u0706144.pdf



Similar documents
Coriolis.hwp

< C6AFC1FD28B1C7C7F5C1DF292E687770>

08.hwp

Microsoft Word - SRA-Series Manual.doc

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

<4D F736F F F696E74202D2028B9DFC7A5BABB2920C5C2BEE7B1A420B8F0B5E220C8BFC0B220BDC7C1F520BDC3BDBAC5DB5FC7D1B1B94E4920C0B1B5BFBFF85F F726C F72756D>

DC Link Application DC Link capacitor can be universally used for the assembly of low inductance DC buffer circuits and DC filtering, smoothing. They

歯메뉴얼v2.04.doc

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 30(8),

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

REVERSIBLE MOTOR 표지.gul

INDUCTION MOTOR 표지.gul

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

DIB-100_K(90x120)

Microsoft PowerPoint - AC3.pptx

03 장태헌.hwp

Slide 1

Chapter4.hwp

°ø±â¾Ð±â±â

<4D F736F F F696E74202D20454D49A3AF454D43BAEDB7CEBCC52EBBEABEF7BFEBC6F7C7D428BBEFC8ADC0FCC0DA >

<313920C0CCB1E2BFF82E687770>

CD-6208_SM(new)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

14.531~539(08-037).fm

04 김영규.hwp

<C7D1B1B9B0E6C1A6BFACB1B8C7D0C8B828C0CCC1BEBFF85FC0CCBBF3B5B75FBDC5B1E2B9E9292E687770>

요약문 1 요 약 문 1. 과 제 명 : 소음노출 저감을 위한 작업환경관리 및 측정방안 연구 2. 연구기간 : ~ 연 구 자 : 연구책임자 장 재 길 (연구위원) 공동연구자 정 광 재 (연구원) 4. 연구목적 및 필요성

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

5. Kapitel URE neu

(Transer Function) X(w) Y(w) H(w) Y(w) X(w) H ( w) φ H(w) H(w) X(w) Y(w). Vo ( w) H v ( w) V ( w) I o( w) H i ( w) I ( w) V ( w) H z ( w) I ( w) I ( w

- 2 -

PowerChute Personal Edition v3.1.0 에이전트 사용 설명서

歯회로이론

서보교육자료배포용.ppt

Microsoft PowerPoint - 7-Work and Energy.ppt

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 29(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

歯49손욱.PDF

Preliminary spec(K93,K62_Chip_081118).xls

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

歯AG-MX70P한글매뉴얼.PDF

D101351X0KR_May17

Manufacturing6

PowerPoint 프레젠테이션

#Ȳ¿ë¼®

2

DBPIA-NURIMEDIA

歯Trap관련.PDF

歯FDA6000COP.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

10신동석.hwp

지의 절반 정도를 데이터센터 냉각, 공조 등의 설비가 사용하며 나머지 절반을 IT 장비가 사용하고 있음을 고 있으므로, 본 고에서는 JTC1/SC39에서의 그린 데 이터센터 표준화 동향을 다루도록 한다. 알 수 있다[1]. 그러므로 데이터센터 에너지 효율의 향 상을 위

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

1 n dn dt = f v = 4 π m 2kT 3/ 2 v 2 mv exp 2kT 2 f v dfv = 0 v = 0, v = /// fv = max = 0 dv 2kT v p = m 1/ 2 vfvdv 0 2 2kT = = vav = v f dv π m

D103198X0KR_Jul18 Korean

02 Reihe bis 750 bar GB-9.03

7 LAMPS For use on a flat surface of a type 1 enclosure File No. E Pilot Lamp File No. E Type Classification Diagram - BULB Type Part Mate

<C7A5C1F620BEE7BDC4>


°ø¾÷-01V36pš

,,,,,, (41) ( e f f e c t ), ( c u r r e n t ) ( p o t e n t i a l difference),, ( r e s i s t a n c e ) 2,,,,,,,, (41), (42) (42) ( 41) (Ohm s law),

09È«¼®¿µ 5~152s

Microsoft Word - P02.doc

ePapyrus PDF Document

User's Guide

KAERIAR hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

슬라이드 1

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

영상처리 이론 과 실제 제3장 영역처리

전자교탁 사양서.hwp

???? 1

ISO17025.PDF

PJTROHMPCJPS.hwp

04 박영주.hwp

KAERI/TR-2128/2002 : SMART 제어봉구동장치 기본설계 보고서

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

587.eps

Full Bridge IGBT Gate Drive & Three Phase SCR Drive Board 사양서

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 3, Mar (NFC: non-foster Circuit).,. (non-foster match

