<30342D DB1E8C1A4BAC02E687770>

Similar documents
환경중잔류의약물질대사체분석방법확립에 관한연구 (Ⅱ) - 테트라사이클린계항생제 - 환경건강연구부화학물질연구과,,,,,, Ⅱ 2010

이 발명을 지원한 국가연구개발사업 과제고유번호 KGM 부처명 교육과학기술부 연구관리전문기관 연구사업명 전북분원운영사업 연구과제명 저탄소 녹생성장을 위한 바이오매스/에너지 개발 주관기관 한국생명공학연구원 연구기간 2009년 01월 01일 ~ 2009년 12월

Journal of Life Science 2011, Vol. 21. No μ μ

03-서연옥.hwp

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

Statistical Data of Dementia.

한약재품질표준화연구사업단 강활 ( 羌活 ) Osterici seu Notopterygii Radix et Rhizoma 생약연구과

09È«¼®¿µ 5~152s

학술원논문집 ( 자연과학편 ) 제 50 집 2 호 (2011) 콩의식품적의의및생산수급과식용콩의자급향상 李弘䄷 * 李英豪 ** 李錫河 *** * Significance of Soybean as Food and Strategies for Self Suffici

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

Lumbar spine

(Microsoft PowerPoint - src.ppt [\300\320\261\342 \300\374\277\353] [\310\243\310\257 \270\360\265\345])

09권오설_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

13장문현(541~556)ok

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

μ

제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

10(3)-10.fm

서론 34 2

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

한약재품질표준화연구사업단 고삼 ( 苦參 ) Sophorae Radix 생약연구과

DBPIA-NURIMEDIA

개최요강

한약재품질표준화연구사업단 작약 ( 芍藥 ) Paeoniae Radix 생약연구과

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

인문사회과학기술융합학회

한약재품질표준화연구사업단 금은화 ( 金銀花 ) Lonicerae Flos 생약연구과

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

DBPIA-NURIMEDIA

09-감마선(dh)

γ

012임수진

03이경미(237~248)ok

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

Æ÷Àå82š


Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th


04_이근원_21~27.hwp

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

14.531~539(08-037).fm

,......

27 2, * ** 3, 3,. B ,.,,,. 3,.,,,,..,. :,, : 2009/09/03 : 2009/09/21 : 2009/09/30 * ICAD (Institute for Children Ability

139~144 ¿À°ø¾àħ

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

- 1 -


한국성인에서초기황반변성질환과 연관된위험요인연구

10(3)-09.fm

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

433대지05박창용

03-ÀÌÁ¦Çö

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

Can032.hwp

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

00.앞부분2

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

82-01.fm

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

:,,.,. 456, 253 ( 89, 164 ), 203 ( 44, 159 ). Cronbach α= ,.,,..,,,.,. :,, ( )


<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

<C7D1B1B9B1B3C0B0B0B3B9DFBFF85FC7D1B1B9B1B3C0B05F3430B1C733C8A35FC5EBC7D5BABB28C3D6C1BE292DC7A5C1F6C6F7C7D42E687770>


DBPIA-NURIMEDIA


유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

디지털포렌식학회 논문양식

- 1 -

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

Kor. J. Aesthet. Cosmetol., 라이프스타일은 개인 생활에 있어 심리적 문화적 사회적 모든 측면의 생활방식과 차이 전체를 말한다. 이러한 라이프스 타일은 사람의 내재된 가치관이나 욕구, 행동 변화를 파악하여 소비행동과 심리를 추측할 수 있고, 개인의

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

Research subject change trend analysis of Journal of Educational Information and Media Studies : Network text analysis of the last 20 years * The obje

¨ë Áö¸®ÇÐȸÁö-¼Û°æ¾ðOK

12.077~081(A12_이종국).fm

- 2 -

歯1.PDF

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

<31362DB1E8C7FDBFF82DC0FABFB9BBEA20B5B6B8B3BFB5C8ADC0C720B1B8C0FC20B8B6C4C9C6C32E687770>

DBPIA-NURIMEDIA

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

최은옥인하대학교식품영양학과 1. 1,200, %, 50%,, -linolenic acid. (linseed oil; 38%)..,, ( 1998),, (, 1998).,., -3/ -6,,,,. 433

