ๆญฏ86๋ฐ•์ถ˜๊ฒฝ.PDF

Similar documents
์œ ํ•ด์ค‘๊ธˆ์†์•ˆ์ •๋™์œ„์›์†Œ์˜ ๋ถ„์„์ •๋ฐ€ / ์ •ํ™•๋„ํ–ฅ์ƒ์—ฐ๊ตฌ (I) ํ™˜๊ฒฝ๊ธฐ๋ฐ˜์—ฐ๊ตฌ๋ถ€ํ™˜๊ฒฝ์ธก์ •๋ถ„์„์„ผํ„ฐ,,,,,,,, 2012

ๆญฏTrap๊ด€๋ จ.PDF

<31325FB1E8B0E6BCBA2E687770>

16-๊ธฐ06 ํ™˜๊ฒฝํ•˜์ค‘237~246p

12(4) 10.fm

DBPIA-NURIMEDIA

์Šฌ๋ผ์ด๋“œ 1

14.531~539(08-037).fm

ePapyrus PDF Document

์ธ๋ฌธ์‚ฌํšŒ๊ณผํ•™๊ธฐ์ˆ ์œตํ•ฉํ•™ํšŒ

ๆญฏ49์†์šฑ.PDF

<31372DB9DABAB4C8A32E687770>

DBPIA-NURIMEDIA

012์ž„์ˆ˜์ง„

(2) : :, ฮฑ. ฮฑ (3)., (3). ฮฑ ฮฑ (4) (4). (3). (1) (2) Antoine. (5) (6) 80, ฮฑ =181.08kPa, =47.38kPa.. Figure 1.

์ €์ž‘์žํ‘œ์‹œ - ๋น„์˜๋ฆฌ - ๋ณ€๊ฒฝ๊ธˆ์ง€ 2.0 ๋Œ€ํ•œ๋ฏผ๊ตญ ์ด์šฉ์ž๋Š”์•„๋ž˜์˜์กฐ๊ฑด์„๋”ฐ๋ฅด๋Š”๊ฒฝ์šฐ์—ํ•œํ•˜์—ฌ์ž์œ ๋กญ๊ฒŒ ์ด์ €์ž‘๋ฌผ์„๋ณต์ œ, ๋ฐฐํฌ, ์ „์†ก, ์ „์‹œ, ๊ณต์—ฐ๋ฐ๋ฐฉ์†กํ• ์ˆ˜์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ๊ณผ๊ฐ™์€์กฐ๊ฑด์„๋”ฐ๋ผ์•ผํ•ฉ๋‹ˆ๋‹ค : ์ €์ž‘์žํ‘œ์‹œ. ๊ท€ํ•˜๋Š”์›์ €์ž‘์ž๋ฅผํ‘œ์‹œํ•˜์—ฌ์•ผํ•ฉ๋‹ˆ๋‹ค. ๋น„์˜๋ฆฌ. ๊ท€ํ•˜๋Š”์ด์ €์ž‘๋ฌผ์„์˜๋ฆฌ๋ชฉ์ ์œผ๋กœ์ด์šฉํ• 

ๆญฏ522๋ฐ•๋ณ‘ํ˜ธ.PDF

ๆญฏ์ „์šฉ]

???? 1

์Šฌ๋ผ์ด๋“œ ์ œ๋ชฉ ์—†์Œ

< C6AFC1FD28C3E0B1B8292E687770>

Coriolis.hwp

82-01.fm

DBPIA-NURIMEDIA

10(3)-10.fm

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

DBPIA-NURIMEDIA

hwp

ePapyrus PDF Document

Microsoft PowerPoint - HydL_Ch4_Losses [ํ˜ธํ™˜ ๋ชจ๋“œ]

