슬라이드 1

Similar documents
untitled

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

00....

歯4.PDF

< C6AFC1FD28B1C7C7F5C1DF292E687770>

Microsoft PowerPoint - dev6_TCAD.ppt [호환 모드]

06...._......

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

<30365F28BFCFB7E129BEC8BAB4C5C22E687770>

실적 및 전망 09년 하반 PECVD 고객 다변화에 따른 실적개선 10년 태양광 R&D 장비 매출을 반으로 본격적인 상업생산 시작 1. 09년 3Q 실적 동사는 09년 3Q에 매출과 영업이익으로 각각 142 억원(YoY 16.7%, QoQ 142%), 6 억원(흑전환)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

유기 발광 다이오드의 전하주입 효율 향상을 통한 발광효율 향상 연구

歯1.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

Electropure EDI OEM Presentation

41(6)-09(김창일).fm

歯I-3_무선통신기반차세대망-조동호.PDF

À±½Â¿í Ãâ·Â

67~81.HWP

Statistical Data of Dementia.

<C0E7B7AEB1B3C0E72DC5E5C5E5C6A2B4C2BFA1B3CAC1F6C0FDBEE02DBFCFBCBA2E687770>

KAERIAR hwp

(Vacuum) Vacuum)? `Vacua` (1 ) Gas molecular/cm 3

CERIUM OXIDE Code CeO CeO 2-035A CeO 2-035B CeO REO % CeO 2 /REO % La 2 O 3 /REO %

PDF

<313920C0CCB1E2BFF82E687770>

PowerChute Personal Edition v3.1.0 에이전트 사용 설명서

<4D F736F F F696E74202D2028B9DFC7A5BABB2920C5C2BEE7B1A420B8F0B5E220C8BFC0B220BDC7C1F520BDC3BDBAC5DB5FC7D1B1B94E4920C0B1B5BFBFF85F F726C F72756D>

LCD

lastreprt(....).hwp

02À±¼ø¿Á

#Ȳ¿ë¼®

Chap3.SiliconOxidation.hwp

<C0C7B7CAC0C720BBE7C8B8C0FB20B1E2B4C9B0FA20BAAFC8AD5FC0CCC7F6BCDB2E687770>

- 이 문서는 삼성전자의 기술 자산으로 승인자만이 사용할 수 있습니다 Part Picture Description 5. R emove the memory by pushing the fixed-tap out and Remove the WLAN Antenna. 6. INS

슬라이드 제목 없음

<4D F736F F F696E74202D F FB5BFBACEC7CFC0CCC5D820B1E8BFA9C8B22E BC8A3C8AF20B8F0B5E55D>

영남학17합본.hwp

Slide 1

untitled

06ƯÁý

Ceramic Innovation `

DBPIA-NURIMEDIA

박선영무선충전-내지

<4D F736F F F696E74202D20454D49A3AF454D43BAEDB7CEBCC52EBBEABEF7BFEBC6F7C7D428BBEFC8ADC0FCC0DA >

untitled

DBPIA-NURIMEDIA

Microsoft PowerPoint - 카메라 시스템


<4D F736F F F696E74202D20B3AAB3EBC8ADC7D0B0F8C1A4202DB3AAB3EBB1E2BCFA2E BC8A3C8AF20B8F0B5E55D>

구리 전해도금 후 열처리에 따른 미세구조의 변화와 관련된 Electromigration 신뢰성에 관한 연구

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

1. 서 론

KICET_

DISPLAY CLASS Electronic Information Displays CRT Flat Panel Display Projection Emissive Display Non Emissive Display Cathode Ray Tube Light Valve FED

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

I. 회사의 개요 1. 회사의 개요 1. 연결대상 종속회사 개황(연결재무제표를 작성하는 주권상장법인이 사업보고서, 분기ㆍ 반기보고서를 제출하는 경우에 한함) 상호 설립일 주소 주요사업 직전사업연도말 자산총액 지배관계 근거 주요종속 회사 여부 (주)이수엑사보드 2004년

MAX DRILL Construction system of MAX Drill's Code no. DRILL VMD KOREA TECHNICS is The TOP of the world technics 49

<B3EDB9AEC1FD5F3235C1FD2E687770>

12.077~081(A12_이종국).fm

19(1) 02.fm

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

융합WEEKTIP data_up

64.fm

<313120B9DABFB5B1B82E687770>

05À±Á¸µµ

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

PJTROHMPCJPS.hwp

DBPIA-NURIMEDIA

表紙(化学)

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

63-69±è´ë¿µ

전용]

I. 최근연구동향소개 1. GaN based optoelectronics Lumileds compact Luxeon LED targets flashlights Ref) COMPOUNDSEMI 15 Feb 2006 Lumileds Lighting has released