03-2ƯÁý -14š

<35BFCFBCBA2E687770>

책임연구기관


Transcription:

Korean Journal of Environmental Agriculture Korean J Environ Agric. 2016;35(3):184-190. Korean Online ISSN: 2233-4173 Published online 2016 September 30. http://dx.doi.org/10.5338/kjea.2016.35.3.25 Print ISSN: 1225-3537 Research Article Open Access 블루베리 (Vaccinium corymbosum L.) 품종별안토시아닌조성및함량 이민기 1, 김헌웅 1, 이선혜 1, 김영진 1, 장환희 1, 정현아 2, 황유진 1, 최정숙 1, 김정봉 1* 1 국립농업과학원농식품자원부, 2 전북대학교생활과학대학식품영양학과 Compositions and Contents Anthocyanins in Blueberry (Vaccinium corymbosum L.) Varieties Min-Ki Lee 1, Heon-Woong Kim 1, Seon-Hye Lee 1, Young Jin Kim 1, Hwan-Hee Jang 1, Hyun-Ah Jung 2, Yu-Jin Hwang 1, Jeong-Sook Choe 1 and Jung-Bong Kim 1* ( 1 Department of Agro-food Resources, National Institute of Agricultural Sciences, Wanju, 55365, Korea, 2 Department of Food Science and Human Nutrition, College of Human Ecology, Chonbuk National University, Jeonju 561756, Korea) Received: 20 July 2016 / Revised: 12 September 2016 / Accepted: 26 September 2016 Copyright c 2016 The Korean Society of Environmental Agriculture This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ORCID Min-Ki Lee http://orcid.org/0000-0003-3818-0636 Jung-Bong Kim http://orcid.org/0000-0002-0589-3886 Abstract BACKGROUND: Anthocyanins, potential health-promoting compounds, were major natural pigment in the blueberry (Vaccinium corymbosum L.). The objectives of this study was to investigate anthocyanin glycosides in the blueberry varieties. METHODS AND RESULTS: A total of seventeen anthocyanins were identified from highbush blueberry using HPLC (representatives, 530 nm) and ESI-MS in positive ion mode. The individual anthocyanins are containing cyanidin, delphinidin, malvidin, peonidin, and petunidin moieties which are acylated with aliphatic acid (acetic acid) and conjugated with sugar moieties (arabinose, galactose, and glucose). Among them, delphinidin 3-Ogalactoside (D3Ga), peonidin 3-O-glucoside (Pn3G) + malvidin 3-O-galactoside (M3Ga) were major compounds in varieties. Total anthocyanins were found the highest level in 'Elizabeth' (1,406.3 mg/100 g dry weight) which *Corresponding author: Jung-Bong Kim Phone: +82-63-238-3701; Fax: +82-63-238-3844; E-mail: jungbkim@korea.kr was 3-fold higher than Darrow (465.7). Especially, D3Ga was presented the 32% of total anthocyanins followed by Pn3G + M3Ga (20%) in Elizabeth. CONCLUSION: This result was showed as valuable information regarding nutritional properties of the different varieties of the highbush blueberry. Key words: Anthocyanins, Delphinidin glycosides, Malvidin glycosides, Vaccinium corymbosum L. 서론 블루베리 (Vaccinium corymbosum L.) 는빌베리 (bilberry), 크렌베리 (cranberry) 와함께산앵두나무속에속하는식물이다. 수고에따라하이부쉬 (V. corymbosum L.), 로우부쉬 (V. angustifolium L.), 반수고블루베리그리고레빗아이 (V. ashei L.) 블루베리로분류되고휴면기간에따라북부형과남부형으로나뉘며, 국내에는주로하이부쉬블루베리가재배되고있다 (Kim et al., 2010; Kim et al., 2011). 블루베리는식물의이차대사산물로알려진안토시아닌, 플라보노이드, 각종페놀화합물등을기능성성분을함유하고있다 (Bang et al., 2010; Cardenosa et al., 2016). 안토시아닌 184

