4.62g, 43.8mmol), Pd(Ac) 2 (0.17g, 0.76mmol), 2,6-di-tert-butylcresol (5.01g, 22.7mmol) EL-G0-vinyl (21g, 43.8mmol) 2 130, 36hr. DMAc solvent evaporation MC 150mlHCl ( 1.5M, 50ml), distilled water 150 mlextraction. MC layermgs 4
anhydrous filtering drying. crude product Silica gel column. vacuum oven 6 hr drying. (12g, 11.3mmol yield 56%) 1 H MR (400MHz, CDCl 3 ) ä 1.20-1.40 (s, 36H, -CH3-C6H4--), 7.14-7.16 (d, 8H, --C=CH-CH-C-C(CH3)3-), 7.37-7.37 (d, 8H, --C=CH-CH-C-C(CH3)3-), 7.56-7.58 (d, 4H, -CH=CH-C=CH- CH=C-C33-), 7.83 (s, 2H, -CH-C=CH-C-CH=CH-), 7.90 (s, 4H, -CH-C=CH-C- CH=CH-C-), 8.32-8.34 (d, 4H, -CH=CH-C=CH-CH=C-C33-), 10.04 (s, 1H, -CH- C=CH-), 13 C MR (400MHz, CDCl 3 ) ä(ppm) 175.25, 172.77, 149.50, 148.56, 141.20, 138.35, 137.28, 136.14, 133.92, 129.49, 126.20, 120.77, 116.28, 34.50, 31.44, MALDI-TF 1061.82 mass(m/z) EL-G1-vinyl dendron (5). anhydrous THF solvent 100mlstirring Methyltriphenylphosphonium iodide (CH 3 P(C 6 H 5 ) 3 I) (8.57g, 21.1mmol)Potassium t-butoxide ((CH 3 ) 3 CK) (2.38g, 21.1mmol) 20 stirring. EL-G1-CH dendron (4) (12g, 11.3mmol) 2hr. solventevaporation MC/methanol. (10g, 9.43mmol, yield 83%) 1 H MR (400MHz, CDCl 3 ) ä 1.20-1.40 (s, 36H, -CH3-C6H4--), 5.33-5.36 (d, 1H, -C6H4- CH=CH2-), 5.82-5.87 (d, 1H, -C6H4-CH=CH2-), 6.69-6.76 (q, 1H, -C6H4-CH=CH2- ), 7.14-7.16 (d, 8H, --C=CH-CH-C-C(CH3)3-), 7.37-7.37 (d, 8H, --C=CH-CH-C-
C(CH3)3-), 7.56-7.58 (d, 4H, -CH=CH-C=CH-CH=C-C33-), 7.83 (s, 2H, -CH- C=CH-C-CH=CH-), 7.90 (s, 4H, -CH-C=CH-C-CH=CH-C-), 8.32-8.34 (d, 4H, - CH=CH-C=CH-CH=C-C33-), 13 C MR (400MHz, CDCl 3 ) ä(ppm) 175.25, 172.77, 149.50, 148.56, 141.20, 138.35, 137.28, 136.14, 133.92, 129.49, 126.20, 120.77, 116.28, 34.50, 31.44, MALDI-TF 1059.82 mass(m/z) EL-G2-CH dendron (6). anhydrous DMAc solvent 50ml stirring vacuum Deoxygenation. 2, 3,5-Dibromobenzaldehyde (0.99g, 3.77 mmol), anhydrous a2c3 ( 0.99g, 9.43mmol), Pd(Ac) 2 (0.17g, 0.76mmol), 2,6-di-tert-butylcresol (1.08g, 4.90mmol) EL-G1-vinyl (10g, 9.43mmol) 2 130, 36hr. DMAc solvent evaporation MC 150mlHCl ( 1.5M, 50ml), distilled water 150 mlextraction. MC layermgs 4 anhydrous filtering drying. crude product Silica gel column. vacuum oven 6 hr drying.
t-butyl Triazine. 4-bromostyrenemagnesiumgrinard 4-bromomagnesium styrene cyanuric chloride 5. EL-G0-vinyl 3,5- Dibromobenzaldehyde, aldehydevinyl 0, 1, 2. 1 H, 13 C MR. MALDI-TFGPC, melting pointft-ir, UV-vis spectrum, PL spectrum....,
.,.,,.,,. Frechet, Aida.