ๆญฏ174๊ตฌ๊ฒฝํšŒ.PDF

๋ณธ๋ฌธ.PDF

ร†รทร€รฅยฝรƒยผยณ94ลก

DBPIA-NURIMEDIA

์ €์ž‘์žํ‘œ์‹œ - ๋น„์˜๋ฆฌ - ๋ณ€๊ฒฝ๊ธˆ์ง€ 2.0 ๋Œ€ํ•œ๋ฏผ๊ตญ ์ด์šฉ์ž๋Š”์•„๋ž˜์˜์กฐ๊ฑด์„๋”ฐ๋ฅด๋Š”๊ฒฝ์šฐ์—ํ•œํ•˜์—ฌ์ž์œ ๋กญ๊ฒŒ ์ด์ €์ž‘๋ฌผ์„๋ณต์ œ, ๋ฐฐํฌ, ์ „์†ก, ์ „์‹œ, ๊ณต์—ฐ๋ฐ๋ฐฉ์†กํ• ์ˆ˜์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ๊ณผ๊ฐ™์€์กฐ๊ฑด์„๋”ฐ๋ผ์•ผํ•ฉ๋‹ˆ๋‹ค : ์ €์ž‘์žํ‘œ์‹œ. ๊ท€ํ•˜๋Š”์›์ €์ž‘์ž๋ฅผํ‘œ์‹œํ•˜์—ฌ์•ผํ•ฉ๋‹ˆ๋‹ค. ๋น„์˜๋ฆฌ. ๊ท€ํ•˜๋Š”์ด์ €์ž‘๋ฌผ์„์˜๋ฆฌ๋ชฉ์ ์œผ๋กœ์ด์šฉํ• 

< C6AFC1FD28B1C7C7F5C1DF292E687770>

๊ด‘๋•์‚ฐ ๋ ˆ์ด๋” ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•œ ๊ฐ•์›์ค‘๋ถ๋ถ€ ๋‚ด๋ฅ™์ง€๋ฐฉ์˜ ๊ฐ•์ˆ˜ํŠน์„ฑ ์—ฐ๊ตฌ

KAERI/TR-2128/2002 : SMART ์ œ์–ด๋ด‰๊ตฌ๋™์žฅ์น˜ ๊ธฐ๋ณธ์„ค๊ณ„ ๋ณด๊ณ ์„œ

ํ•™์Šต์˜์—ญ์˜ Taxonomy์— ๊ธฐ์ดˆํ•œ CD-ROM Title์˜ ํšจ๊ณผ๋ถ„์„

ยฐรญยผยฎรร– รƒรขยทร‚

์ „์šฉ]

untitled


ๆญฏ5-2-13(์ „๋ฏธํฌ์™ธ).PDF

Product A4

KAERI/RR-2245/2001 : ์›์ „ ์ฃผ๊ธฐ์  ์•ˆ์ „์„ฑ ํ‰๊ฐ€๊ธฐ์ˆ  ๊ฐœ๋ฐœ : ๋ฐฉ์‚ฌ์„  ์•ˆ์ „์„ฑ๋Šฅ ๋ฐ ํ™˜๊ฒฝ๋ฐฉ์‚ฌ์„  ๊ฐ์‹œ๊ธฐ์ˆ  ๊ฐœ๋ฐœ

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re


KAERIAR hwp

02 Reihe bis 750 bar GB-9.03

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ฮต r =4.4)

e hwp

Microsoft Word - KSR2016S168


04-๋‹ค์‹œ_๊ณ ์†์ฒ ๋„61~80p

54 ํ•œ๊ตญ๊ต์œก๋ฌธ์ œ์—ฐ๊ตฌ์ œ 27 ๊ถŒ 2 ํ˜ธ, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

08.hwp

PJTROHMPCJPS.hwp

Microsoft PowerPoint - chapter4-2-web [ํ˜ธํ™˜ ๋ชจ๋“œ]


<C7A5C1F620BEE7BDC4>

แ„‹แ…ฅแ„‚แ…ตแ„‰แ…ณแ„แ…ณแ„‘แ…ฅแ†ซแ„ƒแ…ณ_HF-1แ„’แ…ฉ_แ„แ…ฎแ„Œแ…กแ„‰แ…ฅแ†ฏแ„†แ…งแ†ผแ„‰แ…ฅ_151204(3แ„Žแ…กแ„‰แ…ฎแ„Œแ…ฅแ†ผ)

08์›์žฌํ˜ธ( )

