269 Ar v Na 0.5 K 0.5 NbO 3 t ½ t,, ½ w,, ½ w»œw Surface Reaction of Na 0.5 K 0.5 NbO 3 Thin Films in Inductively Coupled Ar Plasma w t œwz J. Kor. Inst. Surf. Eng. Vol. 41, No. 6, 2008. < > Dong-Pyo Kim, Doo-Seung Um, Gwan-Ha Kim, Jong-Chang Woo, Chang-Il Kim School of Electrical and Electronics Engineering, Chung-Ang University (Received December 3, 2008; revised December 19, 2008; accepted December 30, 2008) Abstract Ttq q it r Hg E HhI HEH tu ruxy g q r yqp u 67x 7x 5 u p i uˆqx i xqp xg yg C g r p tg tq iiygppu u 67x # u 7x 5 xg yg ig qp g y ui hqtgˆu r tq HEH q it g q Ttq yg uy y q it g q r HEH g '#! yyu g 67x iiy7x $ iiy5 " iiy & W C7P q Pg q q g p " W hug q Ttq HEH q it g q t g y ui hqtgˆu g tqhug q u i qg q Ttqg gx u r tq g ig qi g rxpsr h tg pq u qp g p q itqp HEH ruxy gxx qp q g yq u g u qp q it yqitg u y Ttq y hghxq qg r tq yg uy y q it g q ig hq pqru qp g g i i q iq r itqyuigx g p t uigx q it g t g Keywords: NKN, ICP, Etch, XPS 1. { (nonvolatile ferroelectric random access memory: FRAM), j q w š 1). ¾ w (Na 0.5 K 0.5 )NbO 3 (NKN) û w w p ƒ p ƒ š 2-4). NKN FRAM (Sr,Bi)TiO 3 (Pb,Zr)TiO 3 ƒ w ƒÿ š. NKN š FRAM w» w CD yƒ, w ql ƒ ƒ w ƒ œ v. ¾ NKN ƒ w Corresponding author. E-mail : cikim@cau.ac.kr w š w. x š Cl 2 Ar v w 77.8 nmmin ƒ š, Cl 2 :Ar» yw 8(16 sccm):2(4 sccm) 5). NKN ƒ» w { y ƒ y w. ƒ w w y ƒ š» Cl 2 Ar v ƒw š, ƒ, œ y w NKN ƒ y w. Ar v NKN XPS (xray photoelectron spectroscopy) w w. 2. x NKN ƒ x v š
270 ½ t w t œwz 41 (2008) 269-273 Table 1. Plasma etch process parameters Parameters Units Ragnges S h g qtqy Q 7 " 7x 5 @x g q iiy R@C7P q W & P iq q q g 67x @x g q iiy! 6ug q W # x 5] w MOD (100) Si»q. ICP ƒ e Ar yw» w NKN ƒ x ww. ƒ w BCl x O y { x w» y ƒœ w» 6). ICP ƒ e v x w 13.56 MHz RF 3.5l g š, g 24 mm Ì quartz sq w v ƒ x š ƒ w œ. v ƒ w z, w l quartz¾, 14 cm. w»q w» w 13.56 MHz ƒ RF w. ƒ x t 1 ùkù œ w. Cl 2 Ar» yw 8(16 sccm):2(4 sccm) š w. NKN ƒ KLA Tencor α-step 500 w d w. ƒ f ³ w» w v t, w ƒ z NKN t XPS ww. ƒ v» w, v t narrow scan ww, Na, K, Nb O core binding energy peak intensity y w. XPS x w ICP ƒ œ w w z 24». XPS ESCALAB 220-IXL w. XPS X-ray Mg(Kα) 1253.6 ev ƒ š. t yw yw w k w» w 20 ev 40 ev narrow scan ww. 3. m Ar v NKN ƒ p w» w NKN ƒ SiO 2 w ƒ k ƒ, œ yw ƒ x w w. 1 ƒ NKN ƒ SiO 2 w ƒ k ùküš 1 sccm 3. Cl 2 Ar yw»» sccm¾ ƒw. ICP dc ƒƒ 800 W 400 W š w. š œ 1 Pa š w. 1 ùkù, 1 sccm ƒw NKN ƒ 95.3 nmmin ƒw. š ƒ ƒ 2 sccm ƒw NKN w, 3 sccm ƒw NKN ƒ 64.2 nmmin. BClO w x w t l z w. 1 sccm ƒw NKN t l z w, Na, K Nb yw ƒw». š v ü w š + Ar + +, B t w t jš w { ƒ rl w» ƒ ƒ ƒw 7-9). SiO 2 w NKN ƒ k p NKN ƒ w š. KCl NaCl û { š w, NKN ƒ ƒ { ƒ KClO Fig. 1. The NKN etch rate and selectivity to SiO 2 as function of flow rate in Cl 2 Ar mixing chemistry.