Synthesis of Dendron building block G0 + Mg Dry THF Br MgBr
Cl + dry THF Cl Cl -5 MgBr Cl Cl TMABr ah + Cl Cl H H 2, CHCl 3 100, 24 hr reflux G0
Br CH anhydrous DMAc 130 Br Pd(Ac) 2, a 2 C 3 2,6-di-tert-butylcresol G0 CH G1 Synthesis of Dendron G1-CH
CH 3 P(C 6 H 5 ) 3 I G1 THF. (CH 3 ) 3 CK. at RT G2 repeat Synthesis of Dendron G2
3.0 G0vinyl G1CH G1vinyl 2.5 2.0 Intensity 1.5 1.0 0.5 0.0 100 200 300 400 500 600 700 800 900 Absorption UV-vis spectrum of dendrons
50 G0vinyl G1CH G1vinyl 40 30 Intensity 20 10 0 200 220 240 260 280 300 320 340 360 380 400 420 440 Excitation PL spectrum of dendrons
20 G0vinyl G1CH G1vinyl 15 Intensity 10 5 0 300 350 400 450 500 550 600 Emission PL spectrum of dendrons
8 6 4 2 0 ppm
180 160 140 120 100 80 60 40 20 0 ppm
10 8 6 4 2 0 ppm
200 180 160 140 120 100 80 60 40 20 0 ppm
...,.,.
,,. t-butyl Triazine benzene, vinyl, aldehyde. convergent, 3,5-dibromobenzaldehyde
References 1. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117-132. 2. (a) Buhleier, E.; Wehner, W.; Vögtle, F., Synthesis 1978, 155-158. (b) ewkome, G. R.; Yao, Z.-q..; Baker, G. R.; Gupta, V. K. rg. Chem. 1985, 50, 2004-2006. 3. (a) Denkewalter, R. G.; Kolc, J.; Lukasavage, W. J. U.S. Patent 4,289,872 (1981). (b) Denkewalter, R. G.; Kolc, J.; Lukasavage, W. J. U.S. Patent 4,360,646 (1981). (c) Aharoni, S. M.; Crosby, C. R.; Walsh, E. K., Macromolecules, 1982, 15, 1093-1098. 4. (a) ewkome, G. R.; Moorefield, C..; Vögtle, F. Dendritic Molecules: Concepts, Synthesis, Perspectives; VCH: Weinheim, 1996. (b) Fréchet, J. M. J.; Hawker, C. J. Comprehensive Polymer Science, 2nd Suppl. (S.L. Aggarwal and S. Russo, Editors) 1996, 71-132. (c) Fréchet, J. M. J. Science 1994, 263, 1710-1715. (d) Tomalia, D. A.; aylor, A. M.; Goddard III, W. A. Angew. Chem. Int. Ed. Engl. 1990, 29, 138-175. (e) Tomalia, D. A. Adv. Mater. 1994, 6, 529-539. (f) Tomalia, D. A.; Durst, H. D. Top. Curr. Chem. 1993, 165, 197-307. 5. (a) Matthews,. A.; Shipway, A..; Stoddart, J. F. Prog. Polym. Sci. 1998, 23, 1-56. (b) Chow, H.-F.; Mong, T.; ongrum, M. F.; Wan, C.-W. Tetrahedron 1998, 54, 8543-8660. (c) Vögtle, F.; Gestermann, S.; Hesse, R.; Schwierz, H.; Windisch, B.