Anthocyanins in Blueberry Varieties 185 Fig. 1. Chemical structure of six aglycones of anthocyanins. 은천연식물색소로서 6종으로나뉘며 (Fig. 1), glucose, rhamnose 등의당과아실화되어구조적형태에따라약 600여종이존재한다고알려져있다 (Wu and Prior, 2005). 블루베리는과실자체또는가공형태에따라자유라디칼, 활성산소에의한산화적스트레스억제, 저혈당, 항암, 심혈관질환등다양한기능성이알려져있어주스, 와인, 잼등의가공식품으로이용되고있다 (Cho et al., Su and Silva, 2006; Neto, 2007; Rossi et al., 2003). 최근블루베리내안토시아닌에관한연구에의하면블루베리로부터 cyanidin, delphinidin, malvidin, peonidin, petunidin 배당체등 13종의안토시아닌개별성분을분리, 동정하고숙기에따른품종별항산화활성을조사하였고 (Castrejon et al., 2008), 블루베리와빌베리로부터 15종의안토시아닌을분리하고 malvidin 배당체 (galactose, glucose, arabinose) 가블루베리의주요성분이었다 (Bornsek et al., 2012). 또한블루베리는주스의가공과정중안토시아닌함량변화뿐만아니라수확후저장온도에따른안토시아닌함량변화등다양한분야에서연구되고있다 (Kalt et al., 1999; Skrede et al., 2000). 국내에서는블루베리에대한과실의수량과품질등의형태적특성과품종및가공처리에따라조추출물의형태로항산화효과를측정하는연구가많은비중을차지하고있다 (Jeong et al., 2012, Kim et al., 2015). 몇몇연구에서대사체학을기반으로블루베리안토시아닌및페놀화합물을포함하는대사체분석하였으나국내산블루베리안토시아닌개별성분에관한연구는미흡한실정이다 (Jo et al., 2014). 이와같이블루베리는안토시아닌등체내에서생리활성을갖는이차대사산물이풍부한소재로각광받아활발히연구되고있다. 따라서본연구는하이부쉬블루베리내안토시아닌개별성분을분석하고품종에따른함량차이를조사함으로서안토시아닌고함유식품소재로활용가능성을재고하고이를위하여필요한개별성분정보를제공하고자하였다. 재료및방법 시약및기기 Acetonitrile, water는 Fisher Scientific( 미국 ) 사로부터구입하여사용하였으며, formic acid는 Junsei Chemical( 일본 ) 사제품을사용하였다. 내부표준품으로사용한 cyanidin-3, 5-di-O-glucoside(cyanin) 는 Extrasynthese( 프랑스 ) 로부터구입하여사용하였다. 정성및정량을위해 photodiode array detector(2998, Waters Co., Milford, Massachusetts, USA) 가장착된 HPLC system(alliance e2695, Waters Co., Milford, Massachusetts, USA) 및 MS(Mircomass ZQ, Waters Co., Milford, Massachusetts, USA) 를사용하였다. 시료전처리본연구에사용된하이부쉬블루베리는총 8품종으로충남농업기술원으로부터제공받은시료를사용하였다. 건조분말시료 2 g을 conical tube(50 ml) 에담아 20 ml의 5% formic acid in water를넣어 40 진탕항온수조에서 24시간추출한후, 원심분리 (3,000 rpm, 10분, 4 ) 하여상층액 1 ml 를취하였다. Sep-pak C18 classic cartridge 를 MeOH 2 ml, water 2 ml의순으로흘려주어활성화시킨다음, 안토시아닌추출상층액 1 ml 및내부표준물질 (cyanin, 100 ppm) 1 ml을각각 loading 후, water 2 ml로세척하여 MeOH 1 ml로용출시켰다. 용출된안토시아닌여과액은 N 2 가스로농축한후, 1 ml의 5% formic acid in water로재용해하여 LC-PDA-ESI/MS로분석하였다. 각개별성분은내부표준물질 (cyanin) 과비교하여상대적인값을나타내었고, 품종별로 3회반복시행하여얻어진결과를평균값으로표시하였다. LC-PDA-ESI/MS 를이용한안토시아닌개별성분분석안토시아닌개별성분을정성및정량하기위하여 Synergi