DBPIA-NURIMEDIA

00829A_SHR-6164-KOR.indb

歯동작원리.PDF

공학박사학위 논문 운영 중 터널확대 굴착시 지반거동 특성분석 및 프로텍터 설계 Ground Behavior Analysis and Protector Design during the Enlargement of a Tunnel in Operation 2011년 2월 인하대

歯김유성.PDF

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

. "" "",.... :...,,....,.. :..,,,..,,...,.... 2

DBPIA-NURIMEDIA

hapter_ i i 8 // // 8 8 J i 9K i? 9 i > A i A i 8 8 KW i i i W hapter_ a x y x y x y a /()/()=[W] b a b // // // x x L A r L A A L L A G // // // // /

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

untitled

PowerPoint Presentation

untitled

<31372DB9DABAB4C8A32E687770>

대경테크종합카탈로그

Transcription:

Development of an advanced program for the design of direct radiate loudspeaker systems 00

Development of an advanced program for the design of direct radiate loudspeaker systems 00 0 0

00

----------------------------------------------- i List of Figures ---------------------------------------- iii List of Tables ----------------------------------------- vi Nomenclature ---------------------------------------- vii -------------------------------------------- xii - ------------------------------------------ ---------------------------------------- -------------------------------- 3 ------------------------------------ 4 --------- 4 -------------------------- 4 ------------------------- 3 3 ------------------------- 7 ---------------------------- 30 - -------------------------------------- 30 ------------ 3

3 - ----------------------------------------- 33 3 ------------------------------ 33 3 Thiele-mall ------- 33 3 ------------- 4 3 ------------------------------ 43 3 Thiele-mall ----------------- 43 3 ----------------- 44 4 -------------------------------------- 46 4 ---------------------------------- 46 4 --------------------------------------- 47 5 - ----------------------------------------- 5 ---------------------------------------- 5 Abstract -------------------------------------- 54 ------------------------------------- 55

Figure Figure Figure 3 Figure 4 Figure 5 List of Figures Generalized direct-radiator loudspeaker system Acoustical analogous circuit of generalized direct-radiator loudspeaker system Acoustical analogous circuit of infinite-baffle loudspeaker system Electrical equivalent circuit of moving-coil electro-dynamic driver Driver voice-coil impedance magnitude Figure 6 implified acoustical analogous circuit corresponding to Fig Figure 7 Figure 8 Figure 9 Figure 0 Figure Figure Figure 3 Figure 4 Figure 5 Figure 6 Figure 3 Figure 3 Figure 33 Figure 34 Figure 35 Normalized frequency response of infinite baffle loudspeaker system Normalized displacement of driver mounted on infinite baffle implified electrical equivalent circuit of closed-box loudspeaker system Acoustical analogous circuit of vented-box loudspeaker system (a) Crossover network branch from several order, (b) Crossover network branch from several quality factor implified 4 th order filter Measuring setup (a) Equipment and test speaker picture (b) Block diagram Mounting of loudspeaker and laser displacemeter implified electrical circuit of loudspeaker at low frequencies Magnitude of diaphragm velocity to driver current ratio frequency response Magnitude of diaphragm velocity to input voltage ratio frequency response Figure 36 Inverse of curve shown in Fig 35 multiplied by ( T M )

Bl is given at resonant frequency by Y value of main cursor Figure 37 Calculation of dc resistance of voice-coil E is given at resonant Figure 38 Figure 39 frequency by Y value of main cursor Figure 30 Figure 3 Figure 3 Figure 4 Figure 4 Figure 43 Figure 44 Figure 45 Figure 46 Magnitude of element frequency response (a) mh coil (b) 475µF condenser Magnitude of crossover network frequency response (a) nd order low-pass filter (b) nd order high-pass filter Magnitude of crossover network frequency response (a) Inphase summation (b) Out of phase summation

List of Tabels Table Table Table 3 Four basic parameters used by Thiele elationship between impedance and circle element General Method vs Proposed Method (Use Laser-Displacemeter)

