99(6)-20(129).fm

Similar documents
82-01.fm

10(3)-10.fm

14.531~539(08-037).fm

16(1)-3(국문)(p.40-45).fm

10(3)-02.fm

< DC1A4C3A5B5BFC7E22E666D>

untitled

605.fm

9(3)-4(p ).fm

10(3)-12.fm

DBPIA-NURIMEDIA

12.077~081(A12_이종국).fm

50(5)-07.fm

(2)-02(최경자).fm

10(3)-09.fm

304.fm

82.fm

49(6)-06.fm

12(2)-04.fm

19(1) 02.fm

16(2)-7(p ).fm

69-1(p.1-27).fm

14.fm

12(3) 10.fm

416.fm

50(1)-09.fm

fm

<30332DB9E8B0E6BCAE2E666D>

8(3)-01.fm

Microsoft Word - KSR2012A038.doc

17.393~400(11-033).fm

10(1)-08.fm

15.101~109(174-하천방재).fm

03이경미(237~248)ok

31(3B)-07(7055).fm

11(5)-12(09-10)p fm

14(4) 09.fm

14(4)-14(심고문2).fm

10.063~070(B04_윤성식).fm

16(5)-06(58).fm

13(3)-02(한심희).fm

untitled

7(4)-07.fm

07.051~058(345).fm

27(5A)-07(5806).fm

<30312DC0CCC7E2B9FC2E666D>

<312D303128C1B6BAB4BFC1292E666D>

14(2)-05(한상섭).fm

32(4B)-04(7455).fm

41(6)-09(김창일).fm

26(3D)-17.fm

01.01~08(유왕진).fm

09È«¼®¿µ 5~152s

歯5-2-13(전미희외).PDF

18(3)-10(33).fm

DBPIA-NURIMEDIA

슬라이드 제목 없음

인문사회과학기술융합학회

12(4) 10.fm

202.fm

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

50(6)-03.fm

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

DBPIA-NURIMEDIA

012임수진

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

(163번 이희수).fm

11(2)-03(김수옥).fm

fm

8(2)-4(p ).fm

1..

07.045~051(D04_신상욱).fm

3.fm

untitled

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

14(2) 02.fm

γ

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

14(4)-09(임주훈).fm

11(1)-15.fm

82-02.fm

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

DBPIA-NURIMEDIA

15(1)-05(김진희1).fm


,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

04김호걸(39~50)ok

18211.fm


14(4)-06(이희재).fm

51(2)-09.fm

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

레이아웃 1

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

09구자용(489~500)

25(6)-12(조윤아).fm

83.fm

Transcription:

Jour. Korean For. Soc. Vol. 99, No. 6, pp. 922~928 (2010) JOURNAL OF KOREAN FOREST SOCIETY ye ƒ ù xÿ Ÿw» e w wá Á½ Á½ w Effect of Calcium Chloride(CaCl 2 ) on Chlorophyll Fluorescence Image and Photosynthetic Apparatus in the Leaves of Prunus sargentii Joo Han Sung, Sun Mi Je, Sun-Hee Kim and Young-Kul Kim Department of Forest Conservation, Korea Forest Research Institute, Seoul 130-712, Korea : š ye (CaCl 2 ) ù (P. sargentii) ƒ e w w» w, ye ƒ 2z z xÿ Ÿ -Ÿw Ÿw», w. 3 ù ye 0.5%(9 mm), 1.0%(18 mm), 3.0%(54 mm) 2(1 L)z w. ye, ye ƒ w ye w a/b, Ÿw,, y w. Ÿ ye ƒ ƒ. Ÿw, y, Ÿ Ÿ ùkû (p<0.05). wr, xÿ(f M ) xÿ(f 0 ) Fv xÿ mw w ƒ y w ùkù, Ÿ y (Fv ) Ÿyw (NPQ) 80 w w. ye w ù Ÿw, y» š. Abstract: There is a little information on the effect of calcium cloride (CaCl 2 ) which is used as deicing salt in Korea on the physiological responses of the street trees. Prunus sargentii is one of the most widespread tree species of street vegetation in Korea. In this study, the effect of CaCl 2 on photosynthetic apparatus such as chlorophyll fluorescence image and light response curve of P. sargentii in relation to their leaf and root collar growth responses were investigated. To study the effect of CaCl 2 treatment in the early spring, we irrigated twice in rhizosphere of P. sargentii (3-year-old) planted plastic pots with solution of 0.5%, 1.0%, 3.0% CaCl 2 concentration before leaf expansion. Results after treatments, total chlorophyll contents and the chlorophyll a/b, photosynthetic rate, quantum yield, dark respiration decreased with increasing CaCl 2 concentration. On the contrary, light compensation point increased with increasing CaCl 2 concentration. Through the linear regressions of correlation of photosynthetic rate with photosynthetic parameters (quantum yield, dark respiration and light compensation point), we found a significant relationship (p<0.05) between photosynthetic rate and quantum yield and light compensation point except dark respiration. Calcium cloride (CaCl 2 ) induced inhibition of photochemical efficiency (F V ) and non-photochemical quenching (NPQ) were found in treatments of CaCl 2, and these reduction rates between control and CaCl 2 treatments were drastically showed at 80 days. We suggest that physiological activities are limited from treatment of CaCl 2. These reductions of photosynthetic apparatus ability caused eventually the reduction of leaf and diameter at root collar growth. Key words : Prunus sargentii, Calcium chloride, photosynthetic rate, dark respiration, chlorophyll contents, Fluorescence image *Corresponding author E-mail: jhs033@forest.go.kr 922