Prog. Polym. Sci. 2000, 25, 987-1041. 6. (a) Hawker, C. J.; Fréchet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638-7647. (b) Hawker, C. J.; Wooley, K. L., The Convergent-Growth Approach to Dendritic Macromolecules, Advances in Dendritic Macromolecules (ewkome, G. R.. Ed.), 1995, Vol. 2, 2-37, JAI press, Greenwich. 7. (a) Zeng, F.; Zimmerman, S. C. J. Am. Chem. Soc. 1996, 118, 5326-5327. (b) Chow, H.-F.; Mong, T.; ongrum, M. F.; Wan, C.-W. Tetrahedron 1998, 54, 8543-8660 8. T. H. Mourney, Turner, S. R.; Rubinstein, M. Fréchet, J. M. J.; Hawker, C. J.; Wooley, K. L. Macromolecules, 1992, 25, 2401-2406. 9. (a) Shultz, L. G.; Zimmerman, S. C. Pharm. ews 1999, 6(3). (b) Liu, M.; Fréchet, J. M. J. Pharmaceut. Sci. Technol. Today 1999, 2, 393-401. (c) Smith, D. K.; Diederich, F. Chem. Eur. J. 1998, 4, 1353-1361. (d) Turro,. J.; Barton, J. K.; Tomalia, D. A. Acc. Chem. Res, 1991, 24, 332-340. (e) Crooks, R. M.; Ricco, A. J. Acc. Chem. Res. 1998, 31, 219-227. (f) Hedrick, J. L.; Miller, R. D.; Hawker, C. J.; Carter, K. R.; Volksen, W.; Yoon, D. Y.; Trollsås, M. Adv. Mater. 1998, 10, 1049-1053. (g) Eichman, J. D.; Bielinska, A. U.; Latallo, J. F. K-; Baker, Jr. J. R. Pharmaceut. Sci. Technol. Today 2000, 3, 232-245. 10. (a) Voit, B. I. Acta Polym. 1995, 46, 87-99. (b) Kin, Y. H. J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 1685-1698. (c) Voit, B. J. Polym. Sci. Part A: Polym.
Chem., 2000, 38, 2505-2525. (d) Malmström, E.; Hult, A. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1997, C37, 555-579. 11. (a) (a) van Benthem, R. A. T. M.; Muscat, D.; Stanssens, D. A. W. Polym. Mater. Sci. Eng. 1999, 79, 72-73. (b). (c) Freemantle, M. C&E 1999, 27-35 (ovember, 1). (c) Sunder, A.; Heinemann, J.; Frey, H. Chem. Eur. J. 2000, 6, 2499-2506. 12. (a) Issberner, J.; Moors, R.; Vögtle, F. Angew. Chem. Int. Ed. Engl. 1994, 33, 2413-2420. (b) Melkelburger, H.-B.; Jaworek, W.; Vögtle, F. Angew. Chem. Int. Ed. Engl. 1992, 31, 1571-1576. (c) Fischer, M.; Vögtle, F. Angew. Chem. Int. Ed. 1999, 38, 884-905. (d) Vögtle, F.; Gestermann, S.; Hesse, R.; Schwierz, H.; Windisch, B. Prog. Polym. Sci. 2000, 25, 987-1041. (e) Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. Rev. 1999, 99, 1685-1689. (f) Matthews,. A.; Shipway, A..; Stoddart, J. F. Prog. Polym. Sci. 1998, 23, 1-56. 13. (a) Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives; VCH: Weinheim, 1995. (b) Lehn, J.-M. Angew. Chem. Int. Ed. Engl. 1990, 29, 1304-1319. (c) Lehn, J.-M. Science, 1978, 200, 1012-1018. 14. (a) Pederson, C. J. Angew. Chem. Int. Ed. Engl. 1988, 27, 1021-1027. (b) Cram, D. J. Angew. Chem. Int. Ed. Engl. 1988, 27, 1009-1020. (c) Lehn, J.-M. Angew. Chem. Int. Ed. Engl. 1988, 27, 89-112. 15. (a) Alivisatos, A. P.; Barbara, P. F.; Castleman, A. W.; Chang, J. Dixon, D. A.;