Nomenclature B AB weber/ m [ 5 C Acoustic compliance of air in enclosure [ m / N 5 C Acoustic compliance of passive radiator suspension [ m / N AP 5 C Acoustic compliance of driver suspension [ m / N 5 C Total acoustic compliance of driver and enclosure [ m / N AT CM Mechanical compliance of driver suspension [ m / N C Electrical capacitance correspond to vent mass M MEP AP C ME Electrical capacitance representing moving mass ( M ) of system c [ m / sec e g Open-circuit output voltage of ource (Thevenin s equivalent generator for amplifier output port) [ F [ F [V f B esonance frequency of vented enclosure [ Hz f C esonance frequency of closed box system [ Hz f CT esonance frequency of driver in closed, unfilled, unlined test enclosure [ Hz f esonance frequency of unenclosed driver [ Hz G(s) k x L CEB esponse function Displacement constant Electrical inductance correspond to enclosure compliance CAB [ H LCE Electrical inductance due to driver compliance [ H l Length of voice-coil conductor in magnetic gap [m M AC M AP 4 [ kg / m Acoustic mass of port or passive radiator including air load 4 [ kg / m

M M M PA PA Acoustic mass of driver diaphragm assembly including air load Mechanical mass of driver diaphragm assembly including air load Acoustic output power Displacement-limited acoustic power rating 4 [ kg / m [kg PE Nominal electrical input power [W PE Displacement-limited electrical power rating [W P E (max) Thermally-limited maximum input power [W pg [ atio of reactance (series Circuit) or resistance to reactance(parallel circuit) N / m ECT E of driver at E only of driver at E only f CT considering electrical resistance f considering electrical resistance L of driver at f B resulting from the leakage losses MC of system at f C M of driver at resistance only f considering driver non-electrical T TC AB AL Total of driver at f including all system resistances of system at f C Acoustic resistance of enclosure losses caused by internal energy absorption Acoustic resistance of enclosure losses caused by leakage 5 [ N sec/ m 5 [ N sec/ m

5 Acoustic resistance of port or passive radiator losses [ N sec/ m AP Acoustic resistance of driver suspension losses [ AT N 5 sec/ m 5 Acoustic resistance of total driver-circuit losses [ N sec/ m Total system resistance 5 [ N sec/ m ATC E DC resistance of driver voice-coil [Ω EL E g Electrical resistance correspond to enclosure leakage resistance AL Electrical resistance representing driver suspension losses Output resistance of source (Thevenin s equivalent resistance for amplifier output port) [Ω [Ω [Ω M Mechanical resistance of driver suspension losses [Ω 5 Acoustic radiation resistance [ N sec/ m A D Effective surface area of driver diaphragm [m s Complex frequency variable T Time constant 3 U Volume velocity entering enclosure [ m / sec B 3 U Volume velocity of the driver [ m / sec D 3 U Volume velocity caused by enclosure leak [ m / sec L 3 U Volume velocity of the port [ m / sec P U0 Total volume velocity of the enclosure 3 [ m / sec u Linear velocity [ m / sec u Linear velocity of driver diaphragm [ m / sec D V D Volume of air having same acoustic compliance as driver suspension 3 [ m 3 V Peak displacement volume of driver diaphragm [ m Vin V VT X (s) m 3 [ Displacement function

x Linear displacement [m xmax Peak linear displacement of driver diaphragm [m 5 Z [ N sec/ m A Z AA Z AB Z 5 [ N sec/ m 5 [ N sec/ m N sec/ m 5 [ ZE [Ω (s) Z VC α η 0 Voice-coil impedance function = C / Efficiency ρ Density of air [ 8 m C AB 3 kg / ] [ kg 3 / m σ x(p) tatic displacement sensitivity of unenclosed driver expressed in meters per watt / [ N / W ω adian frequency variable [ π f ] [ Hz

PC,

3

, a) (),, U D, UL () UP U D U P U L Fig Generalized direct-radiator loudspeaker system 4

U () 0 U = U + U + U 0 D P L () () () P A = U 0 A () () Allison Berkovitz (3) [] A ρ0ω = πc (3) (3),, (4) U0 = U B (4) U B (4) (5) 5

6 +L + + = 3 B B B B U U U U (5) (5) (4), (), b) (6) E E g g E e P + = (6) (6) E 80%

()(6) η(7) ( + ) PA g E η = = U0 A (7) PE eg E (7) U0 e g () ( + ) g B l E D M C U D UB UL U P e Bl g ( ) g + E D C AB AB AL M AP C AP U 0 AP Fig Acoustical analogous circuit of generalized direct-radiator loudspeaker system (), () 7

