J. of Aquaculture Vol. 19(4) : 275-280, 2006 µ Journal of Aquaculture Korean Aquaculture Society w ƒƒ, qƒ e w y*, 1, ½, x 2, 3, 1 w ww wy w, ()w, 2w, 3 w wœw Effect of the Various Sources of Dietary Additives on Growth, Body Composition and Shell Color of Abalone Haliotis discus hannai Sung Hwoan Cho*, Jungeun Park 1, Chungil Kim, Jin-Hyung Yoo 2, Sang-Min Lee 3 and Cheol Young Choi Division of Marine Environment & BioScience, College of Ocean Science & Technology, Korea Maritime University, Busan 606-791, Korea 1 Korea Aquaculture Institute, Wolsong 780-715, Korea 2 Jeilfeed Co. Ltd., Haman 637-833, Korea 3 Faculty of Marine Bioscience & Technology, Kangnung National University, Gangneung 210-702, Korea Effect of the various sources of dietary additives on growth, body composition and shell color of abalone Haliotis discus hannai was investigated for 16 weeks. Forty juvenile abalone averaging 13.5 g were randomly stocked into 21 of 50 L plastic rectangular containers each. Eight kinds of additives were prepared for this study: four commercially available microalgae [Haeatococcus (Hae), Isochrysis galbana (Iso), Shizochytrium (Sch) and Spirulina (Spi)], three crustacean meals [krill meal (KM), shrimp head meal (Shm) and red crab meal (Rcm)], and green tea by-product (Gre). In addition, dry sea tangle (Dst), Laminaria japonica, as a control, was prepared. Casein, dextrin and a mixture corn oil and fish oil was protein, carbohydrate and lipid sources, respectively, in the experimental diets. The 2% each additive was included into the experimental diets. The experimental diets were fed to abalone once a day at the ratio of 1.5~2.0% total biomass of abalone with a little leftover throughout the 16-week feeding trial. Survival of abalone was not significantly (P>0.05) affected by the experimental diets. However, weight gain of abalone fed the all experimental diets containing the various sources of additives was significantly (P<0.05) higher than that of abalone fed the Dst diet. Weight gain of abalone fed the Spi diet was highest and Shi, KM and Iso diets in order. Shell length and the ratio of soft body weight to body weight of abalone was not significantly (P>0.05) affected by the experimental diets. However, shell width of abalone fed the all experimental diets containing the various sources of additives was significantly (P<0.05) higher than that of abalone fed the Dst diet. The shell color of abalone fed the Spi diet was improved the most distinctively and similar to that of natural abalone. Therefore, it can be concluded that the experimental diets with the various sources of additives (microalgae and crustacean meals) was effective to improve growth of abalone and dietary inclusion of Spirulina was most effective to improve shell color of abalone. Keywords: Abalone (Haliotis duscus hannai), Dietary additives, Microalgae, Crustacean meals, Shell color 2005 ù 2,062m 2005 q 326 m 0.7% e w, ƒe 920 q 3,140 29% w *Corresponding author: chosunh@hhu.ac.kr ùkù, ù q ù w e wš ƒ š (KNSO, 2005). zš w w w ƒ w (Uki et al., 1986a, 1986b; Mai et al., 1995a, 1995b; Lee and Park, 1998; Lee et al., 1998a, 1998b, 1998c; Lim and Lee, 2003). e ù w 275