186 Lee et al. Polar-RP 80A(4.6 250 mm I.D., 4 μm; Phenomenex, USA) 를장착한 LC-PDA-ESI/MS를사용하였다. 검출파장은 250~600 nm( 대표파장 530 nm) 로설정하였고, 시료주입량은 10 μl, 컬럼오븐온도는 30, 유속은 1 ml/min 로설정하였다. 이동상은 A(5% formic acid in water) 와 B(5% formic acid in water/acetonitrile, 1:1, v/v) 를사용하였다. 각성분을분리하기위하여다음과같은용매구배조건으로수행되었다. 30분동안 solvent B의농도를 20에서 50% 로일정하게증가시켰고, 5분동안 50% 를유지시킨후, 다시 5분동안 50에서 20% 의농도로일정하게감소시킨다음, 10분간 20% 를유지하여안정화시켰다. MS 분석은 electrospray ionization(esi) source를이용한 positive ionization mode로분석되었으며, MS parameter로각각 cone voltage 30 V, source 온도 120, desolvation 온도 500, desolvation N 2 가스 1,020 L/hr 로설정하였다. 분자량범위는 full scan 타입으로 m/z 200-1200로설정하였다. 결과및고찰 하이부쉬블루베리품종별안토시아닌분석하이부쉬 (highbush) 블루베리 8 품종 ( Bluecrop, Bluegold, Chandler, Darrow, Elizabeth, Legacy, Nelson, Patriot ) 에함유된안토시아닌분석은 PDA가장착된 HPLC로대표파장 530 nm에서분석하였고 electrospray ionizion source가장착된 single quadrupole MS에서 positive ion mode로분석하였다. 하이부쉬블루베리로부터총 17종의안토시아닌개별성분을확인하였으며, 각피크의단편이온의패턴, 머무름시간을분석하여안토시아닌의조성을확인하였다 (Fig. 2). 분리된안토시아닌은 cyanidin, delphinidin, malvidin, peonidin, petunidin 을기본구조로하여 3번탄소에 1개의당 (galactose, glucose, arabinose) 과당에 acetic acid가아실화되어있는구조를나타내었다 (Table 1). 각성분에서 1개의당분자가잘려나가는단편이 Fig. 2. LC chromatogram of anthocyanins using high-performance liquidchromatography-photodiode array detector (530 nm) coupled to electrospray ionization mass spectrometry form the highbush blueberry ( Bluegold ). Table 1. Identified seventeen anthocyanins and their mass spectrometric data from the highbush blueberry (Vaccinium corymbosum L.) No. Chemical names Abbreviations MW Fragment ion patterns (m/z) 1 Delphinidin 3-O-galactoside D3Ga 465 465/303 2 Delphinidin 3-O-glucoside D3G 465 465/303 3 Cyanidin 3-O-galactoside C3Ga 449 449/287 4 Delphinidin 3-O-arabinoside D3A 435 435/303 5 Cyanidin 3-O-glucoside C3G 449 449/287 6 Petunidin 3-O-galactoside Pt3Ga 479 479/317 7 Petunidin 3-O-glucoside Pt3G 479 479/317 8 Cyanidin 3-O-arabinoside C3A 419 419/287 9 Peonidin 3-O-galactoside Pn3Ga 463 463/301 10 Petunidin 3-O-arabinoside Pt3A 449 449/317 11 Peonidin 3-O-glucoside Pn3G 463 463/301 12 Malvidin 3-O-galactoside M3Ga 493 493/331 13 Malvidin 3-O-glucoside M3G 493 493/331 14 Malvidin 3-O-arabinoside M3A 463 463/331 15 Petunidin 3-O-(6"-O-acetoyl)glucoside Pt3,6AcG 521 521/317 16 Malvidin 3-O-(6"-O-acetoyl)galactoside M3,6AcGa 535 535/331 17 Malvidin 3-O-(6"-O-acetoyl)glucoside M3,6AcG 535 535/331 * All samples analyzed in positive ion mode (m/z, [M] + ) using LC-PDA-ESI/MS * No., the elution order of anthocyanins from HPLC chromatogram.