ye ƒ ù xÿ Ÿw» e w 923 ƒ, w m» w y w» p w ƒ v w. p, s w w w. y yw NaCl, KCl, K 2 SO 2, Na 2 SO 4, MgCl (Jonsson and Magnusdottir, 2007; Goodrich et al., 2009). ù CaCl 2 ( ye ) wš ( m, 2003). š p e w ƒ w, m sl ww ù(greenway and Munns, 1980; Hagemann and Murata, 2003), w w vw s ù vw y w (Wang et al., 2008). w» w w CO 2 š w Ÿw v. 1 yw œ sü w ƒ kƒ k k» w Ÿ w. Ÿ xÿ xk, xÿ w Ÿ» Ÿw» p w w t w. xÿ w vw w w NaCl w. (F V ) ù Ÿyw (NPQ, non-photochemical quenching) xÿ w NaCl w ü w w ü j yƒ w (F V ) w ù Ÿyw (NPQ)ƒ ƒw š šw (Lu et al., 2002; Maricle et al., 2007). ù ù y w sw. üw w ù wš p ƒ, v y wš ƒ v œ ù ƒ w w ( ƒ l, 2009). 2008 ƒ xy 4,527 ù, wù, v k, pù ƒ 75% w, ù 1.079 ƒ 30% w (, 2009). ƒ ù ye w szwš CO 2, š w Ÿw» y xÿ mw š wš y mw «ye ù y wš w. 1. œ ye (CaCl 2 )» y w w» w w ( p z» 57) ƒ e(4 m 4 m) w 3 ù šƒ w, ye 0.5%, 1.0%, 3.0% ƒ 3 w ew. ye CaCl 2 H 2 Oƒ 74% t z ƒ f. ye» œ y 3 29 w. x» 2007 3 29 l 6 17 ¾ 80 ƒ vw y l w. x» 3, 4, 5, 6 s³ ƒƒ 6.1, 11.4, 18.1, 23.2 o C, 59.7, 52.9, 62.1, 60.9% ùkû (», 2009). ye w œ ye w ƒ ww w z, ù» 2007 3 29 500 ml 1 wš z 2 w. ye z, k» w y e j w 300 ml w w, x» w w. 2. Ÿw» d 1) w ƒƒ ye w š l w e ƒ ƒ 4~5 y w w z, r 0.1 g 10 ml DMSO(Dimethyl Sulfoxide) 65 o C» 6 30 w z, ŸŸ (UV/Visible Diode Array, Walden Precision Apparatus Ltd., UK) w q 663 nm 645 nm d w Arnon(1949) (Chlorophyll a=12.7 A 663-2.69 A 645, Chloyophyll b=22.9 A 645-4.68 A 663, Total Chlorophyll = Chlorophyll a + Chlorophyll b) w. 3. ƒ y d Ÿw (Net photosynthesis rate) { Ÿ w d»(licor-6400, Li-cor Inc., USA) w