276 y,, ½, x,, w (Uki et al., 1986a), e w eq 25%~35% 3%~7% ü š (Mai et al., 1995a, 1995b). ù ¾ qƒ t w w ƒ w { û sƒš. q w carotenoids q ƒ j w (Gomes et al., 2002; Choubert et al., 2006), Lim and Lee (2003) Spirulina Porphyra powder ƒw q ƒ ƒ w š šw. ƒw w (microalgae) q qš. p Isochrysis galbana q w (Rico-Villa et al, 2006; Tang et al., 2006), Spirulina yù ƒ y w z ƒ q (Chien and Shiau, 2005; Lu et al., 2006; Watanuki et al., 2006). š Haematococcus β-carotene vitamin Aƒ tw (Choubert and Heinrich, 1993; Choubert et al., 2006), gilthad seabream, Sparus aurata (Gomes et al., 2002) (Gouveia et al., 2003) (Chien and Shiau, 2005) z. w Shizochytrium š sy w q ƒù y ƒ (Wu et al., 2005). ƒ» ƒ ƒ œ ù ƒ z š (Fox et al., 1994; Kalinowski et al., 2005; Williams et al., 2005). ƒ ƒ ƒ w š ƒ. w ƒ ƒ» ƒ w, qƒ e w wš w. x eq m w x x ¼ z y 2 g.» 1 1z(17:00) 1.5% œ w. 27 50 L ƒx vp» w j» eq 40 ƒƒ w z, 50 L ƒx vp» 6 5 1.3m raceway (: 1.0m) w, ƒ raceway 120 L/min. Ÿ» Ÿ», w œ w ƒ raceway aeration g. x x 9 ƒ, ƒ x 3. casein 38% k y dextrin 30% 1:1 yww 5% ƒw» 8, 4 q microalgae [Haeatococccus (Hae), Isochrysis galbana (Iso), Shizochytrium (Sch) Spirulina (Spi)] 3 ƒ» ƒ [j(krill meal, KM), (Shrimp head meal, Shm) y (Red crab meal, Rcm)] (Gre) ƒƒ 2% ƒw x (Dried sea tangle, Laminaria japonica, Dst) œ w (Table 1). x ƒ yww z yw 100 g 100 g ƒwš yww z w 5% ye 40 ¼ ùp e ey g. ƒx(ƒ = 1 cm 1 cm) xk Ì 0.15 cm w z k z þ š(-25 C) w v o w. x» œ ƒ» (Total biomass) 1.5%~2.0% 1z(17:00) œ w š w w, û w w. x» y 12.0 o C~20.0 o C(Mean±SD; 15.7±2.10 o C) x» 16. qƒ x ƒ AOAC (1990) w, (N 6.25) Automatic analyzer, ether, 105 o C dry oven w d w, Automatic analyzer (Fibertec, Tecator) z 550 o C zy 4 k z w. x ƒ x 20 (ƒ 60 ) vw qƒ s w tt(f w, 1991) w w ƒ w 3ƒ dw w ƒ œ qƒ z w. m ƒ x d w ANOVA-test w Duncan's multiple range test (Duncan, 1955) ƒ x s³ SAS version 9.1 (SAS Institute, Cary, NC, USA) w.
w ƒƒ e w 277 Table 1. Ingredients (%) of the experimental diets Ingredients Experimental diets Hae Iso Shi Spi Gre KM Rcm Shm Dst Casein 1 38 38 38 38 38 38 38 38 Dextrin 2 30 30 30 30 30 30 30 30 Oil 3 5 5 5 5 5 5 5 5 Sodium alginate 4 20 20 20 20 20 20 20 20 Vitamin premix 5 2 2 2 2 2 2 2 2 Mineral premix 6 3 3 3 3 3 3 3 3 Haematococcus 7 2 Isochrysis galbana 8 2 Shizochytrium 9 2 Spirulina 10 2 Green tea 2 Krill meal 11 2 Red crab meal 12 2 Shrimp head meal 13 2 Dried sea tangle 100 Nutrients (%) Dry matter 86.3 86.6 86.8 88.2 85.7 88.5 87.8 88.8 87.5 Crude protein 36.1 36.4 35.9 36.1 37.0 37.0 36.3 36.4 10.5 Crude lipid 2.3 2.6 3.1 2.8 2.6 4.2 2.3 3.7 0.1 Ash 8.1 7.4 7.5 7.9 7.6 7.3 7.9 7.4 22.8 1 Casein was pruchased from Lactoprot Deutschland GmbH (Germany). 2 Dextrin was purchased from Sigma Chemical, St. Louis, MO, USA. 3 Oil: a mixture of corn oil and fish oil at the ratio of 1:1. 4 Sodium alginate was purchased from Sigma Chemical, USA. 5 Vitamin premix and 6 mineral premix were same as Lee et al. (1998b) 7 Haematococcus was purchased from Aquanet Co. Ltd. (Tongyeong city, Korea). 8 Isochrysis galbana was purchased from MyungSun Co. Ltd. (Seoul, Korea). 9 Shizochytrium was purchased from Chem Port Inc. (Daejeon, Korea). 10 Spirulina was purchased from Ewha Oil & Fat Industry Co. Ltd. (Busan, Korea). 