AT M C e Bl g ( g + E ) D U 0 Fig 3 Acoustical analogous circuit of infinite-baffle loudspeaker system (3) (3) (8) AT B l = + (8) ( + ) g E D (3) (9) U egbl = G( ) (9) sm 0 s ( g + E ) D ( s) = s C s CM M + sc G (0) AT +, s s = jω, (5) (9)(7) () 8

ρ B l η( jω) ω π 0 G( j ) c EDM = () G( jω) (0) G(s) G( jω) () () G( jω) G( jω), (9) () G( jω) G( jω) () (3) (), 9

3, a), (Bl ), E D, C M, M M M, () 4 Table Four basic parameters used by Thiele Parameter Description Unit f esonance frequency of unenclosed driver Hz V Volume of air having same acoustic compliance as driver suspension Liter M of driver at resistance only f considering driver non-electrical E of driver at f considering electrical resistance E only b) (4) 0

g E e g E CME LCE Fig 4 Electrical equivalent circuit of moving-coil electro-dynamic driver ω = πf T (4) () T = C L = C = ω ME CE M () E ( g = 0 ) () (4) M = ω CMEE = (3) ω C E ω M ω CME E = B l E D = (4) V (5) V ρ 0 c C = (5) c) (4)

(6) VC ( s) = E + E s T st / M + st / M + Z (6) ( ) (6) = s (5) Z VC ( ) Fig 5 Driver voice-coil impedance magnitude d) f (5) dc E r 0, E (Appendix ) r 0 (7) (8)

M f 0 = (7) f r f = r M E (8) 0 V [4][5][6] f CT ECT V (Appendix ) (9) f CTECT = VT f E V (9) 3

4 a) (6) () 4 U D Z UB UA p g Z AB Z AA U 0 Fig 6 implified acoustical analogous circuit corresponding to Fig p p g (0) e Bl g g = (0) ( g + E ) D Z () Z ( s) = AT + sm + () sc ZAB () Z AB ( s) = AB + () sc AB Z AA 4

(6) U () U U A (6) (3) L P ( ) G s U 0 = sm pg = Z AB + Z sm + Z AB Z Z AA (3) b) s,, (4) (Appendix ) T ω C = (4) AT T (0) () (4) (5) ( s ) = s T s T + st G (5) T + c), 5

( ) Minimum Phase,,,, (5) (6) ( s ) = s T 0 s T0 + a st G (6) 0 + (6), 0 T = a T = T (6) (5) G( jω) (7) T 6

Fig 7 Normalized frequency response of infinite baffle loudspeaker system T T (7) = 0 5, = 07 = T (Butterworth) 0 4 0 db, 35dB, 6dB, Butterworth (Half Power Point), 7

5 ) P E (max) ( ( ) P E (max), (7) V Dx max D = (7), b) U D u D s ( ) x (8) D D 8

x D = P σ (8) E x ( P) kxx ( s) P E (), σx( P ) dc (9) C B l σ x = M ( P ) = (9) E k x X ( s ) 0Hz V πρ0c f ED, X ( s ) P σ (8)(6)(9) E x( P ), sc (30) k x X ( s) = sc Z AB + Z AB Z + Z + Z Z AB AA Z AA (30) ( X s ) (30) kx (3) (3) ( s ) = s T + st X (3) T + ( jω) X (8) 9

Fig 8 Normalized displacement of driver mounted on infinite baffle 0

6 a) (8) x D x max (3) P xmax = σx jω ( P ) k x X ( ) max E (3) P E X( jω) max, (7) (9)(3) (33) P f V = E D E πρ0c Vkx X (33) ( jω) max b) (33) (34) P 3 4π ρ c 0 k x X f 4 V D ( jω) max A = (34) (34) k x (35),

P 4π ρ c 3 4 0 A ( IB) = D (35) X f V ( jω) max (33) k x (36) E ( IB) = πρ0c E D (36) P V f X V ( jω) max

( + ) g B l E D M AC C e Bl g ( g + E ) D U 0 C AB AB Fig 9 Acoustical analogous circuit of closed-box loudspeaker system (Impedance analogy) (9) (0) ATC M AC CAT e Bl g ( g + E ) D U 0 Fig 0 implified acoustical analogous circuit of closed-box loudspeaker system (0) )(37) C ( AT C AT C C AB = (37) AB C + C ( ATC )(38) 3

