16(5)-03(56).fm

Similar documents
16(5)-04(61).fm

12.077~081(A12_이종국).fm

14.fm

untitled

fm

14.531~539(08-037).fm

18(3)-10(33).fm

64.fm

19(1) 02.fm

50(1)-09.fm

16(5)-06(58).fm

10(3)-09.fm

82-01.fm

17(1)-08(06).fm

10.063~070(B04_윤성식).fm

304.fm

(163번 이희수).fm

9(3)-4(p ).fm

605.fm

10(3)-10.fm

16(6)-06(08(77)).fm

75.fm

93.fm

41(6)-09(김창일).fm

한 fm

82.fm

10(3)-12.fm

11(5)-12(09-10)p fm

3.fm

( )-123.fm

4.fm

12(3) 10.fm

16(5)-02(57).fm

07.045~051(D04_신상욱).fm

<30332DB9E8B0E6BCAE2E666D>

416.fm

10(3)-02.fm

12(4) 10.fm

18(3)-09(34).fm

50(4)-10.fm

fm

38(6)-01.fm

10(1)-08.fm

( )45.fm

62.fm

44(1)-01(이기안).fm

04-46(1)-06(조현태).fm

( )-36.fm

12(2)-04.fm

03.fm

< DC1A4C3A5B5BFC7E22E666D>

17(4)-04(41).fm

50(5)-07.fm

17.393~400(11-033).fm

14(4) 09.fm

19(5)-04[57].fm

01.01~08(유왕진).fm

15.101~109(174-하천방재).fm

17(1)-06.fm

16(1)-3(국문)(p.40-45).fm

( )-101.fm

fm

143.fm

49(6)-06.fm

untitled

83.fm

DBPIA-NURIMEDIA

15.fm

(1)-01(정용식).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

87.fm

( )-103.fm

( )-122.fm

( )-42.fm

18103.fm

<312D303128C1B6BAB4BFC1292E666D>

DBPIA-NURIMEDIA

( )-83.fm

107.fm

( )-113.fm

51(4)-13.fm

69-1(p.1-27).fm

18211.fm

57.fm

23(2) 71.fm

07.051~058(345).fm

( )-94.fm

8(2)-4(p ).fm

10.fm

50(6)-03.fm

84-07.fm

50(1)-02.fm

<30312DC0CCC7E2B9FC2E666D>

fm

14(2) 02.fm

144.fm

83-07.fm

untitled

48.fm

27(5A)-07(5806).fm

Transcription:

Journal of Korean Powder Metallurgy Institute DOI: 10.4150/KPMI.2009.16.5.316 ƒ w Fe œ w Cu wy SPS (I) I. ƒ wy y Á xá½ Á½ *Á½{ a w œw, a w» gœ Production of Fe Amorphous Powders by Gas-atomization Process and Subsequent Spark Plasma Sintering of Fe Amorphous-ductile Cu Composite Powders Produced by Ball-milling Process (I) I. Gas Atomization and Production of Composite Powders Ho-Jin Ryu, Jae-Hyun Lim, Ji-Soon Kim, Jin-Chun Kim* and H. J. Kim a School of Materials Science & Engineering, University of Ulsan, Ulsan, 680-749, Korea a Eco Functional Materials Team, Korea Institute of Industrial Technology Songdo-dong, Yeonsoo-gu, Incheon, 406-840, Korea (Received July 6, 2009; Revised August 3, 2009; Accepted August 19, 2009) Abstract Fe based (Fe 68.2 C 5.9 Si 3.5 B 6.7 P 9.6 Cr 2.1 Mo 2.0 Al 2.0 ) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The experiment results show that the as-prepared Fe amorphous powders less than 90 μm in size has a fullly amorphous phase and its weight fraction was about 73.7%. The as-atomized amorphous Fe powders had a complete spherical shape with very clean surface. Differential scanning calorimetric results of the as-atomized Fe powders less than 90 μm showed that the glass transition, T g, onset crystallization, T x, and super-cooled liquid range ΔT=T x T g were 512, 548 and 36 o C, respectively. Fe amorphous powders were mixed and deformed well with 10 wt.% Cu by using AGO-2 high energy ball mill under 500 rpm. Keywords : Amorphous powders, Gas atomization, Ball milling process, Composite powders 1. w 1960 Au 75 Si 25 w þƒ z Allied Signal ƒ Metglass yw. 1980 w š w t y w ƒ y w, 1990 w w p ƒ š [1, 2]. j w (Bulk Metallic Glass, BMG) w ƒ y w 1 GPa Al w w y w. þƒ», ƒ w x Ì 0.2 mm w q y v j(flake), y w [3], jš,», x. w û x j» y w *Corresponding Author : [Tel : +82-52-259-2231; E-mail : jckimpml@ulsan.ac.kr] 316