Klein, M. L.; McLendon, G. L.; Miller, J. S.; Ratner, M. A.; Rossky, P. J.; Stupp, S. I.; Thompson, M. E. Adv. Mater. 1998, 10, 1297-1336. (b) Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A. Science, 1997, 276, 384-389. (c) Stupp, S. I.; Son, S.; Lin, H. C.; Li, L. S. Science, 1993, 259, 59-63. (d) Miller, S. A.; Ding, J. H.; Gin, D. L. Curr. pin. Colloid Interfac. Sci. 1999, 4, 338-347. (e) Moore, J. S. Curr. pin. Colloid Interfac. Sci. 1999, 4, 108-116. (f) Zimmerman,.; Moore, J. S.; Zimmerman, S. C. Chem. Ind. 1998, 604-610. 16. (a) Xia, Y.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 550-575. (b) Xia, Y.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M. Chem. Rev. 1999, 99, 1823-1848. (c) Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science, 1999, 283, 661-663. 17. (a) Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science, 1991, 254, 1312-1319. (b) Tanford, C. The Hydrophobic Effect: Formation of Micelles and Biological membranes; John Wiley & Sons: ew York, 1973. 18. Whitesides, G. M.; Simanek, E. E.; Mathias, J. P.; Seto. C. T.; Chin, D..; Mammen, Mathai, Gordon, D. M. Acc. Chem. Res. 1995, 28, 37-44. 19. (a) Lindsey, J. S. ew J. Chem. 1991, 15, 153-180. (b) Lawrence, D. S.; Jiang, T.; Levett, M. Chem. Rev. 1995, 95, 2229-2260. (c) Philip, D.; Stoddard, J. F.; Angew. Chem. Int. Ed. Engl, 1988, 27, 1009-1020. (d) Conn, M. M.; Rebek, Jr. J. Chem. Rev. 1997, 97, 1647-1668.
20. Zimmerman, S. C.; Zeng, F.; Reichert, D. E. C.; Kolotuchin, S. V. Science, 1996, 271, 1095-1098. 21. Zimmerman, S. C. Top. Curr. Chem. 1993, 165, 71-102. 22. Jansen, J. F. G. A.; de Brabander-van den Burg, E. M. M.; Meijer, E. W. Science, 1994, 266, 1226-1229. 23. (a) Hudson, S. D.; Jung, H.-T.; Percec, V.; Cho, W.-D.; Johansson, G.; Ungar, G.; Balagurusamy, V. S. K. Science, 1997, 278, 449-452. (b) Percec, V.; Cho, W.-D.; Mosier, P. E.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem. Soc. 1998, 120, 11061-11070. 24. Escamilla, G. H.; ewkome, G. R. Angew. Chem. Int. Ed. Engl, 1994, 33, 1937-1940. 25. ewkome, G. R.; Moorefield, C..; Baker, G. R.; Behera, R. K.; Escamillia, G. H.; Saunders, M. J. Angew. Chem. Int. Ed. Engl, 1992, 31, 917-919. 26. (a) Zeng, F.; Zimmerman, S. C. Chem. Rev. 1997, 97, 1681-1712. (b) Emrick, T.; Fréchet, J. M. J. Curr. pin. Colloid Interfac. Sci. 1999, 4, 108-116. (c) ewkome, G. R. Pure Appl. Chem. 1998, 70, 2337-2343. (d) ewkome, G. R.; He, E.; Moorefield, C.. Chem. Rev. 1999, 99, 1689-1746. 27. Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. Rev. 1999, 99, 1685-1689. 28. Tomalia, D. A. Adv. Mater. 1994, 6, 529-539. 29. Tomalia, D. A.; Durst, H. D. Top. Curr. Chem. 1993, 165, 197-307.
