Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006, pp. 489-497 k m m l ~ n i o mp Ç kç m Ç psç * r r l o rl 305-380 re o v 103-16 * r (t) 446-912 npe 360-9 (2006 2o 2p r, 2006 6o 15p }ˆ) Economic Feasibility of Conversion of the Pulverized Coal Firing Boiler using Korean Anthracite into a Circulating Fluidized Bed Boiler Jong-Min Lee, Dong-Won Kim, Jae-Sung Kim, Jong-Jin Kim and Hyeng-Seok Kim* Power Generation Laboratory, Korea Electric Power Research Institute, KEPCO, 103-16, Moonji-dong, Yuseong-gu, Daejeon 305-380, Korea *Korea Power Engineering Company, 360-9, Mabuk-dong, Giheung-gu, Yongin, Gyeonggi-do, 446-912, Korea (Received 2 February 2006; accepted 15 June 2006) k lˆp n ˆ p (m 2 ) p r p, r np r ~r p p o p p r e r p m. r o p p r em sp ˆ p ov el p Œq kl r m pp mp, l r eqp l r p m. r, ˆl r l p vop p lˆ r lp s p ov p r v sp p lp, r l p vo ˆ l o p p r p q r r l p pr v l v pn l pl sp r v ˆ p l. h Abstract The economical efficiency of conversion of the PC (pulverized coal) firing boiler to the CFB (circulating fluidized bed) boiler which used Koran anthracite as fuel was evaluated. The economic feasibility study was also carried out with regard to maintenance of the existing PC boiler. The sensitivity of economical efficiency with variation of the electric power and coal industry and the policy of government was analyzed and compared. As a results of the evaluation, the economical efficiency of maintenance of the existing PC boiler was higher than that of conversion to the CFB boiler because of the special policy of the government for Korean anthracite. However, the conversion to the CFB boiler was more economically attractive from a point of view of effective use of energy resources and future electric power industry. Additionally, the fund support for electric power industry using Korean anthracite would be effective as changing the policy of the government. Key words: CFB, Economical Efficiency, Conversion, Korean Anthracite 1. 1970 p mp p 2000 l e l m p p dp r p l v r m l n l vop ˆm p l rm p. p l tn l vp lˆp pr, r rr nl m p p. p o p r l v r l To whom correspondence should be addressed. E-mail: jmlee@kepri.re.kr r l v p o kp v v kp, r lˆp prp l p p o l p q r r ep p [1-4]. o l p r o s p l n pl l rk p rp k, p rp l l vop tp p, l p ˆ ˆv lp r seˆ p l v r p [5-6]. p r ˆ p r r p vlrp q l p v kp l p, ~r e pn ppp p k, pnl pm d, RDF RPF p d 489
490 ps Ë oë q Ë svë v o p l n pl, p q l n p f llv CO 2 r lp p p [7-8]. r lˆp pn r p p o (200 MWe 2 ) p m m (125 MWe 1, 200 MWe 1 ) } (200 MWe 2 )p ˆ p p. p t p rn r rp lˆn ˆ ep p nmp r l pl o l lv p p. q npp ˆ p n r l m l rk p p 30Í p p sl (mp) np mp e l p, o p n sl lp r lˆ p l k, l e l p ~ e v p l pp dl m p p p., o p DeSOx DeNOx lp r n p s l nr pp k, l p l n r lp p p n pl l } rl n r p pr r edšp k r p [9]., lˆp n r p r p r lˆp r}rp n e r l lˆ vo lp p p p l p k r ep p. p lˆ pp pr nl pr r v k o p v pp, p lˆ vo r} vo l l r, rr r p p r p k l q prp l v p n p. pl l l m ˆ r l r pp r nmp o p r mp np rr ˆ p Š l, l vo p pn r l r} rp q n p m. 2. o 2-1. l ~ m m n r l k l l m r l o p p pl e l r Š m. Fig. 1 l ˆ m p p ˆ m 2 (200 MWe) p ˆ p l p ˆp o (200 MWe)p p p r r m. o p m r l l s l p l tl r p t p mp, p q l vo p n n (CP; capacity payment - rp l l r p e n l t )p vo ˆp r p p ep r p q p p Ž. o p p p l Fig. 2 l ˆ m p r v p p l n o p p v p Ž l. 2-2. o r p o l l p p p v p l r m. Fig. 1. Conversion of the pulverized coal firing boiler to the CFB boiler. o44 o5 2006 10k
