3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

Similar documents
Manufacturing6

歯삼성SDI개요

15_3oracle

Oracle Apps Day_SEM

. PC DP-1VR P15 1ch 1 Input Tool 4ch RS-232C RS-232C. Input Tool P14 MUX-10F P16 MeasureReport P21 GO/NG 2 MeasurLink Real-Time P19 MeasurLink STATMea

OBJ_DOKU fm

전용]

김기남_ATDC2016_160620_[키노트].key

23

鍮뚮┰硫붾돱??李⑤낯

경영과학(1) 본문

MAX+plus II Getting Started - 무작정따라하기

텀블러514

歯경영혁신 단계별 프로그램 사례.ppt

2014밝고고운동요부르기-수정3

2005프로그램표지

歯안주엽홍서연원고.PDF

untitled

PowerPoint 프레젠테이션

교육정책연구 2005-지정-52 공무원 채용시험이 대학교육, 노동시장에 미치는 영향분석 및 공무원 채용제도 개선방안 연구책임자 : 오 호 영 (한국직업능력개발원 부연구위원) 이 정책연구는 2005년도 교육인적자원부 인적자원개발 정책연구비 지원에 의 한

歯DCS.PDF

<4D F736F F D20C3D6BDC C0CCBDB4202D20BAB9BBE7BABB>

정보기술응용학회 발표

(3) () () LOSS LOSS LOSS LOSS (4) = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100

OR MS와 응용-03장

Data Industry White Paper

CTS사보-2월

untitled

BSC Discussion 1

첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

?

< BFA9B7D0BAEAB8AEC7CE31382E20C1A634C2F7B4EBBCB1C6D0B3CEC1B6BBE72E E31312E32382E687770>

제 출 문 한국산업안전공단 이사장 귀하 본 보고서를 2002 년도 공단 연구사업계획에 따라 수행한 산 업안전보건연구수요조사- 산업안전보건연구의 우선순위설정 과제의 최종보고서로 제출합니다. 2003년 5월 연구기관 : 산업안전보건연구원 안전경영정책연구실 정책조사연구팀 연

DIY 챗봇 - LangCon

untitled

13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3

,,,,,, (41) ( e f f e c t ), ( c u r r e n t ) ( p o t e n t i a l difference),, ( r e s i s t a n c e ) 2,,,,,,,, (41), (42) (42) ( 41) (Ohm s law),

1 2 HDO 3 HDO 4

사회통계포럼

PowerPoint 프레젠테이션

hw 2006 Tech guide 64p v5

Preliminary spec(K93,K62_Chip_081118).xls

Intra_DW_Ch4.PDF

PowerPoint 프레젠테이션


ETL_project_best_practice1.ppt

PowerPoint 프레젠테이션

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

¼º¿øÁø Ãâ·Â-1

untitled

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

T100MD+

e hwp


08Ưº°±â»ç2-2

기타자료.PDF

Microsoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM

ecorp-프로젝트제안서작성실무(양식3)

제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장 법률팀장 기

untitled

methods.hwp

untitled

Buy one get one with discount promotional strategy

<B9CCB5F0BEEEB0E6C1A6BFCDB9AEC8AD5F31322D32C8A35FBABBB9AE5FC3CAC6C731BCE25F6F6B5F E687770>

6주차.key

제 출 문 보건복지부장관 귀하 귀 부에서 한국보건산업진흥원에 의뢰하신 한방의료기관 경영실태조사 및 경영 효율화 방안 연구 를 완료하고 그 결과로 본 보고서를 제출합니다. 2003년 10월 24일 한국보건산업진흥원 기획관리본부장 박 무 삼( 代 ) 주관연구기관명 : 한국

歯Enet_목차_.PDF

Microsoft Word doc

Microsoft PowerPoint - C7_김형진 [호환 모드]

RFID USN_K_100107

PowerPoint 프레젠테이션

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

Microsoft Word - SRA-Series Manual.doc

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

PowerPoint 프레젠테이션

R을 이용한 텍스트 감정분석

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

<C0CCBDB4C6E4C0CCC6DB34C8A35F28C3D6C1BE292E687770>

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

SchoolNet튜토리얼.PDF

The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowo

QbD 적용을위한품질심사해설서 ( 예시 )

Microsoft PowerPoint - SVPSVI for LGNSYS_ ppt

untitled

<C7D1B1B9BAB8B0C7BBE7C8B8BFACB1B8BFF82DC1A639C2F720BAA3C0CCBAF1BAD520BCBCB4EB20B9CCB7A1B1B8BBF3C6F7B7B35FB3BBC1F62E687770>


Chapter 11 Rate of Reaction

< C6AFC1FD28B1C7C7F5C1DF292E687770>

09권오설_ok.hwp


Microsoft PowerPoint - AC3.pptx

레이아웃 1

歯FDA6000COP.PDF

(, sta*s*cal disclosure control) - (Risk) and (U*lity) (Synthe*c Data) 4. 5.