Anthocyanins in Blueberry Varieties 187 Fig. 3. Electrospray ionization mass spectrometry (ESI-MS) spectra (positive ion mode, [M] + ) of anthocyanins identified from the highbush blueberry (Vaccinium corymbosum L.). a), delphinidin 3-O-glalactoside; b), delphinidin 3-O-glucoside; c), cyanidin 3-O-galactoside + delphinidin 3-O-arabinoside; d), cyanidin 3-O-glucoside; e), petunidin 3-O-galactoside; f), petunidin 3-O-glucoside; g), cyanidin 3-O-arabinoside; h), peonidin 3-O-galactoside + petunidin 3-O-arabinoside; i), peonidin 3-O-glucoside + malvidin 3-O-galactoside; j), malvidin 3-O-glucoside; k), malvidin 3-O-arabinoside; l), petunidin 3-O-(6"-O-acetyl)glucoside; m), malvidin 3-O-(6"-O-acetyl)galactoside; n), malvidin 3-O-(6"-O-acetyl)glucoside. 온패턴을나타내었으며 (Fig. 3), 동일한단편이온패턴을갖는성분은타연구결과를바탕으로안토시아닌개별성분을확인하였다 (Cardenosa et al., 2016; Nakajima et al., 2004). 동일한 aglycone 을갖는안토시아닌의경우당종류에따라머무름시간의차이가있는것을알수있었고 galactose glucose arabinose 의순으로검출되는것을확인하였다. Malvidin과 petunidin에서는아실화되어있는형태도확인되었으며결합된당 (galactose와 glucose) 의 6" 번위치에 acetic acid가결합되어있는것을확인하였다. Cyanidin 3-O- galactoside(c3ga) 와 delphinidin 3-O-arabinoside(D3A), cyanidin 3-O-glucoside(C3G) 와 petunidin 3-O-galactoside (Pt3Ga), peonidin 3-O-galactoside(Pn3Ga) 와 petunidin 3-O-arabinoside(Pt3A), peonidin 3-O-glucoside(Pn3G) 와 malvidin 3-O-galactoside(M3Ga) 는본연구에사용된용매구배조건에서는분리되지않았다. 하이부쉬블루베리품종별안토시아닌상대적함량변화본연구에사용된블루베리중남부형인 Legacy 를제외