30. Jansen, J. F. G. A.; de Brabander-van den Burg, E. M. M.; Meijer, E. W. Science, 1994, 266, 1226-1229. 31. de Brabender-van den Berg, E. M. M.; Meijer, E. W. Angew. Chem. Int. Ed. Engl, 1993, 32, 1308-1311. 32. Jansen, J. F. G. A.; Janssen, R. A. J.; de Brabender-van den Berg, E. M. M.; Meijer, E. W. Adv. Mater. 1995, 7, 561-564. 33. Jansen, J. F. G. A.; Meijer, E. W. J. Am. Chem. Soc. 1995, 117, 4417-4418. 34. Hoffmann, H. Adv. Mater. 1994, 6, 116-129. 35. ewkome, G. R.; Moorefield, C..; Baker, G. R.; Saunders, M. J.; Grossman, S. H. Angew. Chem. Int. Ed. Engl. 1991, 30, 1178-1180. 36. Hawker, C. J.; Wooley, K. L.; Fréchet, J. M. J. J. Chem. Soc. Perkin Trans. 1, 1993, 1287-1297. 37. Stevens, S.; van Hest, J. C. M.; Jansen, J. F. G. A.; van Boxtel, D. A. F. J.; de Brabender-van den Berg, E. M. M.; Meijer, E. W. J. Am. Chem. Soc. 1996, 118, 7398-7399. 38. Sayed-Sweet, Y.; Hedstrand, D. M.; Spinder, R.; Tomalia, D. A. J. Mater. Chem. 1997, 7, 1199-1205. 39. Tomalia, D. A.; Majoros, I. Supramolecular Polymers; Marcel Dekker: ew York, 2000, pp. 359-434. 40. Lindsey, J. S. ew J. Chem. 1991, 15, 153-180.
41. Sijbesma, R. P.; Meijer, E. W. Curr. pin. Colloid Interfac. Sci. 1999, 4, 24-32. 42. (a) Schlüter, A. D.; Rabe, J. P. Angew. Chem. Int. Ed. 2000, 39, 864-883. (b) Frey, H. Angew. Chem. Int. Ed. 1998, 37, 2193-2197. 43. Zimmerman, S. C.; Zeng, F.; Reichert, D. E. C.; Kolotuchin, S. V. Science, 1996, 271, 1095-1098. 44. Yang, J.; Marendaz, J.-L; Geib, S. J.; Hamilton, A. D. Tetrahedron Lett. 1994, 35, 3665-3668. 45. Mathias, J. P; Seto, C. T.; Simanek, E. E.; Whitesides, G. M. J. Am. Chem. Soc. 1994, 116, 1725-1726. 46. (a) Whitesides, G. M.; Simanek, E. E.; Mathias, J. P.; Seto. C. T.; Chin, D..; Mammen, Mathai, Gordon, D. M. Acc. Chem. Res. 1995, 28, 37-44. (b) Conn, M. M.; Rebek, Jr. J. Chem. Rev. 1997, 97, 1647-1668. 47. Freeman, A. W.; Vreekamp, R. H.; Fréchet, J. M. J. Polym. Mater. Sci. Eng. 1997, 77, 138-139. 48. strogovitch, G.; Bacaloglu, R.; Timisaora, Studii Ceretari Stiint Chim. 1962, 9, 273-89. Chem. Abstract 59, 8127f 49. Suárez, M.; Lehn, J.-M.; Zimmerman, S. C.; Skoulios, A.; Heinrich, B. J. Am. Chem. Soc. 1998, 120, 9526-9532. 50. Halperin, A. Supramolecular Polymers; Marcel Dekker: ew York, 2000, pp. 93-146.