½ t w t œwz 41 (2008) 269-273 271 Fig. 2. The NKN etch rate and DC bias voltage as function of DC bias power. NaClO y y x ƒ w š. KClO 3 NaClO 3 ƒƒ 368 C o 248 o C š, KCl NaCl 771 C o 1465 C û š w o.» ùkü, û»» mw ƒ { dw 10). 1 sccm Cl 2 Ar v ƒw NKN ƒ ƒ w, B +, + ƒ w { ƒ z» š ƒ w. 2 DC y w NKN ƒ DC y ùküš.» yw (1 scmm) (16 sccm)ar(4 sccm) š w š, ICP œ ƒƒ 800 W 1Pa. 2 ù kù, DC 100 W 500 W ƒw DC 25 V 350 V ƒwš. NKN ƒ 8.9 nmmin 176.7 nmmin ƒ w. DC ƒ w ƒw š, NKN t ƒ ƒw NKN ƒ ƒ ƒ w. Cl 2 - v w NKN ƒ œ yw ƒ ƒ w ùkü. 3 œ y w NKN Fig. 3. The NKN etch rate and selectivity to SiO 2 as function of process pressure. ƒ SiO 2 w ƒ k ùk üš. 3 ùkù, œ 0.2 Pa 0.5 Pa ƒw NKN ƒ 100 nmmin 126.6 nmmin ƒw š, œ 3 Pa ƒw NKN ƒ 77 nmmin w. ƒ., œ 0.2 Pa 0.5 Pa ƒ w B +, + v ƒ ƒw ƒ ƒ ƒw., œ 1Pa 3Pa ƒw NKN ƒ ƒ w, œ ƒ w ion w w Cl Cl 2 e ƒ w t l { ƒ x». 2 w ƒ yw ƒ w wš. v ƒ œ ƒ p œ v ü ƒ t w x ƒ { w w. NKN ƒ œ ƒ NbCl x (x=3~5), KCl NaCl ƒƒ 205 o C, 771 C o 1465 o C. KCl NaCl k w t l w w. 1~3 NKN ƒ x NKN ƒ f w ƒ wš, yw ƒ ùk üš.