ƒ w Fe œ w Cu wy SPS (I) 317 Table 1. Chemical compositions and thermal properties of Fe based amorphous powders. (at%) Component (Atomic %) Tg( o C) Tx( o C) ΔTx( o C) ΔH(J/g) Fe 66.8 C 7.4 Si 3.5 B 6.7 P 9.5 Cr 2.1 Mo 2.0 Al 2.0 526 563 38-91 Fe 66.7 C 7.7 Si 3.5 B 6.6 P 9.5 Cr 2.1 Mo 2.0 Al 2.0 522 556 34-90 Fe 68.3 C 5.9 Si 3.5 B 6.7 P 8.8 Cr 2.2 Mo 2.5 Al 2.1 518 550 32-89 Fe 68.2 C 5.9 Si 3.5 B 6.7 P 9.6 Cr 2.1 Mo 2.0 Al 2.0 517 558 41-84 Fe 64.3 C 6.9 Si 2.5 B 6.7 P 8.8 Cr 2.2 Mo 2.1 Al 2.0 515 554 39-83 š w x w x/». û x w j» ü Á 2 w yw [4, 5]. 2 gq wy w.» ü 2 ww œ yƒ w. 2 gq y w yw,» s [6, 7]. ù, ƒ w œ 2 yww œ, yw- x- e. yw œ 2 k - w p ƒ w, œ w [8-11]. ƒ Fe wš, œ mw Cu wyw. z p w» w v mw š Fe- Cu w wš, x p š w. Fe ƒ w, (slag) w [12]. 2. x 2.1. Fe,» Fe w w ƒ, ew t ƒ, [13]. t 1 w Fe, x ƒ w Fe 68.2 C 5.9 Si 3.5 B 6.7 P 9.6 Cr 2.1 Mo 2.0 Al 2.0 kw. (ΔT x ) ΔT g 517 o C, T x 558 o C, T x 41 C ƒ o ΔT x š. t 1 Fe w t ùkü, at% y w ùkü, k Fe 81.0 C 1.5 Si 2.1 B 1.5 P 6.3 Cr 2.3 Mo 4.1 Al 1.2. Fe 81.0 wt% š,»k (metalloid) C, Si, B, P Mo, Al. k y œ ƒ kw. Fe w C, Si, B, P w w» þƒ ƒ ƒ w. Kim [6, 7]» w, œ», 1350~1450 o C, 40 bar ƒ w. 2.2. Cu» wy w y (558 o C) (1083 C) ƒ Cu o kw. p Cu w š, yw» 2 w p w v ƒ w. 1 w Cu x FE- SEM. Cu š w y. s³ 40 μm 100 μm w y. ƒ Fe w Cu 5~15 wt%¾ ƒw w w. wy 3 yw»(turbular mixer) š (AGO-2, Planetary ball mill) 2ƒ w. Turbular yw» 3 z p