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

°í¼®ÁÖ Ãâ·Â

Microsoft PowerPoint - 전자물리특강-OLED-Driving

COMPANY INITIATION

歯49손욱.PDF

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

Output file

현대패션의 로맨틱 이미지에 관한 연구

1. 서론 1-1 연구 배경과 목적 1-2 연구 방법과 범위 2. 클라우드 게임 서비스 2-1 클라우드 게임 서비스의 정의 2-2 클라우드 게임 서비스의 특징 2-3 클라우드 게임 서비스의 시장 현황 2-4 클라우드 게임 서비스 사례 연구 2-5 클라우드 게임 서비스에

44-3대지.08류주현c

_ _0.xls

½Éº´È¿ Ãâ·Â

hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466>

歯김유성.PDF

<B3EDB9AEC1FD5F3235C1FD2E687770>

I. 회사의 개요 1. 회사의 개요 (1) 회사의 법적ㆍ상업적 명칭 당사의 명칭은 주식회사 이그잭스라고 표기합니다. 영문으로는 exax Inc.라 표기합니다. (2) 설립일자 당사는 1999년 장("KOSDAQ")에 상장하였습니다. 12월 22일에 설립되었으며, 200

Creation of Colloidal Periodic Structure

(2) 설립일자 당사는 1999년 장("KOSDAQ")에 상장하였습니다. 12월 22일에 설립되었으며, 2002년 6월 25일에 한국거래소 코스닥시 (3) 본사의 주소, 전화번호, 홈페이지 주소 가. 본사의 주소 : 경상북도 구미시 공단동 310 나. 전화번호 : 05

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

FTTH 기술발표

원고스타일 정의

Transcription:

Jung-Ho Lee (PI), Bongyoung Yoo, Jong-Ryoul Kim, Yong-Ho Choa, Yongwoo Cho Hanyang University Collaborated with Yonsei University, KIMM, NNFC, Korea Institute for Energy Research, Sungkyunk wan University, Ewha Women s University

Motivation Combining the AR enhancement of dense NWs and the radial p-n junctions of sparse MWs. Tapered SiNWs SiMWs High efficiency solar cell Antireflection (AR) role Ł Enhancement of optical absorption Radial p-n junction of MWs Łutilization of low-purity silicon enabling short diffusion of carriers Very dense tapered NWs co-integrated with periodic MW arrays

<Vertically aligned nanowires> Radial p-n junction wired solarcell 1. Strong broadband optical absorption Light trapping enhancement in between nanowires (NWs) 2. More light absorption due to Graded-refractive-index (GRI) effect using tapered NWs < Radial p-n junction microwires> 3. Long absorption paths & short distances for carrier collection Orthogonal separation of carriers to a sunlight direction 4. Large surface areas for light harvest Atwater group, J. Appl. Phys. 97, 114302 (2005)

Very dense, vertical SiNWs prepared by Ag induced etching Ag deposition Ag induced etching Ag removal P-Si(100) 1-10 ΩCm AgNO3 (0.01M) + HF(4.6M) HF(4.6M) + H 2 O 2 (0.44M) 20min (0.5 um/min) Ag removal nitric acid Deposition of Ag particles Ag induced vertical etching Agglomeration Simple, Cost-effective, Room temperature approach Waferscale fabrication of vertical SiNWs with a 20-200 nm diameter range Highly uniform feature across the wafer Easy agglomeration at the tops of NWs upon drying

Sharp tip, tapered SiNWs KOH etching Top-sides of SiNWs agglomerate to form a bundle Tapered SiNWs 5 5 Effect of KOH etching: SiNW arrays agglomerated by a van der waals force could be easily separated while making their tops very sharp

Fabrication of tapered SiNW, SiMW+SiNW, and SiMW (A) Process 1 *Electroless Etching (EE) KOH etching Ag nanoparticle KOH (100) The faster etching P-Si(100) EE (110) SiNW Tapered SiNW (B) Process 2 PR P-Si(100) EE KOH KOH SiMW + NW SiMW

Morphological variation of tapered SiNWs with KOH etching time 0s 10s 15s 30s 1 1 1 1 Increasing the KOH etching time Faster etching region (111) KOH etching rate at RT: 24nm/min for (100), 35nm/min for (110) (100) (110) Initially, the corner sides of NWs strongly attacked by KOH because the complicated high-index surfaces develop easily. Finally, sharp-tip, tapered SiNW arrays with (111) side planes remains because the etching rate of those planes is slowest.