WIDIN - Toolholding Catalogue.pdf

์„œ๋ก  34 2

untitled

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

Vol.258 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

methods.hwp

Microsoft PowerPoint - ch03ysk2012.ppt [ํ˜ธํ™˜ ๋ชจ๋“œ]

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

DBPIA-NURIMEDIA

878 Yu Kim, Dongjae Kim ์ง€๋ง‰ ์šฉ๋Ÿ‰์ˆ˜์ค€๊นŒ์ง€๋„ ๋ฉˆ์ถค ๊ทœ์น™์ด ๋งŒ์กฑ๋˜์ง€ ์•Š์•„ ์‹œํ–‰์ด ์ข…๋ฃŒ๋˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ์—๋Š” MTD์˜ ์ถ”์ •์ด ๋ถˆ๊ฐ€ ๋Šฅํ•˜๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ์ตœ๊ทผ ์ด SM๋ฐฉ๋ฒ•์˜ ๋‹จ์ ์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด O Quigley ๋“ฑ (1990)์ด ์ œ์•ˆํ•œ CRM(Continu

DBPIA-NURIMEDIA

<C7D1B1B9B1A4B0EDC8ABBAB8C7D0BAB85F31302D31C8A35F32C2F75F E687770>


๋‹ฌ์ƒ์‚ฐ์ด ์ดˆ์‚ฐ๋ชจ ๋ถ„๋งŒ์‹œ๊ฐ„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ โ… . ์„œ ๋ก  โ…ก. ์—ฐ๊ตฌ๋Œ€์ƒ ๋ฐ ๋ฐฉ๋ฒ• ้” ์€ 23) ์˜ ไธน ๆบช ์— ์ตœ์ดˆ๋กœ ๊ธฐ ์žฌ๋œ ์ฒ˜๋ฐฉ์œผ๋กœ, ์— ๋ณต์šฉํ•˜๋ฉด ํ•œ ๋‹คํ•˜์—ฌ ๋‚œ์‚ฐ์˜ ์˜ˆ๋ฐฉ๊ณผ ๋ฐ, ๋“ฑ์— ๋„๋ฆฌ ํ™œ์šฉ๋˜์–ด ์™”๋‹ค. ้” ์€ ์ด ๆฏ’ ํ•˜๊ณ  ๋Š” ็”˜ ่‹ฆ ํ•˜์—ฌ ๆฐฃ, ๆฐฃ ๅฏฌ,, ็ต ์˜ ํšจ๋Šฅ์ด ์žˆ

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

Microsoft Word - KSR2012A021.doc

82 ์ œ 1 ๋ฐœํ‘œ์žฅ (2 ์ผ๊ธˆ ) CFD ์‘์šฉ [V] ์ด๋‚จํ›ˆ 1*, ๋ฅ˜ํƒœ๊ด‘ 2 NUMERICAL VERIFICATION OF SHAKE TABLE TEST FOR THE LIQUID STORAGE TANK N. Lee and T. Yoo 1.,.,,,.,. Baek e

44-4๋Œ€์ง€.07์ด์˜ํฌ532~

11ยนรšร‡รฝยทร‰


ๆญฏ1.PDF

<4D F736F F F696E74202D20BED0B7C220B9E6C3E220B9EBBAEA20B9D720BED0B7C220B9E6C3E220B9EBBAEA20BDC3C7E828BBEFBDC520C0CCBFF8C8F12C E342E36292E BC8A3C8AF20B8F0B5E55D>

03 ์žฅํƒœํ—Œ.hwp

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

ํ•œ์•ฝ์žฌํ’ˆ์งˆํ‘œ์ค€ํ™”์—ฐ๊ตฌ์‚ฌ์—…๋‹จ ๋‹จ์‚ผ ( ไธนๅƒ ) Salviae Miltiorrhizae Radix ์ƒ์•ฝ์—ฐ๊ตฌ๊ณผ