924 ªƒžª 99«6y (2010) d w w w e d w. Ÿ š red-blue LED w PPFD(photosynthetic photon flux density) 0, 30, 50, 100, 300, 700, 1000, 1500, 2000 µmol photons m 2 s Ÿ ƒ œ û œ w. chamber œ» 500 mol s, chamber 25 o C, CO 2 400 µmol mol 60-70% w. Ÿw (φ) PPFD 100 µmol m 2 s w Ÿ Ÿw z w w, z y = a + bx x r Ÿ, Ÿ ƒ 0, z y r a y w (½q», 2001; Timm et al., 2002; Muraoka et al., 2003). z Ÿw / (Ashraf et al., 2002) PPFD 1000 µmol m 2 s Ÿ w. 4. xÿ d xÿ œ z, 690 nm ƒ¾ xÿ CCD(Charge-Coupled Device) e xÿ d w Portable HandyCam(FluorCam, Photon System Instruments Ltd., Brno, Czech Republic) w y w. t 7 cm d w w. 15 z FluorCam vp quenching analysis d w v mg lv w (10 s pulses intensity 0.003 µmol m 2 s ) û Ÿ d F 0, z, actinic saturating light( 2000 µmol photons m 2 s ) d š xÿ F M d w. xÿ F 0 Ÿ II a ƒ z ƒ w» ù xÿ w, xÿ F M F 0 F V (=F M -F 0 ) š w. F V Ÿ II y ùkü t, sz ùkü. xÿ Ÿyw (nonphotochemical quenching, NPQ) (F M ')-1 w (Lawson et al., 2008). 5. sp ü m l 1 cm t w x» x» 80 d w w. (( x )-( x» )/( x )) 100 w. 6. m ü Ÿw» ( w, a bw, a/b, Ÿw,, y, Ÿ, F V, NPQ) w ye GLM(General Linear Model) w w š, Duncan multiple range test mw p<0.05 s³ w. w ye Ÿ w, y, Ÿ Pearson mw wš, ƒ z ww. m SAS 9.1 v w. š 1. w ye z 80 w ye ƒ w (Chl. T), a (Chl. a) b (Chl. b)w w. w ye 0.5% 1.0% ƒƒ w 62%, 85% w (Table 1). 3.0% ù. w ye a s b s w j ùkû» a/b w 0.5% 32%, 1.0% 55% w. w w y yƒ w ù kú, p w t (, 2007; Abreu and Munné-Bosch, 2008; Zhang et al., 2008). 2. Ÿw» ye 40 80 Ÿ y Ÿ w y r Ÿ ƒ ƒw Ÿw ƒw w ƒ, 40, 0.5%, 1.0%, 3.0% Ÿ w ƒ û. 80 3.0% š w š, w Ÿw ƒ x w û ùkû (Figure 1). Ÿ š mw Ÿw» w Table 1. Change of Chlorophyll contents and Chlorophyll a/ b ratio at 80 days after CaCl 2 concentration treatments in the leaves of P. sargentii. unit: mg g F.W Treatment Chl.a Chl.b Chl.T Chl.a : Chl.b Control 1.31±0.16a 0.58±0.08a 1.89±0.24a 2.26±0.04a 0.5% 0.43±0.15b 0.29±0.08b 0.72±0.21b 1.53±0.39b 1.0% 0.14±0.06c 0.14±0.01c 0.29±0.05c 1.02±0.49b 3.0% - - - -

ye ƒ ù xÿ Ÿw» e w 925 Figure 1. The light response curve of net photosynthetic rate in the leaves of P. sargentii at 40 days(a) and 80 days(b) after treatment of different CaCl 2 concentration. Table 2. Photosynthetic apparatuses in the leaves of P. sargentii at 40 and 80 days after treatment with different CaCl 2 concentration. Treatment Φ µmol ) D resp m 2 s ) P n m 2 s ) L comp (µmolm 2 s ) 40days 80days 40days 80days 40days 80days 40days 80days Control 1.68±0.17a 1.26±0.44a 0.89±0.16a 0.92±0.41a 6.28±0.96a 4.54±1.93a 1.46±0.10bc 1.38±0.28b 0.5% 0.74±0.17b 0.83±0.38ab 0.84±0.19a 1.21±0.26a 2.32±0.67b 1.88±0.72b 1.36±0.33c 2.13±0.14a 1.0% 0.54±0.15bc 0.35±0.07b 0.86±0.06a 0.20±0.06b 1.53±0.56b 1.40±0.47b 1.86±0.37b 2.31±0.13a 3.0% 0.28±0.13c - 0.90±0.47a - 0.34±0.18c - 3.43±0.10a - *Φ: Quantum yield, D resp : Dark respiration, Pn : photosynthetic rate at PPFD 1000 µmolm 2 s, L comp : Light compensation point (Table 2), Ÿ w yk ùkü (Φ, quantum yeild) 40 w 0.5% 56% ùkþ, 1.0% 40 80 w 68%, 75% ƒw. Ÿw w» w w ye w ùkü ye w syÿ w 1000 µmol m 2 s Ÿw. y (Dresp, dark respiration) j ùkù 80 1.0%. y s v» w v w k, y š ATP œ w w», y k 30~80% y w CO 2 ƒ (Amthor, 2000). p y y w (Poorter et al., 1990). p w y y ù kú (Galmés et al., 2007; Gratani et al., 2008), y Ÿw w (Cannell and Thornley, 2000), 80 1.0% y w û Ÿw Ÿw y k ƒ. Ÿ CO 2 w Ÿ, Ÿ û j û Ÿ l CO 2 w w. Ÿ 40 3.0% ƒ, p 80 w 0.5% 54% ƒ ùkþ. w ù ƒ û ye j q. 3. xÿ xÿ xÿ d w, vwƒ w w q. 15 z xÿ (F ) M xÿ (F 0 ) w Figure 2 xÿ mw ù ye û xÿ t.