188 Lee et al. Table 2. Relative contents of anthocyanins (mg/g dry weight) in different highbush blueberry (Vaccinium corymbosum L.) varieties Variety Harvest season D3Ga D3G C3Ga + D3A C3G + Pt3Ga Pt3G C3A Pn3Ga + Pn3A Chemical names Pn3G + M3Ga M3G M3A Pt3,6AcG M3,6AcGa M3,6AcG Total Patriot Early-season 99.9 155.8 92.6 121.6 127.3 29.6 26.5 128.3 227.8 49.2 20.3 9.3 40.3 1128.5 Bluegold Early-season 229.4 80.2 181.6 132.0 62.7 21.0 74.0 213.9 102.7 131.2 15.9 21.5 33.6 1299.9 Legacy Mid-season 411.3 14.8 192.3 221.2 13.0 23.7 68.3 315.5 15.9 106.5 NDa) ND ND 1382.4 Bluecrop Mid-season 355.6 12.3 193.1 193.9 10.9 24.9 80.3 328.7 15.6 152.7 0.2 ND ND 1368.1 Elizabeth Mid-season 448.7 15.5 216.5 205.9 11.2 19.9 73.9 277.4 13.4 116.1 0.4 7.0 0.4 1406.3 Darrow Late-season 56.5 32.6 56.5 39.4 28.7 8.4 24.3 77.9 64.4 67.4 1.4 2.7 5.3 465.7 Nelson Late-season 117.2 67.0 87.8 75.5 57.3 12.6 30.8 105.9 97.2 52.6 0.5 1.3 0.6 706.4 Chandler Late-season 146.3 71.9 95.3 81.8 56.0 10.2 32.1 114.9 91.7 54.6 ND ND 1.1 755.7 a) ND, not detected. 한 7 품종이북부형하이부쉬블루베리였으며, Patriot, Bluegold 는조생종, Legacy, Bluecrop, Elizabeth 는중생종이었고 Chandler, Darrow, Nelson 은만생종이었다. 8 품종의하이부쉬블루베리에함유되어있는총안토시아닌의함량범위는 465.7~1406.3 mg/100 g dry weight(dw) 로나타났다 (Table 2). 중생종의총안토시아닌함량은평균 1,385.6 mg/100 g DW로가장높았고조생종 (1,214.2), 만생종 (642.6) 의순으로숙기에따라총안토시아닌함량변화를보였다. 품종별총안토시아닌함량은 Elizabeth (1,406.3) > Legacy (1,382.4) > Bluecrop (1,368.1 mg/100 g DW) 순으로중생종이높았으며, Elizabeth 는만생종인 Darrow (465.7 mg/100 g DW) 보다약 3배높았다. 블루베리는같은산앵두나무속에속하는빌베리 (V. myrtillus) 의안토시아닌조성과비슷한경향을나타내었으며, 총안토시아닌함량은빌베리 (599.7 mg/100 g fresh weight, FW) 와비슷하였고 blackcurrant (235.6) cowberry(68.2) 보다높았다 (Kahkonen et al., 2003). 조생종의경우, 총안토시아닌함량은 Bluegold (1,299.9) 가 Patriot (1,128.5 mg/100 g DW) 보다약간높았고조생종내에서큰차이는없었다. Patriot 에서는총 malvidin 배당체 (Pn3G 포함 ) 함량비율이약 40% 로 delphinidin 배당체 (C3Ga 포함, 약 31%) 보다높았고 malvidin 3-Oglucoside(M3G) 가 227.8 mg/100 g DW로가장높은성분으로나타났다. 블루베리의주요안토시아닌계열로 malvidin 배당체가총함량의약 52%, 다음으로 delphinidin 배당체가약 26% 를차지한다고보고되어진연구결과와비슷한경향을나타내었다 (Bornsek et al., 2012). 반면에 Bluegold 에서는 malvidin, delphinidin 배당체비율이각각약 39, 38% 로비슷하였고 delphinidin 3-O-galactoside(D3Ga, 229.4 mg/100 g DW) 이주요성분으로나타났다. 중생종과만생종에서는미검출또는검출되지않은아실화된안토시아닌인 petunidin 3-O-(6"-O-acetoyl)glucoside(Pt3,6AcG), malvidin 3-O-(6"-O-acetoyl)galactoside(M3,6AcGa), malvidin 3-O-(6"-O-acetoyl)glucoside(M3,6AcG) 은조생종에서상대적으로높게나타났다. 중생종의경우, 안토시아닌함량이 1,368.1~1,406.3 mg/ 100 g DW이었으며, 만생종 (465.7~755.7) 에비하여평균안토시아닌함량이약 2배더높았다. 중생종 3품종의총 delphinidin 배당체 (C3Ga 포함 ) 함량은평균 620.0 mg/100 g DW로총 malvidin 배당체 (Pn3G 포함 ) 함량평균 (447.3) 보다약 1.4배높아주요 aglycone임을알수있었고 D3Ga( 평균 405.2) 가주성분으로나타났다. 타연구의결과와마찬가지로블루베리의안토시아닌함량이품종에따라차이가나타났고배당체중 galactose 결합이 glucose 결합보다더많은비중을차지하였으며, 품종에따라주요 aglycone인 delphinidin, malvidin 배당체들의함량비율이달라지는것을확인하였다. 또한 D3Ga가 Bluecrop 내주요성분으로나타나본연구와비슷한경향을나타내었다 (Cho et al., 2004). 남부형하이부쉬블루베리 ( Legacy ) 와북부형하이부쉬블루베리 ( Bluecrop, Elizabeth ) 간안토시아닌조성과함량은큰차이가없는것으로나타났다. 중생종의 M3G 함량 ( 평균 15.0 mg/100 g DW) 은조생종 ( 평균 165.3 mg/100 g DW) 과비교하여약 11배감소하였다. 만생종인 Nelson 과 Chandler 의안토시아닌함량 ( 각각 706.4, 755.7 mg/100 g DW) 은비슷하였고, Darrow 의안토시아닌함량은 465.7 mg/100g로가장낮았다. Nelson 과 Chandler 는 delphinidin 배당체 (C3Ga 포함 ) 함량비율이각각약 39, 42% 로 malvidin 배당체 (Pn3G 포함 ) 보다높았으나, Darrow 에서는 malvidin 배당체 (Pn3G 포함, 약 47%) 가주요안토시아닌으로나타났다. 이와같이 8품종의하이부쉬블루베리의안토시아닌조성및함량을조사한결과, delphinidin 배당체와 malvidin 배당체가총함량의약 70% 이상을차지하고있는주된성분들이었고 D3Ga, Pn3G+M3Ga, M3G가주요성분인것을알수있었다. Delphinidin 배당체와 malvidin 배당체의비율및함량, 총안토시아닌함량은같은숙기와품종에따라다른함량의차이가있는것으로나타났다. 국외에서재배된 87