272 ½ t w t œwz 41 (2008) 269-273 Fig. 4. XPS narrow scan analysis of NKN surface before and after etching in Ar plasma. (a) Na 1s, (b) K 2p, (c) Nb 3d. NKN Ar v ü ƒ t w» w ƒ z NKN t XPS mw w vj» y w. 4 ƒ NKN Ar v ƒ NKN t (a) Na 1s, (b) K 2p (c) Nb 3d XPS narrow ùküš. XPS narrow rp XPS Curve fitting v Fitt w deconvolutionw. 4(a) ùkù, Na 1s narrow rp 1070.7 ev w 1 vjƒ, ƒ NKN Na-O w w 11). ù, Ar ƒ NKN t peak»ƒ wš, š. peak, 1071 ev 1072 ev w peak ƒƒ Na-O Na 2 O w w š, 1072.5 ev ùkù peak Na-Cl w w. NKN ƒ y w NKN ƒ f ewš, Na=O w w w Á š, Na Cl wš y w. sww v ƒ NKN t Na-Cl w NaCl 1465 C» o. 4(b) K 2P XPS narrow ql ù küš. 4(b) ƒ NKN t peakƒ, peak ƒƒ K 2p 32 -O(292.3 ev) K 2p 12 -O w(295.2 ev). NKN Cl 2 Ar v z, K(Nb)-O peak» w š, peak. 291.3 ev 294.2 ev û w peak ƒƒ K 2p 32 -Cl w K 2p 12 -Cl w š, 293.2 ev 296.1 ev w peak ƒƒ K 2p 32 -Cl-O w K 2p 12 -Cl-O w. ƒ œ z
½ t w t œwz 41 (2008) 269-273 273 K-Cl K-Cl-O w K-O peak š w, NKN K Ar v rl w K-O w š, t KCl KClO xk { ƒ x wš, ƒ rl w. 4(c) Nb 3d narrow rp ùkü š. ƒ NKN t l peak ƒƒ 206.1 ev 208.8 ev, ƒƒ Nb 3d 52 -O Nb 3d 32 -O w w. NKN Ar v z, peak» j w š, Peak. 297.2 ev 299.9 ev w Peak Nbƒ Cl w w Nb 3d 52 -Cl Nb 3d 32. Nb-Cl Nb-O w ƒ w š w Nb-O w w. Cl 2 Ar v ƒƒ NKN ƒ w e w NKN t l O peak z» Nb-Cl w ƒ w š ƒ. NbCl { ƒ š, û k x w NKN t l š q. 4. NKN ƒ p š w» w ICP v l œ» yw, DC y j NKN ƒ y, k y XPS mw t x ww. NKN ƒ ƒ ƒ w ƒ p y w. DC ƒ w NKN ƒ ƒ x ƒw p. w ƒ f rl w ƒ z ƒ e w yw z w». NKN t XPS Na Kƒ Cl ww { y x w y w š, w Nb- Cl y y { ƒ x w y w. ƒ Cl 2 Ar v ƒw NKN ƒ ƒ B +, + ƒ flux ƒ t l Oƒ BClO x w Na, K, Nb e ƒw» š. y rl w ù, y w w yw jš, w { ƒ rl w w w w. š x 1. X. Wang, U. Helmersson, S. Olafsson, S. Rudner, L. Wernlund, S. Gevorgian, Appl. Phys. Lett. 73 (1998) 927. 2. C.-R. Cho, J.-H. Koh, A. Grishin, S. Abadei, S. Gevorgian, Appl. Phys. Lett., 76 (2000) 1761. 3. A. Shibuya, J. H Koh, A. Grishin, V. Kugler, D. Music, U. Helmersson, M. Okuyama, Mat. Res. Soc. Symp. Proc., 688 (2002) C7.7. 4. C. R Cho, I. Katardjiev, M. Grishin, A. Grishin, Appl. Phy. Lett., 80 (2002) 3171. 5. C. M. Kang, G. H. Kim, K. T. Kim, C. I. Kim, Ferroelectrics, 357 (2007) 179. 6. S. J. Yun, A. Efremov, M. S. Kim, D. W. Kim, J. W. Lim, Y. H. Kim, C. H. Chung, D. J. Park, K. H. Kwon, 82 (2008) 1198. 7. E. Meeks, P. Ho, A. Ting, R. J. Buss, J. Vac. Sci. Technol. A, 16 (1998) 2227. 8. H. S. Kim, G. Y. Yeom, J. W. Lee, T. I. Kim, J. Vac. Sci. Technol. A, 17 (1999) 2214. 9. M. S. Kim, N. K. Min, S. J. Yun, H. W. Lee, A. Efremov, K. H. Kwon, Microele. Eng., 84 (2008) 348. 10. D. R. Lide, Handbook of Chemistry and Physics 79 CRC Press, 4-74, 1998. 11. J. Chastain, Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer, 1992.