926 ªƒžª 99«6y (2010) 40 80 Ÿ II y (F V ) yƒ 80 0.5%. Figure 2. The represent fluorescence image in the leaves of P. sargentii at 40 and 80 days after CaCl 2 treatment. Above fluorescence image's fluorescence values are F M -F 0. 1.0% 30% Ÿ II y (F V ) w (Figure 3). F V Ÿ II y ùkü, z p w t. NaCl w ü w š F V w (Glynn et al., 2003), F V w š w (Maricle et al., 2007). wr Ÿyw w NPQ(non-photochemical quenching) ƒ ü, p w, (NaCl) w NPQ ƒ NaCl w ùkù, ü NPQ ƒ ƒw (Masojidek et al., 2000; James et al., 2002). ù 40 j yƒ ù 80 ƒ ƒw NPQ ƒ 0.5% 39%, 1.0% 68% w w (Figure 3). w ù ƒ û ye l vw. 4. ye x 80 d z w, w Ÿw xÿ š, Ÿw» n w š Figure 3. The maximum F V (F M -F 0 ) and amount of NPQ (none-photochemical quenching) in the leaves of P. sargentii 80 days after CaCl 2 treatment was measured following 15 min of dark adaptation. Three replicates are given for each species/treatment combination. Bars indicate standard deviation (SD). Figure 4. Growth rate of diameter at root collar in the P. sargentii at the last day of experiment compare of initial value. Bars indicate standard deviation (SD). Table 3. Correlations of photosynthetic rate with photosynthetic parameters in the leaves of P. sargentii at 40 and 80 days after treatment with different CaCl 2 concentration. Division Φ µmol ) D resp m 2 s ) L comp (µmolm 2 s ) equation r 2 P-value equation r 2 P-value equation r 2 P-value 40days y=0.2351x+0.1935 0.9914 <0.0001 y=0.0018x+0.8734 0.0004 0.9413 y=-0.222x+2.6655 0.456 0.0058 80days y=0.2356x+0.1211 0.8338 0.0039 y=0.0554x+0.6979 0.0421 0.6222 y=-0.2522x+2.5752 0.7627 0.0105 Φ: Quantum yield, D resp : Dark respiration, L comp : Light compensation point