Anthocyanins in Blueberry Varieties 189 종의하이부쉬블루베리의안토시아닌을정량분석한결과, 본연구결과와함량과차이가나타났다 (Ehlenfeldt and Prior, 2001) 이는블루베리내안토시아닌조성과함량의차이가품종을포함한여러가지요인에의해설명될수있음을의미한다. 타연구에의하면빛, 온도, 토양, 재배법등의환경적인요인이이차대사산물의합성에영향을미칠수있다고보고하였으며 (Saure, 1990) 이로인하여안토시아닌합성에영향을미쳤을것으로설명되어질수있다. 최근에는식물의방어물질로서의이차대사산물이다양한기능성을나타낸다는여러연구결과를바탕으로기능성성분의관한연구가활발히이루어지고있다. 블루베리는안토시아닌뿐만아니라플라보노이드 (myricetin, quercetin 배당체등 ) 등다양한이차대사산물을함유하고있는것으로알려져있다 (Miles et al., 2013). 안토시아닌, 플라보노이드, 페놀화합물등블루베리내이차대사산물의생리활성에관한연구를통하여그중요성이점차증가되고있다 (Ehlenfeldt and Prior, 2001; Wang et al., 2012). 이에따라안토시아닌섭취후체내대사과정의이용률을쥐, 사람을대상으로연구되고있다 (Cao et al., 2001; McGhie et al., 2003). 비록섭취한안토시아닌이모두체내에서이용되지는않고체외로배출된다고알려져있지만 (Matsumoto et al., 2001; Wu et al., 2002) 안토시아닌의기능적으로긍정적인효과때문에안토시아닌고함유식품을통한적절한섭취가필요하다고판단된다. 따라서국내산하이부쉬블루베리내안토시아닌개별성분의정확한정성, 정량평가와함께안토시아닌고함유품종을조사함으로서블루베리가안토시아닌고함유소재로활용가능성을제시할수있으며향후안토시아닌개별성분의대사, 생리활성과관련된연구에기초정보를제공할수있을것으로사료된다. 결론 본연구에서는품종및숙기별하이부쉬블루베리내안토시아닌의개별성분분석을통하여안토시아닌고함유자원을조사하였다. 총 8 품종의하이부쉬블루베리로부터총 17 종의안토시아닌이확인되었으며, 총안토시아닌함량범위는품종및숙기에따라차이를보였고중생종의함량이높게나타났다. 안토시아닌고함유품종으로는중생종에속하는 Elizabeth 가 1,406.3 mg/100 g DW로가장높은함량을나타냈다. 본연구결과를토대로국내에서재배된 8종의하이부쉬블루베리내안토시아닌의조성및함량분석을통하여안토시아닌고함유식품소재로활용될가능성이있을것으로판단되며, 향후이와관련된연구에기초정보를제공할수있을것으로사료된다. Acknowledgment This study was carried out with the support of Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01178704) Rural Development Administration, Republic of Korea. References Bang, I. S., Yu, C.Y., & Lim, J. D. (2010). Effects of temperature and UV irradiation on stability of anthocyanin-polyphenol copigment complex in mulberry fruits. Korean Journal of Medicinal Crop Science, 18(3), 191-200. Bornsek, S. M., Ziberna, L., Polak, T., Vanzo, A., Ulrih, N. P., Abram, V., & Passamonti, S. (2012). Bilberry and blueberry anthocyanins act as powerful intracellular antioxidants in mammalian cells. Food Chemistry, 134(4), 1878-1884. Cao, G., Muccitelli, H. U., Sanchez-Moreno, C., & Prior, R. L. (2001). Anthocyanins are absorbed in glycated forms in elderly women: a pharmacokinetic study. The American Journal of Clinical Nutrition, 73(5), 920-926. Cardenosa, V., Girones-Vilaplana, A., Muriel, J. L., Moreno, D. A., & Moreno-Rojas, JM. (2016). Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.). Food Chemistry, 202, 276-283. Castrejon, A. D. R., Eichholz, I., Rohn, S., Kroh, L. W., & Huyskens-Keil, S. (2008). Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chemistry, 109(3), 564-572. Cho, M. J., Howard, L. R., Prior, R. L., & Clark, JR. (2004). Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. The Journal of the Science of Food and Agriculture, 84(13), 1771-1782. Ehlenfeldt, M. K., & Prior, R. L. (2001). Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. Journal of Agricultural and Food Chemistry, 49(5), 2222-2227. Jeong, H. R., Jo, Y. N., Jeong, J. H., Kim, H. J., & Heo, H. J. (2012). Nutritional composition and in vitro antioxidant activities of blueberry (Vaccinium ashei) leaf. The Korean Society of Food Preservation, 19(4), 604-610. Jo, Y. H., Kim, S., Kwon, D. A., Lee, H. J., Choi, H. K., & Auh, J. H. (2014). Metabolomic analysis of ethyl acetate and methanol extracts of blueberry. Journal of the Korean Society of Food Science and Nutrition,