Co-integrated wire structure of SiNW+SiMW KOH 0s KOH 120s KOH KOH MW + NW KOH 240s KOH MW + tapered NW KOH 180s KOH MW KOH MW + tapered NW

Waferscale uniformity of the co-integrated wire structure 4in wafer top bottom Black surface center

Doping method: Spin-on-doping (SOD) Fabrication of p-n junction Si dummy wafer Phosphorous-SOD P 2 O 5 SiO 2 <Doping mechanism of psod> P 2P 2 O 5 + 5Si 5SiO 2 + 4P Solid-state diffusion: Predeposition followed by drive-in

Bulk or radial p-n junction forms depending upon wire diameters Dummy wafer Phosphorous-SOD Fabrication of p-n junction using SOD Boron-SOD Dummy wafer Tapered SiNWs Bulk p-n junction Concentration (atoms/cc) Phosphorous (top) Boron (bottom) 0 500 1000 1500 2000 Sputter Depth (nm) SiMWs MWs+NWs Radial p-n junction Radial and bulk p-n junction

Low-voltage SEM images of a radial p-n junction MW v v LVSEM images clarify the formation of a radial p(core)-n(shell) junction inside the Si wire. The vanishing contrast at high accelerating voltage is due to the dominance of the energetic backscattered electrons (BSE) and their respectively generated SEs. Concentration(atoms/cc) 10 22 B P 10 21 10 20 10 19 10 18 10 17 10 16 10 15 10 14 0 250 500 750 1000 Sputter Depth(nm)

Accelerating Voltage, dopant contrast Contrast can be obtained between 0.5-5 kv 0.5 1.0 1.5 2.0 2.5 3.0

Electron beam current, dopant contrast Contrast can be obtained between 0.5-20 μa 0.5 1.0 1.5 2.0 2.5 3.0

Optical property of various wire morphologies Tapered SiNWs 40 5 SiNWs+MWs 5 50 SiMW 5 Reflectance (%) 30 20 10 Si(001) substrate Tapered SiNW SiNWs+MWs SiMW 0 400 800 1200 1600 2000 2400 Wavelength (nm) 50 The optical absorption of SiNWs+MWs structure is almost same as that of tapered SiNWs.

Additional Doping: Plasma Ion Doping (PID) DC bias Pulsed 1kV Dopant PH 3 30 sccm RF power Time Annealing Dose 1kHz 60s 900 C 30sec 3e15 Intensifying the N+-level of the MW shells while enabling shallow, conformal doping p-type wafer

Effect of plasma ion doping with SOD SOD 0-5 PID SOD + PID Concentration (atoms/cm3) 10 20 10 19 10 18 Junction depth: 10~15nm 10 17 0 5 10 15 Depth (nm) J (ma/cm 2 ) -10-15 -20-25 SOD 0 100 200 300 400 500 V (mv) SOD+PID AM 1.5 (1000W/m 2 ) Additional PID further increases the conversion efficiency by enhancing the n+ doping level of MW shells.

J (ma/cm 2 ) 0-5 -10-15 -20-25 -30 0 100 200 300 400 500 V (mv)

83 um 60 um 23 um 80 um

Detachment of PDMS embedded wire array Flexible solar cell application 50 40 PDMS Si wire embedded PDMS Asorption (%) 20 0 30 500 1000 Wavelength (nm)

Si v v m

Reflectance (%) 100 80 60 40 20 0 R,10g T10g R,15g T,10g 100 80 60 40 20 0 Transmittance (%) Absorption (%) 100 80 60 40 20 0 A,10g A,15g 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 Waveletngh (nm) Wavelength (nm) v The reflectance, transmittance, and absorption spectra of PDMS film show its possibility to solar cell application. v v An excellent light absorption of 90% is occurred in the NIR region. Accordingly, the incident light wave can easily penetrate through the PDMS film, reaching the Si wire arrays and interacting with it.

Reflection (%) Absorption (%) 40 20 0 100 80 60 40 20 400 800 1200 1600 2000 Wavelength (nm) Transmission (%) 80 60 40 20 0 400 800 1200 1600 2000 Wavelength (nm) PDMS/SiNWs ((L~4 mm) w/si sub PDMS/SiNWs (L~4 mm) w/o sub PDMS/SiNWs (L~12 mm) w/o sub PDMS/SiNWs (L~16 mm) w/o sub PDMS PDMS 0 400 800 1200 1600 2000 Wavelength (nm) SiNW SiNW

Formation of P+ emitter p + -Si; I layer by PECVD electr on electr on CdSe or CGTS or Ge n-si Low impurity i-si NNLT 5, 1081 (2005) Ge effect Ge NP on Si MW ( ) Appl. Phys. Lett., 83, 1258 (2003)

Pioneer Research Center for Solar Thermal Conversion Nanodevices Jung-Ho Lee (PI), Bongyoung Yoo, Jong-Ryoul Kim Hanyang University Collaborated with Kyu-Hwan Lee (KIMS), Youngkyoo Kim (Kyoungpook National University), Jaehyu n Kim (DGIST), Hyoung-Koun Cho (Sungkyunkwan University), Dongwook Kim (E wha Women s University), Minwook Oh (KERI), Nosang V. Myung (UCRiverside), Choongho Yu (Texas A&M University)

v v

Current PV-TE convergence Next-generation version AM1.5 spectrum TE : < PV : λ C2 TE : > AM1.5 spectrum PV-TE λ C1 λ C2 solar spectrum splitter PV hν TE η PV η TE η PV η TE η TE > η TE )

v v v

PV & TE device Si wired solar cell, Si BiTe nanostructured TE BiTe,,,

Thank you for your attention!