ATC B l = + + (38) AB ( + ) g e D (9) Dot Method (39) () Z E B l Z = (39) A D g E e g E CME LCET Fig implified electrical equivalent circuit of closed-box loudspeaker system () (40),(4),(4) C ME M AC B l D = (40) L CET C B l AT = (4) D EC ( + ) AB B l = (4) D 4

(),(3),(4) T = C M AC (43) = ω C (44) M ME E = ω C (45) E ME E (46) E B l E D = (46) (47) V ρ 0 c C = (47) (37)(43) Appendix(a3),(a5),(a,7) C C AT =α+ (48) f f C T = = α T C ( +) (49) EC E = ( α+) (50) 5

6 ( ) + + = TC C C C st T s T s s G (5) ( ) + + = TC C C st T s s X (5) ( ) + + + = MC C C MC C EC E VC st T s st s Z (53)

3 ( + ) g B l E D M C U D U B U L UP e Bl g ( g + E ) D C AB AB AL M AP U 0 AP Fig Acoustical analogous circuit of vented-box loudspeaker system () (3) AT M C U D U B UL U P p g C AB AL M AP U 0 Fig 3 implified acoustical analogous circuit of vented-box loudspeaker system (3)(54),(55) p AT B l = + (54) e ( + ) Bl g ( g + E ) D E D = g g (55) 7

(4) g E LCEB EL e g E CME LCE CMEP Fig 4 implified electrical equivalent circuit of vented-box loudspeaker system (56), (57) T = C M = C B = ω B AB AP MEP L CEB (56) L = ωbc ABAL = (57) ω C B MEP EL (3) (4) ω = πf - ω, L B (43), (44), (45), (47) (58) B B 4 s ( ) ( TB T ) = 4 3 T B T TBT TB TT TB T s ( T T ) + s + s ( α+ ) T + + T s + G s B T L + B L + L + T (58) (59) 8

X ( s ) s TB + stb L + D s = (59) ( ) D( s) (58) (60) Z VC ( s ) ( s) ( T )( s T + st + ) s M B B L = E + E (60) D' D' D( s) ( s) T M 9

,,,,, 3 3, ( ), (5) (a) Chebychev (=), Butterworth (=0707), Bessel (=0575), Linkwitz-iley (=049), (5) (b) (-6dB/ ), (-db/ ), 3 (-8dB/ ), 4 (-8dB/ ) 3 3 0 0-3 -3-6 -6 Gain(dB) -9 Gain (db) -9 - - -5-8 st Order nd Order 3rd Order 4th Order -5-8 = (Chebychev) =0707 (Butterworth) =0575 (Bessel) =049 (Linkwitz-iley) - 0 0 3 0 4 Frequency (Hz) - 0 0 3 0 4 Frequency (Hz) (a) (b) Fig 5 (a) Crossover network branch from several order, (b) Crossover network branch from several quality factor 30

(-6dB/ ) 4 (-8dB/ ) Chebychev, Butterworth, Bessel, Linkwitz-iley, Legendre, Gaussian, Linear-Phase, -Way (6) 4 Appendix I Z c Vin Z Z Z a b Z ( V ) c V out (6) Fig 6 implified 4 th order filter Vin Za Z Z Z b c = V s (6)(6) I V out I V Z = (6) c s + V out Z c = Vs I Zc = Vs Zc + (6) () 3

Impedance Table elationship between impedance and circle element Lowpass Filter Highpass Filter Element Value Element Value Z Coil jωl jωc Z jωc Coil jωl Z Coil jωl 3 jωc Z jωc Coil jωl 4 3

3 3 3 Thiele-mall Thiele mall Moreno FFT, Hz 00Hz FFT B&K Pulse (Type 3560), (KEYENCE Laser Displacement Meter LC-30) Pulse,, (B&K Power Amplifier Type 7) 3 Tech ound E-8300, (3) (a) FFT Pulse,, (3) (b) (3) (a) mm MDF 3 ( (33)(b) ), 33

Fig 3 Measuring setup (a) Equipment and test speaker picture (b) Block diagram (a) Fig 3 Mounting of loudspeaker and laser displacemeter (b) 34