03-์„œ์—ฐ์˜ฅ.hwp

ๆญฏAG-MX70Pํ•œ๊ธ€๋งค๋‰ด์–ผ.PDF

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

<31362DB1E8C7FDBFF82DC0FABFB9BBEA20B5B6B8B3BFB5C8ADC0C720B1B8C0FC20B8B6C4C9C6C32E687770>

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

- 2 -

์—๋„ˆ์ง€๊ฒฝ์ œ์—ฐ๊ตฌ Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 ์‹ค๋ฌผ์˜ต์…˜์„์ด์šฉํ•œํ•ด์ƒํ’๋ ฅ์‹ค์ฆ๋‹จ์ง€ ์‚ฌ์—…์˜๊ฒฝ์ œ์„ฑํ‰๊ฐ€ 1

์ €์ž‘์žํ‘œ์‹œ - ๋™์ผ์กฐ๊ฑด๋ณ€๊ฒฝํ—ˆ๋ฝ 2.0 ๋Œ€ํ•œ๋ฏผ๊ตญ ์ด์šฉ์ž๋Š”์•„๋ž˜์˜์กฐ๊ฑด์„๋”ฐ๋ฅด๋Š”๊ฒฝ์šฐ์—ํ•œํ•˜์—ฌ์ž์œ ๋กญ๊ฒŒ ์ด์ €์ž‘๋ฌผ์„๋ณต์ œ, ๋ฐฐํฌ, ์ „์†ก, ์ „์‹œ, ๊ณต์—ฐ๋ฐ๋ฐฉ์†กํ• ์ˆ˜์žˆ์Šต๋‹ˆ๋‹ค. ์ด์ฐจ์ ์ €์ž‘๋ฌผ์„์ž‘์„ฑํ• ์ˆ˜์žˆ์Šต๋‹ˆ๋‹ค. ์ด์ €์ž‘๋ฌผ์„์˜๋ฆฌ๋ชฉ์ ์œผ๋กœ์ด์šฉํ• ์ˆ˜์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ๊ณผ๊ฐ™์€์กฐ๊ฑด์„๋”ฐ๋ผ์•ผํ•ฉ๋‹ˆ๋‹ค : ์ €์ž‘์žํ‘œ์‹œ. ๊ท€ํ•˜๋Š”์›

์„œ๊ฐ•๋Œ€ํ•™๊ต ๊ธฐ์ดˆ๊ณผํ•™์—ฐ๊ตฌ์†Œ๋Œ€ํ•™์ค‘์ ์—ฐ๊ตฌ์†Œ ์‹ฌํฌ์ง€์—„๊ธฐ์ดˆ๊ณผํ•™์—ฐ๊ตฌ์†Œ

???? 1

untitled

Transcription:

200 A Simple Two-Phase Critical Flow Model for Long Pipes,,, 05 flashing, L/D flashing Abstract A simple two-phase critical flow model is developed for estimating flashing flow rates through breaches in vessels or pipeworks The model considers both subcooled and saturated conditions The model has been tested against an extensive set of data from critical flow experiments with water as the test fluid In addition, comparison of the predictions with other theoretical models is made Results show that present model adequately predicts flashing flow rates through long pipes or large L/D geometries flashing, nozzle, slit -, [] Richter [2] general drift flux (GSL) [] space-dependent model, Marviken [3] [] slit [4,5]

,, 2 (,,, ) (G c ) (T o ) [4,5] (G * ) ( T* sub ) : G G * G c ref T T sat o T * sub (2) Tsat Tref, [ 2 ( P P )] G = ( Cd ) ρref o b ref ( C d ) ref ref = + K + f L D 05 ref 05 G ref (C d (P o P b ) T ref = 20 C (discharge coefficient) G* T* sub [4,5]: 52 G * = (5) * + exp[( + 0578) / 088] T sub slit : 05 52 Gc = ( Cd [ 2ρ ( Po Pb )] ref (6) + exp ( T * + 0578) / 088 sub (,, receiving end pressure) (C d 6 : x x G = o + o 3 TP (7) 3 3 G G = 0 x o = x o () (3) (4)