190 Lee et al. 43(3), 419-424. Kahkonen, M. P., Heinamaki, J., Ollilainen, V., & Heinonen, M. (2003). Berry anthocyanins: isolation, identification and antioxidant activities. The Journal of the Science of Food and Agriculture, 83 (14), 1403-1411. Kalt, W., Forney C. F., Martin, A., & Prior, R. L. (1999). Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. Journal of Agricultural and Food Chemistry, 47(11), 4638-4644. Kim, H. L., Kwack, Y. B., Kim, H. D., & Choi, Y. H. The flowering and fruit properties of northern highbush blueberry in southern regions of Korea. Korean Journal of Horticultural Science & Technology, 29, 122-122. Kim, J. G., Ryou, M. S., Jung, S. M., & Hwang, Y. S. (2010). Effects of cluster and flower thinning on yield and fruit quality in highbush Jersey blueberry. Journal of Bio-Environment Control, 12, 392-396. Kim, S. J., Bae, K. S., Koh, S. W., Kim, H. C., & Kim, T. C. (2015). Morphology and characteristics of floral organ in highbush blueberry (Vaccinium corymbosum) cultivars. Korean Journal of Plant Research, 28(2), 235-242. Matsumoto, H., Inaba, H., Kishi, M., Tominaga, S., Hirayama, M., & Tsuda, T. (2001). Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. Journal of Agricultural and Food Chemistry, 49(3), 1546-1551. Miles, T. D., Vandervoort, C., Nair, M. G., & Schilder, A. C. (2013). Characterization and biological activity of flavonoids from ripe fruit of an anthracnose-resistant blueberry cultivar. Physiological and Molecular Plant Pathology, 83, 8-16. McGhie, T. K., Ainge, G. D., Barnett, L. E., Cooney, J. M., & Jensen, D. J. (2003). Anthocyanin glycosides from berry fruit are absorbed and excreted unmetabolized by both humans and rats. Journal of Agricultural and Food Chemistry, 51(16), 4539-4548. Nakajima, J. I., Tanaka, I., Seo, S., Yamazaki, M., & Saito, K. (2004). LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. Journal of Biomedicine and Biotechnology, 2004(5), 241-247. Neto, C. C. (2007). Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Molecular Nutrition & Food Research, 51(6), 652-664. Rossi, M., Giussani, E., Morelli, R., Scalzo, R. L., Nani, R. C., & Torreggiani, D. (2003). Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Research International, 36(9), 999-1005. Saure, M. C. (1990). External control of anthocyanin formation in apple. Scientia Horticulturae, 42(3), 181-218. Skrede, G., Wrolstad, R. E., & Durst, R. W. (2000). Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). Journal of Food Science, 65(2), 357-364. Su, M. S., & Silva, J. L. (2006). Antioxidant activity, anthocyanins, and phenolics of rabbiteye blueberry (Vaccinium ashei) by-products as affected by fermentation. Food Chemistry, 97(3), 447-451. Wang, S. Y., Camp, M. J., & Ehlenfeldt, M. K. (2012). Antioxidant capacity and α-glucosidase inhibitory activity in peel and flesh of blueberry (Vaccinium spp.) cultivars. Food Chemistry, 132(4), 1759-1768. Wu, X., Cao, G., & Prior, R. L. (2002). Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. The Journal of nutrition, 132(7), 1865-1871. Wu, X., & Prior, R. N. (2005). Systematic identification and characterization of anthocyanins by HPLC-ESI- MS/MS in common foods in the United States: fruits and berries. Journal of Agricultural Food Chemistry, 53(7), 2589-2599.