3 f M (33) ( ) Z (3) = φ Z (3) 3 = 3 φ3 g E e g E CME LCE Z Z 3 Fig 33 implified electrical circuit of loudspeaker at low frequencies g = 0 u e Bl g D = (33) 3 (33) e g / 3 u i D Bl = (34 ) D ud i D Bl - ) f M ( ( 35

Bl ) (34) f (35) (34), M f f = (35) 9 8 7 Magnitude(m/sec/A) 6 5 4 3 0 0 0 40 60 80 00 0 40 60 80 00 Frequency(Hz) Fig 34 Magnitude of diaphragm velocity to driver current ratio frequency response 36

33 T T (34) G = / A ( 3 ) ( (35)) (33) (36) (34) u e g GA Bl D = (36 ) 009 008 007 Magnitude(m/sec/V) 006 005 004 003 00 00 0 0 0 40 60 80 00 0 40 60 80 00 Frequency(Hz) Fig 35 Magnitude of diaphragm velocity to input voltage ratio frequency response 37

34 E E Appendix (37) E M T = (37) M T 35 Bl (33) Bl (38) Bl e g = (38 ) 3 u D (39) Z jωω / M ( ω) = + E E ω ω + jωω / M ( 39 ) / (39) 3 (30) 3 Z = E ( ω ) (30) (30)(38) E / Z ωs T, ( ) M (3) Bl ( (36) ) 38

( ω ) ( ) T ω e Bl = g ud M (3) 30 8 6 4 Magnitude(V/m/sec) 0 8 6 4 0 0 0 40 60 80 00 0 40 60 80 00 Frequency(Hz) Fig 36 Inverse of curve shown in Fig 35 multiplied by ( T M ) Bl is given at resonant frequency by Y value of main cursor 39

36 E (39) (3) E E ( ) E = Z ω (3) (3) (33)(34) (35) Z ( ) e ( ω ) ( ω ) g ω = (33 ) id ( ω ) ( ) T ω e = g E id M (34) E e = i g D ( ω ) ( ) T ω M (35 ) 9 8 7 Magnitude(V/A) 6 5 4 3 0 0 0 40 60 80 00 0 40 60 80 00 Frequency(Hz) Fig 37 Calculation of dc resistance of voice-coil by Y value of main cursor E is given at resonant frequency 40

37 M M, M, CM, V, η 0 E, M, T, Bl M, C M, M M M M ( Bl) ω E = (36) E M M ω M = (37) M C M M = (38) M ω V (3) V = ρ c C (39) 0 M D (30) 4π f V 3 η 0 = (30 ) 3 c E 4

4 3 (8Ω), (3), ( (38) ) (39) mh, 475µF, 8µF (a) (b)

3 3 Thiele-mall (3) Thiele-mall Table 3 General Method vs Proposed Method (Use Laser-Displacemeter) T/ Parameters General Method Proposed Method Unit f 595 595 Hz E 85 853 Ω M 47 476 T 040 039 E 044 043 Bl 0 08 M M 68 68 g M 3 3 kg/s CM 4 0-3 4 0-3 m/n V Liter η 04 04 %, 43

3 (30) (a) (b), (a) (b) Fig 30 Magnitude of element frequency response (a) mh coil (b) 475µF condenser (3) (a), (b), (3) (a) (b) (3) (a) (3) (b) 3~4dB 44

(a) (b) Fig 3 Magnitude of crossover network frequency response (a) nd order low-pass filter (b) nd order high-pass filter (a) (b) Fig 3 Magnitude of crossover network frequency response (a) Inphase summation (b) Out of phase summation 45

46

47

48

49

50

5

[] LL Beranek, Acoustics, Acoustical ociety of America, 993 Edition [] J Ashley and MD wan, Experimental Determination of Low-Frequency Loudspeaker Parameters, Journal of Audio Engineering ociety, vol7, pp55-53 (969) [3] Jorge N Moreno, Measurement of Loudspeaker Parameters Using a Laser Velocity Transducer and Two-Channel FFT Analyser, Journal of Audio Engineering ociety, vol39, pp43-49 (99) [4] Vance Dickason, The Loudspeaker Design Cookbook, Audio Amateur Press, 6 th Edition [5] Joseph D Appolito, Testing Loudspeakers, Audio Amateur Press, st Edition [6] ay Alden, Advanced peaker Designs for the Hobbyist and Technician, Prompt Publications, st Edition [7],, Enclosure Design Institute, 999 Edition [8] H mall, Direct-adiator Loudspeaker ystem Analysis, Journal of Audio Engineering ociety, vol0, no5, pp383-395 (June 97) [9] H mall, Closed-Box Loudspeaker ystems-part I : Analysis, An anthology of articles on loudspeakers from the pages of the Journal of the Audio Engineering ociety, vol-5, pp85-95 (953-977), nd Edition [0] H mall, Vented-Box Loudspeaker ystems-part I : mall-ignal Analysis, An anthology of articles on loudspeakers from the pages of the Journal of the Audio Engineering ociety, vol-5, pp36-35 (953-977), nd Edition [] H mall, Vented-Box Loudspeaker ystems-part II : Large-ignal Analysis, An anthology of articles on loudspeakers from the pages of the Journal of the Audio Engineering ociety, vol-5, pp36-33 (953-977), nd Edition 5