G x, 6 o = 0 = 00 T* sub G : x o = 2 k + 2k P 2 2 o k k G x = = Cdg (8) o k vo k + k C dg 2, (C d C dg K f [4,6,7] (C d 4,, (C d 6 C dg (C d (C d, ( X ) ( σ ) : n X i i= X = n 2 (9) 05 n 2 ( X ) i X σ = 00 % (0) i= n Gexp Gcorr X i = 00 % () Gexp i G exp G corr, n 3 (6 )

, 3 Table 284, 0 ~ 62 MPa, 025 ~ 509 mm, 40 ~ 2,335 mm 6 Table 8 % 0 %,,, (7 ) 267, 30 ~ 00 MPa, 52 mm 762 mm, 76 mm,778 mm (Table 2 ) Table Predictions of the subcooled inlet critical flow data with the Park model Experiment Pressure (MPa) Hydraulic Diameter, D (mm) Flow Length, L (mm) L/D No of Data X (%) Amos et al [6] 4 ~ 62 025 ~ 076 635 > 83 72-44 04 Ardron et al [8] 02 ~ 04 263,05 386 3 85 2 Boivin [9] 20 ~ 0 2 ~ 50 Celata et al [0] 08 ~ 23 46 700 ~ 2,305 46 ~,380 s (%) > 37 2-76 4 > 0 60-32 60 Fincke et al [] 0 ~ 03 828 26 8 92-24 33 Jeandey et al [2] 20 ~ 20 203 363 80 88-24 68 John et al [7] 40 ~ 40 04 ~ 28 460 > 35 57 25 99 Marviken [3] 20 ~ 50 Super Mobydick [3] 30 ~ 00 200, 300, 500 52 55 > 590 > 5 > 730 76 56 > 29 > 7 > 5 46 0 386 0 57 28 28-6 56 Reocreux [4] 02~034 20 2,335 7 39-8 59 Seynhaeve [5] 03 ~ 0 25 54 433 57-20 67 Sozzi et al [6] 62 28 2285-2 32 58 Sozzi et al [6] 57 ~ 70 27 08 ~,778 > 5 49-09 05 Park [4] 05 ~ 20 0 ~ 75 40 ~ 400 > 74-24 58 Remarks Slit Down Flow Down Flow Slit Down Flow Transient Pipe Down Flow Transient, Venturi Transient,,

Fig Table 2 267 % 83 % Table 2 Predictions of the two-phase inlet critical flow data with the Park model Experiment Pressure (MPa) Hydraulic Diameter, D (mm) Flow Length, L (mm) L/D for No of Data X (%) s (%) Remarks Super Mobydick [3] 30 ~ 00 52, 55 Sozzi et al [6] 27 ~ 70 27 76 56 46 0 9 20-04 96 08 ~,778 > 50 228 06 80 Sozzi et al [6] 63 ~ 69 54,2-4 -26 39 Sozzi et al [6] 65 ~ 67 762,076-3 -93 53 Sozzi et al [6] 68 28 2285-3 42 85 Transient, Transient, Venturi Transient, Venturi Transient, Venturi

50000 Calculation (kg/m 2 -s) 40000 30000 20000 0000 0 0 0000 20000 30000 40000 50000 Measurement (kg/m 2 -s) Fig Comparison between the model predictions and the test data in Table 2,,, : () 025 ~ 762 mm, L/D 8, 40 mm, (2) 200 mm L/D 5 32 [7], Table 3,, Table 4 space-dependent model Moody model [8], Henry-Fauske model [9], Homogeneous Equilibrium model (HEM) [], space-dependent model Elias-Chambre model [20], Richter model [2], general drift flux (GSL) model [] Table 3 Selected subcooled inlet critical flow data for the analytic models Experiment Hydraulic Flow Pressure No of Diameter, Length, L/D (MPa) Data D (mm) L (mm) Remarks