ˆn ˆ p p o r l r 491 Fig. 2. Layout of the construction of a CFB boiler in the Youngdong power plant. Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006
492 ps Ë oë q Ë svë p (IRR: internal rate of return): Œql n v kp Œq opkp q p p f p p ep. n t = 1 I t ---------------- = ( 1+ r) n n t = 1 O t ---------------- ( 1+ r) n I t : t l Œq opk O t : t l n Œq v k (= o k) n: r: p ( rr p q r p ) p p el el p l, Œq(k)p p p lp t pp pp n Œq r p p, qp r p l p m. Ëq p (FIRR: financial internal rate of return): q ˆl l s r, s rr lq p, v q r q, pl p l p p q r p p r p p IRR v t pp l r p m. Ëq : Œq (life cycle cost)m r Ž l cash flow tp r p Œq p p, p rp p s l q p wp r p p. Ë p/ n (B/C Ratio: benefit/cost ratio) p np p p sq r k pl q p p r, nl q p p r p p, p p 1 n p p p p m. Ë q (NPV: net present value): pp r kp v (p ) p(k )p n l Œqp q ˆ p, B/C ratiol pp q np q p p p. q Œql q l r Ž p v p pp, l e ml q r rl n m., l l o p p r e s r} r l r m p o r e t -, pn, l, n n p -l p m p ˆ l. 2-3. o q m 2 p p o p p r p k e l m p, sp m 2 p v rp nr, vl o p l m s p l r p lp, v overhaul p l ep m p r m. p l r p pp v p r l p r r p, ep m. ~ w r p s p o p r mp nl Œq l r o44 o5 2006 10k (1) p ep p lr. p sp r nm lp m lnrl l vp Œq l p s l r p p r l q p v p p l Œql r p Ž p. w r p s r p v nr ep r p ep, v rp nrp o q n p m p pl np Œq l pl p s r p m. p s e o p p l nr e m p r mp, p v n l pl p r l p m pp n op r p Žk l p m. p r l n rp Table 1 2l ˆ m. o e p ep r l n t p o o ( ) p p er p n mp, s p ov l v rp n nl m p p e r p l m. o r l Œ q (100,597 o)m kp pq(5,202 Table 1. Assumption for conversion to a CFB boiler 11) boiler type CFB boiler, 200 MWe 12) construction time (period) 2006 (3 years) 13) economic life 30 year 14) rate of a loan 90Í 15) depreciation (salvage value) straight line method (0Í) 16) power consumption in plant 10.5Í 17) O&M cost 14,236 million /year 18) plant efficiency 36.8Í 19) plant availability 70.3Í 10) bidding rate 95Í (average value of the power plant firing Korean anthracite) 11) fuel cost anthracite - 35.66 /kwh bituminous coal - 16.38 /kwh 12) BLMP 20.1 /kwh (average of 2003) 13) CP 20.49 /kwh (based on base load boiler) 14) total capital cost 122,079 million Table 2. Assumption for using the existing PC boiler 11) boiler type PC boiler (Youngdong #2), 200 MWe 12) construction time 2008 13) economic life 2019 discontinuance 14) rate of a loan 0Í 15) depreciation (salvage value) straight line method (0Í) 16) power consumption in plant 10.5Í 17) O&M cost 17,727 million /year 18) plant efficiency 35.9Í 19) plant availability 66.1Í 10) bidding rate 95Í 11) fuel cost anthracite - 36.62 /kwh (65Í load)g oil - 80.74 /kwh (35Í load) 12) BLMP 20.1 /kwh 13) CP 20.49 /kwh 14) total capital cost 26,280 million
o) m el m 2 p qs (16,280 o) Œq l r m. m 2 p ov np Œq n r ov o p (DeNOx system) Œq (10,000 o)m qs (16,280 o) l r m., r l Œq kp l p p 8Í r l mp, r e tn v p FIRRp l p p nl r p sq p Ž m. o r l r pe p pp 90.85Í, lˆ l p 5971.5 kcal/kg, pp 45.04Íp p n mp, p o er er m l p n p n p. lˆ l r l p vo p r pp pp, vo rp p p rp. r l vo = [ rl r (BLMP)] r (2) l l p r tl o r e Œq l r l m, s ov mp np r p r l ˆ p m. 3. y 3-1. l ~ m m n / o lsi o m p (2 ) o p r mp n m, s p ov l n mp np r v Fig. 3(a)m (b)l ˆ l. l p p k r e m pn mp n, rp p p r p m. r sp ˆ p o p r mp n, FIRRp 12.07Í, NPV 478l o B/C ratio 