[] F Allison and Berkovitz, The ound Field in Home Listening ooms, Presented at the 39 th Convention of the Audio engineering ociety, Oct 970, Preprint 779 53

Abstract With the use of PC software, the calculation task is eliminated, and it is much easier to accomplish what-if situations And it can quickly perform some very powerful calculations to place drivers in a enclosure of the correct size to meet specific design goals Proposed speaker design program executes many additional sophisticated computations For example, speaker design can calculates frequency response of the closed box system and port box system And also calculates the frequency response of the crossover network type 54

APPENDIX A A (3) (4) (a) M = E (a) E E dc (a) ( (5) ) + E E r = = + E M 0 (a) E (a) (a) (a3) = r M E (a3) 0 ( = 0 ) (a4) g + M T E = M E = (a4) M r 0 (a4) (6) (a5) Z r + ( st + / st ) ( st + / st ) 0 M VC( s) = E (a5) + M 55

Z VC ( jω) M M ( ω/ ω ω / ω) ( ω/ ω ω / ω) r0 + = E (a6) + ω ω = ω ( ω < ω ) (a6) (a7) ( j ) ( ) = ZVC jω = r E ZVC ω (a7) VC ( jω ) r Z =, E M M [( ω ω / ω )] [( ω ω / ω )] r0 + = E (a8) + M ω = ω r r 0 ω r (a9) r = r 0 (a9)(a0) M f 0 = (a0) f r f f f r = 0, r r 0 E f f 56

57 (a) f f f = (a) (a) Hz (a)

A V T, C AB (a), C AB = VT / ρ0c (a) M C, (a3) T = / ω = M C ( a3) (a3) (a4) C AB T CT = C C AB / ω CT = M ACT ( a4) CAB + C M ACT ω ω CT M C + C = M ACT AB (a5) (4) ( B ) = M / l (a6) E ω E D ( B ) = M / l (a7) ECT ω CT E ACT D 58

59 ECT E CT ACT M M ω ω = (a8) (a5) (a8) E ECT CT AB C C ω ω = + (a9) (5) (a) T AB V V C C = (a0) = E ECT CT T V V ω ω (a) = E ECT CT T f f V V (a) ( f E ) MCT AB C

ω (a3) c ω c = T C = C AT M AC = C MEC L CET (a3) MC f C (a4) = ω C (a4) MC C MEC EC EC f C (a5) ) ( E = ω C (a5) EC C MEC E TCO f C (a6) ( = 0 g ) TCO EC MC = (a6) EC + MC α (a7) C C α = (a7) AB 60

4 4 (a) Z Z 3 Vin(V ) Z Z 4 Fig a implified 4 th order filter (a) Thevenin (a)(a) Z 3 Z 3 Vin ( A) Z Vin Z Z Z 4 ( A) Z Z Z Z + Z Z4 (a) (b) (a) (b) (a) (a) Circuit of applied the Thevenin s theory Z Z Z + Z (b) Unite the parallel element = Za (a3)(a), Norton 6

Z Z a 3 Z a + Z 3 Vin Z a ( V ) Z Z4 Vin Za( V ) Z Z4 (a) (b) (a3) (a) Circuit of applied the Norton s theory (b) Unite the series element (a3) (b) Z + Z 3 = Z, Thevenin a (a4)(a) b Vin Z a ( A) Z Z b Z b Z 4 VinZ a ( A) Z Z b Zb Z 4 Z + Z b 4 (a) (b) (a4) (a) Circuit of applied the Thevenin s theory (b) Unite the parallel element Z Z (a4) (b) b b Z4 + Z 4 = Z c (6) 6