ye ƒ ù xÿ Ÿw» e w 927 ye w. w 0.5%, 1.0%, 3.0% ƒƒ 45%, 49%, 89%ƒ w ùkû (Figure 4). ye ƒ szwš CO 2 š w Ÿw» vw w w e q. ye w w sl w ³x y w p w y ƒ vwƒ ùkú. ù ye w Ÿw xÿ p ye 40 (Φ) Ÿw ƒ ù kû ù, F V NPQ yƒ. 80 3.0% š w, 0.5% l w a/b ƒ ùkû. w, ye (Φ) syÿ Ÿw š Ÿ ƒ mw ù ƒ s zwš CO 2 š w w. xÿ mw F V NPQ 80 ƒ 0.5% l ƒƒ 30% ùkþ. w szwš w CO 2 š wš w Ÿw ƒ ye w vw. ye ƒ ù y w ye ƒ v w. x 1. ƒ l. 2009.. http://www. nature.go.kr 2.». 2009.». pp. 306. 3. m. 2003. w. pp. 74. 4.. 2009. ƒ Á. pp. 16. 5. ½q»,,,, w,. 2001. Ÿy ü Ÿw e w. w wz 90(4): 476-487. 6.,,. 2007. ƒ»œ y, w w y z y. w wz 96(4): 470-476. 7. Abreu, M.E. and Munné-Bosch, S. 2008. Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: A case study in field-grown Salvia officinalis L. plants. Environmental and Experimental Botany 64(2): 105-112. 8. Amthor, J.S. 2000. The McCree-de Wit-Penning de Vries- Thornley Respiration Paradigms: 30 Years Later. Annals of Botany 82: 1-20. 9. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts, polyphenol-oxidase in Betula vulgaris. Plant Physiology 24: 1-15. 10. Ashraf, M., Arfan, M., Shahbaz, M., Ahmad, M. and Jamil, A. 2002. Gas exchange characteristics and water relation in some elite skra cultivars under water deficit. Photosynthetica 40(4): 615-620. 11. Cannell, M.G.R., Thornley, J.H.M. 2000. Modelling the components of plant respiration: Some guiding principles. Annals of Botany 85: 45-54. 12. Galmés, J., Ribas-Carbó, M., Medrano, H. and Flexas, J. 2007. Response of leaf respiration to water stress in Mediterranean species with different growth forms. Journal of Arid Environments 68: 206-222. 13. Glynn, C.P., Gillia, A.F. and Oxenham, G. 2003. Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence. Journal of Arboriculture 29(2): 61-65. 14. Gratani, L., Varone, L. and Catoni, R. 2008. Relationship between net photosynthesis and leaf respiration in Mediterranean evergreen species. Photosynthetica 46(4): 567-573. 15. Goodrich, B.A., Koski, R.D. and Jacobi, W.R. 2009. Condition of soils and vegetation along roads treated with magnesium chloride for dust suppression. Water, Air, Soil Pollution 198: 165-188. 15. Greenway, H. and Munns, R. 1980. Mechanisms of salt tolerance in non-halophytes. Annual Review Plant Physiology 31: 149-190. 16. Hagemann, M. and Murata., N. 2003. Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiology 131: 1628-1637. 17. James, A.R. 2002. Factors affecting CO 2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional plant biology 29(12): 1393-1403. 18. Jonsson, T.H. and Magnusdottir, M.L. 2007. Salt-related suppression of bud break in Populus trichocarpa: Cost of inclusion, ion-specific or osmotic effects? Icelandic Agricultural Sciences 20: 35-47. 19. Lawson, T., Lefebvre, S., Baker, N.R., Morison, J.I.L. and Baines, C.A. 2008. Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO 2. Journal of Experimental Botany 59(13): 3609-3619. 20. Lu, C.M., Qiu, N.W., Lu, Q.T., Wang, B.S. and Kuang, T.Y. 2002. Dose salt stress lead to increased susceptibility of photosystem to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Science 163: 1063-1068.

928 ªƒžª 99«6y (2010) 21. Maricle, B.R., Lee, R.W., Hellquist, C.E. Kirasts, O. and Edwards, G.E. 2007. Effects of salinity on chlorophyll fluorescence and CO 2 fixation in C4 estuarine grasses. Photosynthetica 45(3): 433-440. 22. Masojidek, J., Torzillo, G., Kopecký, J., Koblžek, M., Nidiaci, L., Komenda, J., Lukavska, A. and Sacchi, A. 2000. Change in chlorophyll fluorescence quenching and pigment composition in the green Chlorococcum sp. Grown under nitrogen deficiency and salinity stress. Journal of Applied Phycology 12: 417-426. 23. Muraoka, H., Koizumi, H. and Pearcy, R.W. 2003. Leaf display and photosynthesis of tree seedlings in a cool temperate deciduous broad leaf forest understory. Oecologia 135: 500-509. 24. Poorter, H., Remkes, C. and Lambers, H. 1990. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant physiology 94: 621-627. 25. Timm, H.C., Stegemann, J. and Küppers, M. 2002. Photosynthetic induction strongly affects the light conpensation point of net photosynthesis and coincidentally the apparent quantum yield. Trees 16: 47-62. 24. Wang, R., Chen, S., Zhou, X., Shen, X., Deng, L., Zhu, H., Shao, J., Shi, Y., Dai, S., Fritz, E., Hüttermann, A., and Polle, A. 2008. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree physiology 28: 947-957. 26. Zhang, X., Wollenweber, B., Jiang, D., Liu, F. and Zhao, J. 2008. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bzip transcription factor. Journal of Experimental Botany 59(4): 839-848. (2010 9 26 ; 2010 11 15 k)