1.072, Œq k p 8 p l r r p sp p Ž l., s p v rp n nl, FIRRp 51.62Í, NPV 614l o B/C ratio 1.125, Œq k p 2 p Œq p r p p ˆ. p p p pn nm nl pl o p p r l sv kp s pl p p p s vo sm pl p p ˆ s p s l p l s l p p. v, (2)e l m p p p nr s p lv nl r l p p rp m r p vo n ƒv p ˆ p. p l k p p r p nm r pql p nl Œq l p p p Ž pp, r v l pl s p ov l n p r p p Ž l. Fig. 4 p nl ˆ p. k Œq k l m p o p r p mp nl eq 11 l nr 8 p d p, s ovel 2 ˆn ˆ p p o r l r 493 Fig. 3. Evaluation of the economical efficiency. (a) FIRR and (b) B/C ratio and NPV. Fig. 4. Accumulated payback for maintenance of the existing PC boiler and conversion to the CFB boiler. p p d p ˆ. pp r p rp r vop p o p r p n s p ov m p v k p ˆ. s p ov l n nl 2019 p v p l p } s llv l p p r nm } p n p ˆ., Fig. 4l ˆ m p o p r nl 2019 p lqp v rp r p k, p p p s lq np 54l Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006
494 ps Ë oë q Ë svë o perp p ˆ p m p v k p ˆ. 3-2. l ~ m m n o Fig. 5(a)m (b) s p o p r e Œq kl pn p l q p p ˆ p. pn p p r l ˆp l p krr nr l m p pq, pn p p p kv n ˆ r}p ˆ l r, p kr l r n pl. l p p o r l Œq 100Í tp, k 135Í v Œq p v pl, l pn p 55Í q p l l pp 8Í l r p p p k p., p p l Œq k p l r p l v, qp Œq kp n(100í), p p 75Í p p nl r p l p l. p p l r l l vo n n (CP) p vo l r p p p p r ll pl n p sp pqpp k p. Fig. 6p Œq k n n (CP) l q p p Fig. 6. Effect of capital cost on FIRR with CP for conversion to the CFB boiler. ˆ p. l m p t Œq k(100í) t n n p 20.49o/kWp 85Íp 17.42o/kW v p p p p ˆ p, t n n (20.49o/kW) Œq kp 135Í v v r p p p l. p r l vo n n p l r p v l m p p vo p v k r p ppp k p., o l p o, lˆp r p p olˆp np l v r l p pp l lˆ p o kp np l r}l n tn pq qn [10]. p k r p pn p p p p kp, pp r v olˆp k RDF(refuse derived fuel), RPF(recycled plastic fuel), wastes biomass p r l m p p Ž. Fig. 7l m p o, lˆp p(co-combustion ratio; lˆ r p n 100Í t)l q p p Fig. 5. Effect of capital cost on FIRR with (a) availability ratio and (b) bidding rate for conversion to the CFB boiler. o44 o5 2006 10k Fig. 7. Effect of capital cost on FIRR with co-combustion ration for conversion to the CFB boiler.
p l p p. p r nm p t r l p lˆ nl vor m p, p r l p l p p r l p vo p l v l rnm p r~ q p l m p v k p ˆ. l v p r n r l p r vo ˆ o o, lˆ p n p Ž. 3-3. o m m lsi o Fig. 8(a)m (b) s ˆ p ov nl Œq k pn p p l q p p ˆ p. s p l p pn p p k m p lˆ l pl kr p r l p r} lˆp p pp p p (ˆ o p )l p }r n p pn p p rm p. p n l m p r p q p p p p. Œq k l pn p l q p p p n p pl lˆ r} ˆn ˆ p p o r l r 495 Fig. 9. Effect of availability ratio on B/C ratio with bidding rate for maintenance of the existing PC boiler. Fig. 8. Effect of capital cost on FIRR with (a) availability ratio and (b) bidding rate for maintenance of the existing PC boiler. r l p ovl r p p pp k p. p n p/ n (B/C ratio) q (NPV) l o p r mp n kv p pp p Fig. 9p (a)m (b)l ˆ l. Fig. 9(a) p/ n ˆ p pn p p l v l p mll p s p nl o p r n p/ n p l. m, qp pn l p p 75Í p lv o p p r p p/ n p k p. Fig. 9(b)p q (a)m v v l p mlp s p n o p r p q p l. p q ˆn ˆ p p nml pl r l r} ˆ p m pn p p r l o p p r e s p r p q rp rr pp } p p Ž. Fig. 10p (a)m (b) s ˆ p p qs (salvage value) l s ov nm o p r mp np p/ n m q Œq kl l p. qs rp nl s p ove o Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006