51. kano, T.; Yui,.; Yokoyama, M.; Yoshida, R. Advances in Polymeric Systems for Drug Delivery; Gordon and Breach Science Publishers: Japan 52. Fréchet, J. M. J.; Gitsov, I. Macromol. Symp. 1995, 98, 441-465. 53. (a) van Hest, J. C. M.; Delnoye, D. A. P.; Baars, M. W. P. L.; van Genderen, M. H. P.; Meijer, E. W. Science, 1995, 268, 1592-1595. (b) van Hest, J. C. M.; Baars, M. W. P. L.; Elissen-Román, van Genderen, M. H. P.; Meijer, E. W. Macromolecules, 1995, 28, 6689-6691. 54. Chapman, T. M.; Hillyer, G. L.; Mahan, E. J.; Shaffer, K. A. J. Am. Chem. Soc. 1994, 116, 11195-11196. 55. Gitsov, I.; Fréchet, J. M. J. Macromolecules, 1994, 27, 7309-7315. 56.. Tomalia, D. A.; Majoros, I. Supramolecular Polymers; Marcel Dekker: ew York, 2000, pp. 359-434. 57. (a) Percec, V.; Johansson, G.; Heck, J.; Ungar, G.; Batty, S. V. J. Chem. Soc. Perkin Trans. 1, 1993, 1411-1420. (b) Percec, V.; Heck, J. A.; Tomazos, D.; Ungar, G. J. Chem. Soc. Perkin Trans. 2, 1993, 2381-2388. (c) Percec, V.; Heck, J.; Tomazos, D.; Falkenberg, F.; Blackwell, H.; Ungar, G. J. Chem. Soc. Perkin Trans. 1, 1993, 2799-2811. (d) Percec, V.; Tomazos, D.; Heck, J.; Blackwell, H.; Ungar, G. J. Chem. Soc. Perkin Trans. 2, 1994, 31-44. (e) Johansson, G.; Percec, V.; Ungar, G.; Abramic, D. J. Chem. Soc. Perkin Trans. 1, 1994, 447-459. (f) Percec, V.; Johansson, G.; Ungar, G.; Shou, J. J. Am. Chem. Soc. 1996, 118, 9855-9866. (g)
See reference 23. (h) Percec, V.; Cho, W.-D.; Möller, M.; Prokhorova, S.; Ungar, G.; Yeardley, D. J. P J. Am. Chem. Soc. 2000, 122, 4249-4250. (i) Percec, V.; Cho, W.-D.; Ungar, G.; Yeardley, D. J. P. Angew. Chem. Int. Ed. 2000, 39, 1598-1602. 58. (a) ewkome, G. R.; Baker, G. R.; Saunders, M. J.; Susso, P. S.; Gupta, V. K.; Yao, Z.-q.; Miller, J. E.; Bouillion, K. J. Chem. Soc., Chem. Commun. 1986, 752-753. (b) ewkome, G. R.; Baker, G. R.; Arai, S.; Saunders, M. J.; Susso, P. S.; Theriot, K. J.; Moorefield, C..; Rogers, E.; Miller, J. E.; Lieux, T. R.; Murray, M. E.; Phillips, B.; Pascal, L. J. Am. Chem. Soc. 1990, 112, 8458-8465. (c) ewkome, G. R.; Lin, X.; Yaziong, C.; Escamilla, G. H. J. rg. Chem. 1993, 58, 3123-3129. 59. The Peptides: Analysis, Synthesis, Biology, Vol. 2. Special Methods in Peptide Synthesis part A, Academic Press: ew York, 1980. 60. Staab, H. A. Angew. Chem. Int. Ed. Engl. 1962, 1, 351-367. 61. (a) Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149-2154. (b) Gutte, B.; Merrifield, R. B. J. Biol. Chem. 1971, 246, 1922-1941. 62. (a) Voit, B. I. Acta Polym. 1995, 46, 87-99. (b) Kin, Y. H. J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 1685-1698. (c) Voit, B. J. Polym. Sci. Part A: Polym. Chem., 2000, 38, 2505-2525. (d) Malmström, E.; Hult, A. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1997, C37, 555-579. 63. Kim, Y.; Zeng, F.; Zimmerman, S. C. Chem. Eur. J. 1999, 5, 2133-2138. 64.. (a) Hawker, C. J.; Fréchet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638-7647. (b)