Ardron et al [8] 02 ~ 04 263,05 386 3 Boivin - [9] 20 ~ 0 2 700 583 0 Boivin 2 [9] 20 ~ 0 30 2,305 768 6 Boivin 3 [9] 20 ~ 0 50 2240 448 5 Fincke et al [] 0 ~ 03 828 26 8 92 Jeandey et al [2] 20 ~ 20 203 363 80 5 Jeandey et al- 2 [2] 20 ~ 20 203 363 80 73 Reocreux [4] 02 ~ 034 20 2,335 7 28 Seynhaeve [5] 03 ~ 0 25 54 433 26 Seynhaeve 2 [5] 03 ~ 0 25 54 433 3 Rounded Entrance + Diffuser Rounded Entrance + Diffuser Rounded Entrance + Diffuser + Diffuser Nozzle + Nozzle + + Diffuser + Diffuser + space-dependent model Tables 3 4 Table 5 Fig 2 Elias et al [] space-dependent model Richter model GSL model Richter model [2], GSL model [] Table 4 Fig 3 4 (Space-dependent model Elias et al [] ) space-dependent model GSL model [], Table 4 Selected critical flow data for model comparison Hydraulic Flow Pressure No of Experiment Diameter, Length, L/D (MPa) Data D (mm) L (mm) Sozzi et al [6] 57 ~ 69 27 08 85 23 Remarks

Sozzi et al [6] 58 ~ 68 27 59 24 5 Sozzi et al [6] 63 ~ 69 27 235 85 2 Sozzi et al [6] 60 ~ 70 27 273 25 22 Sozzi et al [6] 57 ~ 68 27 362 285 9 Sozzi et al [6] 60 ~ 68 27 553 435 3 Sozzi et al [6] 64 ~ 69 27 679 535 96 Sozzi et al [6] 6 ~ 69 27,823 435 8 Sozzi et al [6] 60 ~ 69 27 95 89 23 Sozzi et al [6] 60 ~ 69 27 322 289 24 Sozzi et al [6] 6 ~ 69 27 53 439 24 Sozzi et al [6] 60 ~ 69 27 640 539 7 No 3 Nozzle,, No 3 Nozzle,, No 3 Nozzle,, No 3 Nozzle,, Table 5 Predictions of all the data in Table 3 using the Park and analytic models Model Moody Henry-Fauske HEM Park Mean s Mean s Mean s Mean s [8] Ardron et al 25 238 65 223 762 24 85 2 Bovin [9] -88 0-500 72-53 57-44 75 Bovin 2 [9] -40 70-752 57-44 279-26 89 Bovin 3 [9] -35 78-286 2 83 96-02 46 Fincke et al [] -29 29-8 25-29 29-24 33 Jeandey et al [2] -20 8-282 3-39 04-54 50 Jeandey et al 2 [2] -8 93-293 63 76 24-8 70 Reocreux [4] -657 08-840 264-680 20-4 63

Seynhaeve [5] -28 35-240 23-2 33-8 63 Seynhaeve 2 [5] -94 55-25 2-89 59-22 72 20 Relative X mean and σ 0 0-0 Moody X mean Moody σ Henry-Fauske X mean Henry-Fauske σ HEM X mean HEM σ Park X mean Park σ -20 0 0 20 30 40 40 50 L over D (L/D) Fig 2 Comparison of calculated relative mean differences and standard deviations between the model and the analytic models for the data in Table 4 20 Relative X mean and σ (%) 0 0-0 Elias-Chambre X mean Elias-Chambre σ GSL X mean GSL σ Park X mean Park σ -20 0 0 20 30 40 40 50 L over D (L/D) Fig 3 Comparison of calculated relative mean differences and standard deviations

between the model and the space-dependent models for subcooled inlet data in Table 4 20 Relative X mean and σ (%) 0 0-0 Elias-Chambre X mean Elias-Chambre σ Richter X mean Richter σ Park X mean Park σ -20 0 0 20 30 40 40 50 L over D (L/D) Fig 4 Comparison of calculated relative mean differences and standard deviations between the model and the space-dependent models for the two-phase inlet data in Table 4 4 flashing, L/D flashing, () 025-762 mm, L/D 8, 40 mm (2) 200 mm L/D 5 Acknowledgement This project has been carried out under the Nuclear Research and Development Program by MOST