I

untitled

강의록

歯4.PDF

04-다시_고속철도61~80p

Transcription:

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : 20049 0/45

Define ~ Analyze Define VOB KBI R 250 O 2 2.2% CBR Gas Dome 1290 CTQ KCI VOC Measure Process Data USL Target LSL Mean Sample N StDev (Within) StDev (Overall) * * 0.800000 0.811947 119 0.0075351 0.0116898 Process Capability Analysis for heat_p LSL Within Overall Potential (Within) Capability Z.Bench 1.59 Z.USL * Z.LSL 1.59 Cpk 0.53 Cpm * Overall Capability Z.Bench 1.02 Z.USL * Z.LSL 1.02 Ppk 0.34 0.77 0.78 0.79 Observed Performance PPM < LSL 142857.14 PPM > USL * PPM Total 142857.14 0.80 0.81 0.82 0.83 Exp. "Within" Performance PPM < LSL 56432.53 PPM > USL * PPM Total 56432.53 0.84 0.85 Exp. "Overall" Performance PPM < LSL 153398.49 PPM > USL * PPM Total 153398.49 1/45

2/45 I I Others STS 4.5 2.5 4.0 4.2 4.5 5.8 9.4 65.1 4.5 2.5 4.0 4.2 4.5 5.8 9.4 65.1 100.0 95.5 93.0 89.0 84.8 80.3 74.5 65.1 100 50 0 100 80 60 40 20 0 Defect Count Percent Cum % Percent Count ('02) Others 0.7 2.1 14.2 83.1 0.7 2.1 14.2 83.0 100.0 99.3 97.2 83.0 100 50 0 100 80 60 40 20 0 Defect Count Percent Cum % Percent Count ('02) 13.75 86.25 13.8 86.3 100.0 86.3 100 50 0 100 80 60 40 20 0 Defect Count Percent Cum % Percent Count ('02) 65.1% 83.1% 86.3% 13.7%

Define ~ Analyze Analyze Vital Few AHP Analysis 44 17 Insight Variable Selection Regression Decision Tree 1. Mgas_cal 2. Cog_p 3. A_g 4. Mgas_w Vital Few ( ) Process (Regression, Multi Variate Analysis) Machine Learning (Decision Tree/Neural Network) Data 3/45

Process Overview Process HBV GAS BAV BGV (1100~1300) Process 1 4. 3BF., M-Gas 60. 3 2( Parallel ), CBV CHV 4/45

Model Regression Model (1) Model (2 ) Input (, ) Decision Tree (1) (2 ). DT Neural Network (1) Data Input Layer. (2) signal Multilayer Perceptron Hidden Layers Output Layer Hidden Unit 5/45

P_heat_p( )Vital Few Contour 6/45

Data Mining Vital Few V.Few (heat_p >83%) DM Mgas_cal (kcal/n) 930 976 COGMgas_w (%) (%) (N/D) 6.0 1.0 3,668,825 5.4 1.08 3,634,000? Problem : Data Mininer Local Solution OK, But Gobal Solution? Data Mining Pilot Test. Crytal Ball Based Simulator,. 7/45

Quick Win Pilot Test Quick Win 1 ( 1,4 ) EV Open #1 : Feedforward Guidance Simulator ( 1,2,4 ) #2 : ( 1,4 ) 10.15 ~ 10.20 ~ 8.4 ~ Quick Win 2 ( 4 ) Steam & N2 Line 9.4 ~ #3 : RV Open Program ( 4 ) #4 : & ( 5 ) #5 : MCV ( 4 ) #6 : BFG ( 1,2 ) 10.9 ~ 10.13 ~ 9.4 ~ 10.23 ~ Pilot Test 10.14~ 10.31 Quick Win 3 ( 3,4 ) #7 : Pattern ( 1,2,3,4 ) Calorie #8 : Mgas PID Gain Tunning( 2,3,4 ) 10.23 ~ 10.23 ~ 9.4 ~ Vital Fews 1:COG, 2:, 3:Mgas Calorie, 4:Mgas, 5: 8/45

(1) #1 : BFG & COGFeedforward Guidance Simulator Feedforward Guidance Simulator3 Meter Room - Neural Network Model : Guidance ( )COG Mgas. 9/45

(2) #2 : 1. BFG M-GAS 2. COG MIX-GAS M-GAS 3. : Program & Logic DOME DOME DOME 4. Gas Chro Calorie (H2%, CO%) : Over 10/45

(3) #4 : - No.34 No.34 Max : 189 Max : 187 Max : 187 T/C Max : 200 3 03.9.30 ~10.1, 11/45

(4) #7 : Pattern 3.. Pilot Test checker Pattern.. 1.10 1.05 1.00 0.95 0.90 Conventional Method 1.10 1.03 1.00 0.95 0.90 Proposed Method 99,588N/Hr 91,853N/Hr 0 10 20 30 40 50 0 10 20 30 40 50 3 96,687N/Hr (9) 5% 2Pattern : Mix Gas Calorie 12/45

(5) #8 : Mgas PID Gain Tunning PID( Proportional-Integral-Derivative) Controller. 3 (PV:Process Value) (SV :Set Value). P Gain Rising Time I Gain Setting Time. PID Gain Tunning Matlab Simulation. Tunning Tunning P Gain- Mgas_w I Gain- Mgas_w D Gain- Mgas_w 100 45 0??? 3 Mix Gas Gain Mix Gas Hunting : Mix Gas & COG 13/45

CTQ ( ) & Vital Few : 36.9 / : ( 81 87%) Gas Total : 13.96 / {( Gas Gas ) x } x Mixed Gas = {(397 359 Mcal/T-P)} x 8,587Ton/D x 32.46/Mcal x 365 x 0.98 = 36.9 / Gas Gas : : 396.9 396.9 359.7 359.7 Mcal/T-P Mcal/T-P :37.2 :37.2 Mcal/T-P Mcal/T-P (10% (10% ) ) CTQ CTQ ( ( ): ): 81.2 81.2 % 87.1% 87.1% : : 5.9 5.9 % % 14/45