318 y Á xá½ Á½ Á½{ Fig. 2. Volume comparison of the as-synthesized powder. Fig. 1. FE-SEM image of the raw Cu powder. s yw w w, Fe q ³ w ywy ww œ š q. AGO-2» w yƒ ƒ w š œ. wy w 1:10 w, wy y w w» w y Ar» ww. wy xk w Ÿwx, x (Field Emission Scanning Electron Microscope, FE-SEM), X z (X-Ray Diffraction, XRD) Ÿ»(Energy Dispersive X- ray Spectroscopy, EDS) w. 3. x 3.1. ƒ w p ƒ w y y y (sieving) XRD w. ƒ μmj» l nmj» ¾ w j» w. w j» þƒ ƒ», þƒ y ƒ yw», y w» w w. w q (flake) w z, j» y w» w +150 μm, -150+106 μm, -106+90 μm, -90+75 μm, -75+43 μm, -43 μm ( z ƒƒ 1, 2, 3, 4, 5, 6 ) w y w, ƒ x w. 2 ƒ z v w» w j». l j» y 1 6 ¾ ùkü, 1 ƒ v, z 4, 5 w. 1 q x w vƒ ƒ j. j» x ƒ q x w 4, 5 p ùkü ƒ w ww š w. t 2 ƒ t ùkü, 3 v ù kü. t 2 3 r ƒ y q w. 150 μm 9.5%, w 90.5%. š -150+90 μm 16.8%, w Table 2. Distribution result of the powder synthesized by gas atomization Sieve Mesh Size (μm) Average Size (μm) Weight (Powder, g) Rate (%) ~100 ~150 150 22.01 9.5 100~140 150~106 128 25.56 11.1 140~170 106~90 98 13.08 5.7 170~200 90~75 82.5 47.47 20.6 200~325 75~43 59 103.24 44.7 325~ 43~ 43 19.52 8.4 Journal of Korean Powder Metallurgy Institute

ƒ w Fe œ w Cu wy SPS (I) 319 Fig. 3. Cumulative distribution of the as-synthesized powder. 73.7% y w. 100 μm w y w. 4 ƒ j» x x w. r xyƒ w, 4 (a) (b) s³ ƒ 100 μm j»» ƒ œ š x w ƒ. ù (c) (d) 100 μm w x š. 5 j» ü ù kü. (a) 150 μm j», 400 μmƒ q (flake) x ƒ. ƒ,» þƒ wš ü t w þƒ q š. (b) (c) (-150+106, -106+90 μm) ü»œ y ƒ ü û» ƒ ùƒ w þƒ. (d) (-90+75 μm)» œ ¼ w, (b), (c) j»œ, x x ƒ y w. -75 μm w (e) (f) Fig. 4. Images of the as-prepared Fe amorphous powders.

320 y Á xá½ Á½ Á½{ Fig. 5. Cross section images of the as-prepared Fe amorphous powders. x š, w w x y w. 6 j» w z, y XRD w w. 6 1 4 w w vj(halo peak)ƒ x y w, yƒ š q w. 2, 3 (-150+106, -106+90 μm) w vj(halo peak) ƒ y vj x. Fe 3 C y FeB y [12]. w 4 w q w. 1» w q x» w, v ƒ j», 9.5% w. ƒ e w þƒ p ƒ ù, ƒ wš q x» x Journal of Korean Powder Metallurgy Institute

ƒ w Fe œ w Cu wy SPS (I) 321 Fig. 6. XRD graph of the as-prepared Fe amorphous powders. w. 3.2. p Fe p w (t 1) w. 7 8 Fe DSC. 7 (a), (b), (c) ƒƒ 2, 4, 6 DSC v 8 (a), (b), (c) (Glass transition temperature, T g ) (ΔT x ) y w» w v (200~600 C) ùk o ü. t 3 7 8 w k p t ùkü. p ùkü 4 T g 512 o C, T x 548 o C, ΔT x 36 o C. 6 T g 514 o C, T x 548 o C, T x 34.» T g 517 o C, T x 558 o C, ΔT x 41 C w o T g, T x 10 C o shift š, ΔT x w» p ƒ j ( ) w š, 7, 8 ƒ w Fig. 7. DSC graphs of the as-prepared Fe amorphous raw powders. Fig. 8. Magnified DSC graphs of the as-prepared Fe amorphous raw powders.

322 y Á xá½ Á½ Á½{ Table 3. Thermal behaviors of the as-prepared Fe amorphous powders Sample Temp T g T x ΔT x Bulk (Ref. 13) 517 558 41-90+75 μm 512 548 36-43 μm 514 548 34 w» ƒ q. ƒ w x ƒœ ƒ w» ΔT x ƒ z x ƒœ w. w ΔT x ƒ 35 o C ü, z x/ w ƒ q. 3.3. wy p 9 wy wy FE-SEM. (a) Fe x r x š y w. (b) Turbular mixer w 12 yww. 1 y Cu q w 20~40 μm j» ƒ k ù, (agglomeration)(t ) y w. x Fe x š x x wš. (c) AGO-2 w 300 rpm 10 w y k w xk Cu q 20~30 μm j» y w. Turbular mixer w (b) AGO-2 š w Fe ƒ x/q (t Fig. 9. FE-SEM images of the as-milled Fe-Cu composited powders with different processes. Journal of Korean Powder Metallurgy Institute