11 Krill meal, 12 Red crab meal and 13 Shrimp head meal were supplied by Jeilfeed Co. Ltd. (Haman, Korea). š w ƒ sww x œ w 16 w, (%), ƒ(g/abalone), (cm), s(cm) w ƒ (the ratio of soft body weight to total body weight) Table 2 ùkü. 81.7%~93.3% ƒ. ù x ƒ œ w x (Dst) w ƒ ƒw x w ùkû(p<0.05). ƒ ƒw œ w x ƒ ƒ (P>0.05), Spirulina (Spi), Shizochytrium (Shi), j(km) Isochrysis (Iso) ƒw œ w x ƒ w ùkû. w w x Spirulina ƒw ƒ w (Lee et al., 1998b; Lim and Lee, 2003). ƒ Spirulina, Haematococcus ƒ(j, ) ü ƒw ù ƒ š š (Choubert and Heinrich, 1993; Fox et al., 1994; Gomes et al., 2002; Chien and Shiau, 2005; Kalinowski et al., 2005; Williams et al., 2005; Choubert et al., 2006). x w ƒ œ ƒ. ù s ƒ w œ w x (Dst) w x œ w x w ùkû(p<0.05). x ƒ, s y šw ƒƒ sw œ s w e q. e ù w w (Uki et al., 1986a)ƒ š» ƒ z ³» w e
278 y,, ½, x,, Table 2. Survival (%), weight gain (g/abalone), shell length (cm), shell width (cm), the ratio of soft body weight to body weight of abalone fed the experimental diets containing the various sources of additives for 16 weeks (Mean±SE) Diets Initial weight (g) Final weight (g) Survival (%) œ w. x w xƒ œ w x w w w yw. w Lee et al. (1998a) e,, œ w x ù œ w x w w š šw. Bautista-Teruel et al. (2003) (,, k Spirulina) yww 12 (tropical) (Haliotis asinina) œ w ƒƒ w, w yww w (herbivorous) w š w. j(km), (Shm) œ w x (Dst) w Spirulina (Spi) ƒw œ w x (Gre) w ùkûù(p<0.05), x w ƒ (Table 3). w Shizochytrium (Shi) ƒw x Haematococcus (Hae) œ w x (Dst) w ùkû, y (Rcm) (Gre) ƒw x œ w x (Dst) w Weight gain (g) Shell length (cm) Shell width (cm) Soft body weight/ body weight Hae 13.5±0.13 19.9±0.22 a 81.7±3.00 6.4±0.10 a 5.6±0.12 3.8±0.05 a 0.59±0.005 Iso 13.7±0.16 20.5±0.20 a 93.3±3.63 6.8±0.18 a 5.5±0.02 3.8±0.02 a 0.60±0.009 Shi 13.5±0.17 20.7±0.50 a 85.0±3.82 7.2±0.43 a 5.6±0.06 4.0±0.27 a 0.61±0.007 Spi 13.6±0.09 21.2±0.07 a 85.0±2.50 7.6±0.07 a 5.7±0.07 4.0±0.03 a 0.61±0.006 Gre 13.5±0.19 20.2±0.65 a 93.3±1.67 6.6±0.51 a 5.5±0.03 3.8±0.03 a 0.60±0.002 KM 13.6±0.21 20.7±0.60 a 83.3±3.63 7.1±0.40 a 5.5±0.06 3.8±0.06 a 0.61±0.005 Rcm 13.3±0.12 20.0±0.36 a 85.0±5.20 6.7±0.28 a 5.6±0.05 3.9±0.04 a 0.59±0.022 Shm 13.5±0.16 20.1±0.58 a 90.8±3.00 6.7±0.66 a 5.6±0.06 3.8±0.03 a 0.59±0.009 Dst 13.4±0.14 16.7±0.21 b 93.3±4.41 3.3±0.27 b 5.3±0.07 3.6±0.05 b 0.58±0.006 Values in the same column sharing a same superscript letter are not significantly different (P<0.05). ùkû(p<0.05). w x ƒ. ù z w (Dst) œ w x x œ w x w ùkûù(p<0.05), x œ w x. œ w x z w z w x w»w q (Table 1). w œ w ƒ j w (Mai et al., 1995a, 1995b; Lee and Park, 1998; Lee et al., 1998a, 1998b, 1998c), p ( ) œ w x z w x œ w x w ùk û(lee et al., 1998a). x qƒ z w Table 4 ùkü. qƒ y ù, Iso, Shi Shm œ qƒ y ƒ ƒ, ù(hae, Gre, KM Rem) œ y ƒ ƒ ùkû, (Dst) œ y ƒ ƒ ùkû. ù Spi œ y( Table 3. Chemical composition (%) of the soft body of abalone fed the experimental diets containing the various sources of additives for 16 weeks (Mean±SE) Diets Moisture Crude protein Crude lipid Ash Hae 80.1±0.56 ab 14.4±0.36 bc0 0.7±0.08 2.5±0.05 b Iso 79.4±0.49 ab 15.6±0.56 abc 0.7±0.05 2.4±0.07 b Shi 79.7±0.13 ab 16.1±0.50 a00 0.8±0.09 2.5±0.08 b Spi 78.5±0.78 b0 15.6±0.37 abc 0.9±0.06 2.4±0.05 b Gre 78.6±0.25 b0 15.8±0.47 ab0 0.7±0.06 2.6±0.04 b KM 80.6±0.29 a0 14.7±0.32 abc 0.7±0.00 2.5±0.08 b Rcm 79.1±0.10 ab 16.1±0.53 ab 0.8±0.13 2.5±0.03 b Shm 80.5±0.32 a0 15.2±0.39 abc 0.8±0.16 2.4±0.03 b Dst 80.8±1.03 a0 14.1±0.88 c00 0.6±0.22 2.8±0.12 a Values in the same column sharing a same superscript letter are not significantly different (P<0.05).