Nomenclature (C d discharge coefficient evaluated at 20 C C dg discharge coefficient of pure vapor D diameter, mm f friction factor G mass flux, kg/m 2 s G c critical mass flux, kg/m 2 s G ref mass flux evaluated at 20 C, kg/m 2 s G TP critical mass flux of two-phase inlet conditions, kg/m 2 s G * dimensionless mass flux, G /G c ref K pipe entrance loss coefficient k ratio of specific heats L (total) length of test section, mm n number of data P pressure, MPa P b back pressure, MPa P o stagnation pressure, MPa T temperature, C T o stagnation temperature, C T ref reference temperature, 20 C T sub subcooling, C T * sub dimensionless subcooling, (T sat - T o )/(T sat -T ref ) v o specific volume of steam, m 3 /kg x o quality ρ density of water, kg/m 3 Subscript b receiver system c critical o stagnation condition ref values at 20 C sat saturation condition TP two-phase condition x = 0 saturated water x o o = all vapor Superscript * dimensionless References [] E Elias and GS Lellouche, "Two-Phase Critical Flow," Int J Multi-phase Flow, Vol 20, Suppl, pp 9-68, 994 [2] HJ Richter, Separated Two-Phase Flow Model: Application to Critical Flow, EPRI NP-800, 98 [3] The Marviken Full Scale Critical-Flow Tests, NUREG/CR-267, MXC-30, 982 [4] CK Park, An Experimental Investigation of Critical Flow Rates of Subcooled Water

through Short Pipes with Small Diameters, Ph D Thesis, KAIST, Korea, 997 [5] CK Park, JW Park, MK Chung, and MH Chun, An Empirical Correlation for Critical Flow Rates of Subcooled Water Through Short Pipes with Small Diameters, J Kor Nucl Soc, Vol 29, No, pp 35-44, 997 [6] CN Amos and VE Schrock, "Two-Phase Critical Flow in Slits," NUREG/CR-3475, 983 [7] H John et al, "Critical Two-Phase Flow through Rough Slits," Int J Multiphase Flow, Vol 4, No 2, pp 55-74, 988 [8] D H Ardron and MC Ackerman, "Study of the Critical Flow of Subcooled Water in a Pipe," GEGB Report: RD/B/N4299, 978 [9] JY Boivin, "Two-Phase Critical Flow on Long Nozzles," Nuclear Technology, Vol 46, Mid-Dec, 979 [0] GP Celata et al, "Two-Phase Flow Models in Unbounded Two-Phase Critical flows," Nuclear Engineering and Design, Vol 97, pp 2-222, 986 [] JR Fincke and DR Collins, "The Correlation of Two Dimensional and Nonequilibrium Effects in Subcooled Choked Nozzle Flow," NUREG/CR-907, EGG-208, 98 [2] C Jeandey et al, "Auto Vaporization d'ecoulements Eau/Vapeur," CEN de Grenoble, Report TT No 63, 98 [3] Bethsy Team, "Selected Results from Characterization Tests of the Bethsy Break Nozzles (2" and 6 ) Conducted in the Super Moby-Dick Facility," Addendum to NOTE SETh/ LES/90-04, CEN Grenoble [4] M Reocreux, "A Contribution l'etude des Debits Critiques en Recoulement Diphasique Eau-Vapeur," Doctoral Dissertation a l'universite Scientifique et de Grenoble, 974 [5] JM Seynhaeve, "Etude Experimentale des Ecoulements Diphasiques Critiques a Faible Titre," Doctoral Dissertation, Universite Catholique de Louvain, France, 980 [6] GL Sozzi and WA Sutherland, "Critical Flow of Saturated and Subcooled Water at High Pressure," NEDO-348, 975 [7] V Ilic, S Banerjee, and S Behling, "A Qualified Data Base for the Critical Flow of Water," EPRI NP-4556, 986 [8] FJ Moody, Maximum Two-Phase Vessel Blowdown from Pipes, ASME J Heat Transfer, 966 [9] RE Henry and HF Fauske, The Two-Phase Critical Flow of One Component Mixtures in Nozzles, Orifices, and Short Pipes, ASME J Heat Transfer, Vol 93, 97 [20] E Elias and PL Chambrë, A Mechanistic Non-Equilibrium Model for Two-Phase Critical Flow, Int J Multiphase Flow, 0,, 984