ƒ w Fe œ w Cu wy SPS (I) 323 Fig. 10. FE-SEM images of the as-milled Fe-Cu composite powder with Cu contents (-43 μm, AGO-2, 500 rpm, 10 min, Ar atmosphere). ), ³ew x y. (d) AGO-2 w 500 rpm x w w. Cu (c) w x, ³e x (t )., Turbular mixer Fe x ù Cu wš, AGO-2, 300 rpm wyw x ³e x ƒ, š ƒw 500 rpm Cu Fe ³ w x ƒ y w. AGO-2 500 rpm w Cu ƒ x ƒ AGO-2 500 rpm ƒ ƒ x/ q. Fe Cu w ü» w Cu w w. Cu w w œ wù,» w w, w w» w x ww. 10 500 rpm ƒ x ùkü. Cu 5 wt.% x Cu j» 20~60 μm ƒ j y w, Cu 10 wt.% j» 10~40 μm w ƒ ³ w y w. Cu 15 wt% j» 20~50 μm ƒw w, q x ƒ y w. z Fe- Cu w SPS 10 wt% Cu ƒ ³ w q, w z» [13]. 11 w EDS. 11 (a), 11(b) 10 wt% Cu w ùkü.» Fe-C-Si-B-P-Cr-Mo-Al, EDS ƒ y w. EDS w» w. wr 500 rmp ³ w wy Fe- Cu 10 wt% w w Cu vj y w. 4. Fe wš,

324 y Á xá½ Á½ Á½{ Fig. 11. EDS results of the as-atomized Fe powder and 10 wt% Cu composite powder. p r. w w wy œ š Fe Cu w yw, z v ww w. 1. ƒ Fe 150 μm w x ƒ. j» y w -150+90 μm j» y vjƒ, 90 μm w xkƒ ùkù y w. 2. ƒ y 90 μm w, w 73% y w. DSC T g 512 o C, T x 548 o C, ΔT x 36 C y w o. 3. wy p, Turbular mixer, AGO-2 300 rpm, AGO-2 500 rpm w, š x j û, Cu yw ƒw. 4. w wy r Cu 5wt% f, 15 wt% Cu Cu q x. Cu w 10 wt% ƒ ³ w s ƒ y w. 10 wt% Cu ƒ ³ w w q. j ù w w,. š x [1] A. Inoue: Acta Mater., 48 (2000) 279. [2] T. Masumoto: Materials Science of Amorphous Met- Journal of Korean Powder Metallurgy Institute

ƒ w Fe œ w Cu wy SPS (I) 325 als, Ohmu, Tokyo, (1982). [3] M. Hagiwara, A. Inoue and T. Masumoto: Metal Trans. A, 13 (1982) 373. [4] H. Fu, H. Zhang, H. Wang, Q. Zhang and Z. Hu: Scripta Mater., 52 (2005) 669. [5] C. C. Hays, C. P. Kim and W. L. Johnson: Mater. Sci. Eng. A, 304-306 (2001) 650. [6] Y. J. Kim, B. K. Kim and J. C. Kim: Mater. Sci. Eng. A, 449 (2007) 1071. [7] J. C. Kim, Y. J. Kim. B. K. Kim, J. S. Kim: J. Korean Powder Metall. Inst., 13 (2006) 351. [8] J. S. Benjamain: Metall. Trans., 1 (1970) 2943. [9] J. S. Benjamain and R. C. Benn, editors.: Frontiers of high-temperature materials II. New York, INCO Alloys International, (1983). [10] J. S. Benjamain and T. E Vollin: Metall. Trans., 5G(1974) 1929. [11] C. C. Koch, O. B. Cavin, C. G. McMamey and J. O. Scarbrough: Appl. Phys. Lett., 43 (1983) 1017. [12] J. C. Kim, H. J. Ryu, J. S. Kim, J. C. Kim and H. J. Kim: J. Korean Powder Metall. Inst., in press (2009) (Korean). [13] H. Li and S. H. Lee: Mater. Sci. Eng. A, 449-451 (2007) 189.