w ƒƒ e w 279 Table 4. The hue of shell of abalone fed the experimental diets containing the various sources of additives for 16 weeks Abalone Most abundant color of shell Frequency 1 2 3 1 2 3 Natural 7.5YR-10YR 1 5 Hae 2.5GY 2-10Y 3 5GY-2.5GY 10Y-7.5Y 25 15 12 Iso 5GY-2.5GY 2.5GY-10Y 7.5GY-5GY 14 14 12 Shi 5GY-2.5GY 2.5GY-10Y 7.5GY-5GY 19 19 10 Spi 7.5YR-5YR 10YR-7.5YR 2.5Y-10YR 15 11 9 Gre 2.5GY-10Y 5GY-2.5GY 10Y-7.5Y 19 19 15 KM 2.5GY-10Y 5GY-2.5GY 10Y-7.5Y 24 21 17 Rcm 2.5GY-10Y 5GY-2.5GY 7.5GY-5GY 17 14 9 Shm 5GY-2.5GY 7.5GY-5GY 2.5GY-10Y 19 16 12 Dst 2.5GY-10Y 5GY-2.5GY 10Y-7.5Y 25 21 14 YR 1 ; yellow red-orange; GY 2 ; green-yellow; Y 3 ; yellow. ) ƒ ƒ ùkù x ƒ w. w Lim and Lee. (2003) ƒ ƒ ü Spirulina ƒw ƒ qƒ w š šw, sw phycoerythrinù phycocyanin ƒ qƒ y j w eš w. qƒ w š x šw qƒ w wš ƒ w w. šw x w ƒ œ w z ƒ w, microalgae Spirulina Shizochytrium ƒ ƒ krill meal z, qƒ z Spirulina ƒ ƒ w. e p yw ky w w w microalgae (Haeatococccus, Isochrysis galbana, Shizochytrium) ƒ» ƒ(krill meal, shrimp head meal, red crab meal) ƒƒ 2% ƒw x w 16 œ w. š œ w x. x ƒ ù, ƒ ƒw x ƒ œ w x w w. ƒ Spirulina, Shizochytrium Isochrysis w. w ƒ ƒ. ù s œ w x w ƒ ƒw x w ùkû. qƒ z Spirulina ƒ ƒ w. x ü w microalge ƒ» ƒ z g, ü Spirulina ƒ qƒ ƒ z. 2005» wf w. šx AOAC. 1990. Official Methods of Analysis, 15th edn. Association of Official Analytical Chemists, Arlington, Virginia, USA. Bautista-Teruel, M. N., A. C. Fermin and S. S. Koshio, 2003. Diet development and evaluation for juvenile abalone, Haliotis asinina: animal and plant protein sources. Aquaculture, 219, 645 653. Chien, Y. and W. Shiau, 2005. The effects of dietary supplementation of algae and synthetic astaxanthin on body astaxanthin, survival, growth, and low dissolved oxygen stress resistance of kuruma prawn, Marsupenaeus japonicus Bate. J. Exp. Mar. Biol. Ecol., 318, 201 211. Choubert, G. and O. Heinrich, 1993. Caroteonoid pigments of the green alga Haematococcus pluvialis: assay on rainbow trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin. Aquaculture, 112, 217 226. Choubert, G., M. M. Mendes-Pinto and R. Morais, 2006. Pigmentation efficacy of astaxanthin fed to rainbow trout Oncorhynchus mykiss: Effect of dietary astaxanthin and lipid sources. Aquaculture, 257, 429 436. Duncan, D. B., 1955. Multiple range and multiple F tests. Biometrics, 11, 1 42.