496 ps Ë oë q Ë svë Fig. 10. Effect of availability ratio on NPV with bidding rate for maintenance of the existing PC boiler. r el r v p ˆ p, qs l p p/ n l pl o r n k qp p, q n d p p l., Fig. 10l p p Œq k l o r ep p/ n m q s r ov l r r v p p p tl p k p. p r p l Œq kp p k vv k v k pqp, p p l p kv l lˆp pn r l p l r p vop Œ q kp pl o r l r v s p ov n kv p p ˆ. 3-4. n i m sk ~ i o r l p k m p lˆ nl l ekp lˆ r l vo r}p p. Table 3l m p r p ˆ nm l vokp p ˆ p. r~ rn lˆ p 44Í v o p nl r~ vo p 26Í r vo, o r p p m ˆ p p nl 24Íp lˆ k 35Íp vo p p p ˆ rp p vop p p. p r edšl pl l ekp p p p p p, pl r l r}p pr v q l k p Ž. v, lˆp l rr prp o k, redšp p p p lˆ l l ekp np } p r}r l k n p p. Fig. 11p ˆn ˆ r p p m 2 p r l p r} rnp me l p v r l e p. m 1, 2 p 2003 ˆ p 65 Š, vokp 590l op, rn (200 MWe/325 MWe)l 2 (200 MWe)l ˆ n vo kp 40 Šp ˆ 363 l op p vo p r. p p p v v v Fig. 11l m p m 2 p 360l o r p p vo 5,000l ol vokp. m 2 o p s mp nl 140l o( o p p ˆ vok )r p v ok n p m. p vok r p o o p p r p o k, p Fig. 10l ˆ m Fig. 11. Comparison of fund supported by government between conversion to the CFB boiler and maintenance of existing PC boiler. Table 3. Coal consumption and fund supported by government in 2003 Donghae Seochen Youngdong Total Coal consumption [10,000 ton] 123(44Í) 87(32Í) 65(24Í) 275(100Í) Fund supported [million won] 43,125(26Í) 64,217(39Í) 59,036(35Í) 166,378(100Í) Fund supported Gfor CFB conversiong[million won] 43,125 30,503 22,789 96,417 o44 o5 2006 10k
p Œq kp vop r p r p lk p Ž. pl Fig. 11l ˆ m p l 3 l ~ 130l oj vo t n vop p vo p v p 220l o r p vokp r pl rp v t 2,000l op vokp r p p ˆ. p l m p ˆn ˆ p p o p p r p r l p pr v l vokp r m l l v qop pr pnp l n tn kp Ž, pl rp l v n kp r}rp p v p Ž. 4. lˆp n ˆ p (m 2 ) p o p p r e r p m. o p r mp np r v FIRRp 12.07Í, NPV 478l o B/C ratio 1.072, Œq k p 8 p l r Œq r p sp p Ž l. s p ov n FIRRp 51.62Í, NPV 614l o, B/C ratio 1.125, Œq k p 2 p o p r l r v sp p l. v,, s ˆ p ov l n nl ˆ r l vor} l pq l r v o p p r e p p ˆ r} r l p r r}p n p l., r l p vop p lˆ r lp p vo ˆ l o p p r p q r r l p pr v l v pn l pl sp r v ˆ p l. ˆn ˆ p p o r l r 497 l r l p r ll lp p p lp, pl. y 1. Petzel, H. K., VGB Kraftwerkstechnik, 4, 73(1995). 2. Lee, J. M. and Kim, J. S., Simulation of the 200 MWe Tonghae Thermal Power Plant Circulating Fluidized Bed Combustor by using IEA-CFBC Model, Korean J. Chem. Eng., 16(5), 640-645 (1999). 3. Lee, J.-M. and Kim, J.-S., Simulation of the Tonghae Thermal Power Plant CFB by using IEA-CFBC Model -Determination of the CFB Combustor Performance with Cyclone Modification-, HWAHAK KONGHAK, 38(1), 53-61(2000). 4. Lee, S. H., Lee, J. M., Kim, J. S., Choi, J. H. and Kim, S. D., Combustion Characteristics of Anthracite Coal in the D CFB Boiler, HWAHAK KONGHAK, 38(4), 516-522(2000). 5. Stamatelopoulos, G. N., Seeber, J. and Skowyra, R. S., Proceedings of the 18th International Conference on FBC, Toronto, Canada, FBC2005-78081(2005). 6. Lee, J. M., the 37th KOSEN Webzine (www.kosen21.org), Korea (2005). 7. Choi, J. H., Lee, S. D. and Choi, S. M., Combustion Characteristics of Waste Fuels in a Fluidized Bed, HWAHAK KONGHAK, 40(4), 523-528(2002). 8. Silvernnoinen, J., Ropo, J., Nurminen, R. V., Aho, M., Vainikka, P. and Ferrer, E., Proceedings of the 18th international conference on FBC, Toronto, Canada, FBC2005-78120(2005). 9. Jo, H. R., Hong, E. G. and Hwang, K. W., KEPRI Report, TM. C97GS04.G2001.031, Taejon, Korea(2001). 10. Kim, J. S., Lee, J. M. and Kim, D. W., KEPRI Report, TM.04GK09. R2005.410, Taejon, Korea(2005). Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006