Hawker, C. J.; Wooley, K. L., The Convergent-Growth Approach to Dendritic Macromolecules, Advances in Dendritic Macromolecules (ewkome, G. R.. Ed.), 1995, Vol. 2, 2-37, JAI press, Greenwich 65.. (a) Hudson, S. D.; Jung, H.-T.; Percec, V.; Cho, W.-D.; Johansson, G.; Ungar, G.; Balagurusamy, V. S. K. Science, 1997, 278, 449-452. (b) Percec, V.; Cho, W.-D.; Mosier, P. E.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem. Soc. 1998, 120, 11061-11070. 66. (a) van Esch, J. H.; Feringa, B. L. Angew. Chem. Int. Ed. 2000, 39, 2263-2266. (b) Terech, P.; Weiss, R. G. Chem. Rev. 1997, 97, 3133-3159. (c) Abdallah, D. J.; Weiss, R. G. Adv. Mater. 2000, 12, 1237-1247. 67. Mido, Y. Spectrosc. Chim. Acta 1972, 28A, 1503-1518. 68. (a) Loos, M. d.; Esch, J. v.; Stokroos, I.; Kellogg, R. M.; Feringa, B. L.; J. Am. Chem. Soc. 1997, 119, 12675-12676. (b) Esch, J. v.; Feyter, S. D.; Kellogg, R. M.; Schryver, F. D.; Feringa, B. L. Chem. Eur. J. 1997, 3, 1238-1243. 69. Hanabusa. K.; Yamada, M.; Kimura, M.; Shirai, H.; Angew. Chem. Int. Ed. Engl. 1996, 35, 1949-1951. 70. (a) Escamilla, G. H.; ewkome, G. R. Angew. Chem. Int. Ed. Engl, 1994, 33, 1937-1940. (b) ewkome, G. R.; Moorefield, C..; Baker, G. R.; Behera, R. K.; Escamillia, G. H.; Saunders, M. J. Angew. Chem. Int. Ed. Engl, 1992, 31, 917-919. 71. kano, T.; Yui,.; Yokoyama, M.; Yoshida, R. Advances in Polymeric Systems
for Drug Delivery; Gordon and Breach Science Publishers: Japan 72. Israelachvili, J..; Mitchell, J.; inham, B. W. J. Chem. Soc. Faraday Trans. 2, 1976, 72, 1525-1568. 73. Hoffmann, H. Adv. Mater. 1994, 6, 116-129. 74. Fendler, J. A. Membrane Mimetic Chemistry; Wiley: ew York, 1982. 75. (a) Hubert, D. H. W.; Jung, M.; German, A. L. Adv. Mater. 2000, 12, 1291-1294. (b) Discher, B. M.; Hammer, D. A.; Bates, F. S.; Discher, D. E. Curr. pin. Colloid Interfac. Sci. 2000, 5, 125-131. 76. (a) J. M. J. Frechet ; Adv. Funct. Mater. 2001, 11 (4), 287-294 (b) J. M. J. Frechet : Synthetic metals 2001, 121, 1259-1260 (c) J. M. J. Frechet : Chem. Mater. 1998, 10, 286-296 77. Kraft, A.; Grimsdale, A. C.; Holms, A. B. Angew. Chem. Int. Ed. 1998, 37, 402. 78. Gustafasson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri,.; Heeger, A. J. ature 1992, 357, 477. 79. Friend, R. H; Gymer, R. W; Holmes, A. B; Burroughes, J. H.; Marks, R. ; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Brédas, J. L.; Logdlund, M.; Salaneck, W. R. ature 1999, 397, 121. 80. Segura, J. L. Acta Polym. 1998, 49, 319.