280 y,, ½, x,, Fox, C. J., P. Blow, J. H. Brown and I. Watson, 1994. The effect of various processing methods on the physical and biochemical properties of shrimp head meals and their utilization by juvenile Penaeus monodon Fab. Aquaculture, 122, 209 226. Gomes, E., J. Dias, P. Silva, L. Valente, J. Gouveia, L. Bowen and W. Young, 2002. Utilization of natural and synthetic sources of carotenoids in the skin colouration of gilthead seabream (Sparus aurata). Eur. Food Res. Technol., 214, 83 293. Gouveia, L., P. Rema, O. Pereira and J. Empis, 2003. Colouring ornamental fish (Cyprinus carpio and Carassius auratus) with microalgal biomass. Aquacult. Nutr., 9, 123 129. Kalinowski, C. T., L E. Robaina, H. Fernandez-Palacios, D. Schuchardt and M. S. Izquierdo, 2005. Effect of different carotenoid sources and their dietary levels on red porgy (Pagrus pagrus) growth and skin color. Aquaculture, 244, 223 231. KNSO. 2005. Korea National Statistical Office. KOSIS Statistical DB, DaeJeon, Korea. Lee, S.M. and H. G. Park, 1998. Evaluation of dietary lipid sources for juvenile abalone (Haliotis discus hannai). J. Aquaculture 11, 381 390. Lee, S. M., S. J. Yun and S. B. Hur, 1998a. Evaluation of dietary protein sources for abalone (Haliotis discus hannai). J. Aquaculture, 11, 19 29. Lee, S. M., Y. Lim, Y. B. Moon, S. K. Yoo and S. Rho, 1998b. Effects of supplemental macroalgae and Spirulina in the diets on growth performance in juvenile abalone (Haliotis discus hannai). J. Aquaculture, 11, 31 38. Lee, S. M., S. J. Yun, K. S. Min and S. K. Yoo, 1998c. Evaluation of dietary carbohydrate sources for juvenile abalone (Haliotis discus hannai). J. Aquaculture, 11, 133 140. Lim, T. and S. M. Lee. 2003. Effect of dietary pigment sources on the growth and shell color of abalone (Haliotis discus hannai). J. Aquaculture, 36, 601 605. Lu, J., T. Takeuchi and H. Satoh, 2006. Ingestion, assimilation and utilization of raw Spirulina by larval tilapia Oreochromis niloticus during larval development. Aquaculture, 254, 686 692. Mai, K., J. P. Mercer and J. Donlon, 1995a. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. III. Responses of abalone to various levels of dietary lipid. Aquaculture, 134, 65 80. Mai, K., J. P. Mercer and J. Donlon, 1995b. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. IV. Optimum dietary protein level for growth. Aquaculture, 136, 165 180. Rico-Villa, B., J. R. Le Coz, C. Mingant and R. Robert, 2006. Influence of phytoplankton diet mixtures on microalgae consumption, larval development and settlement of the Pacific oyster Crassostrea gigas (Thunberg). Aquaculture, 256, 377 388. Tang, B., B. Liu, G. Wang, T. Zhang and J. Xiang, 2006. Effects of various algal diets and starvation on larval growth and survival of Meretrix meretrix. Aquaculture, 254, 526 533. Uki, N., A. Kemuyama and T. Watanabe, 1986a. Optimum protein level in diets for abalone. Bull. Jpn. Soc. Sci. Fish., 52, 1005 1012. Uki, N., M. Sugiura and T. Watanabe, 1986b. Requirement of essential fatty acids in the abalone Haliotis discus hannai. Bull. Jpn. Soc. Sci. Fish., 52, 1013 1023. Watanuki, H., K. Ota, A. C. M. A. R. Tassakka, T. Kato and M. Sakai, 2006. Immunostimulant effects of dietary Spirulina platensis on carp, Cyprinus carpio. Aquaculture, 258, 157 163. Williams, K. C., D. M. Smith, M. C. Barclay, S. J. Tabrett and G. Riding, 2005. Evidence of a growth factor in some crustaceanbased feed ingredients in diets for the giant tiger shrimp Penaeus monodon. Aquaculture, 250, 377 390. Wu, S., S. Yu and L. Lin, 2005. Effect of culture conditions on docosahexaenoic acid production by Shizochytrium sp. S31. Process Biochem., 40, 3103 3108. f w, 1991. ()w tt: Ÿq. KBS y.. w. 41 pp. š : 2006 8 21 : 2006 10 16