( )+11(3)-10.fm

Similar documents
한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

69-1(p.1-27).fm

untitled

50(4)-10.fm

50(1)-09.fm

< DC1A4C3A5B5BFC7E22E666D>

14.fm

14.531~539(08-037).fm

16(1)-3(국문)(p.40-45).fm

605.fm

11(5)-12(09-10)p fm

12.077~081(A12_이종국).fm

10(3)-09.fm

10(3)-12.fm

fm

(72) 발명자 김창욱 경기 용인시 기흥구 공세로 , (공세동) 박준석 경기 용인시 기흥구 공세로 , (공세동) - 2 -

9(3)-4(p ).fm

82.fm

DBPIA-NURIMEDIA

18(3)-09(34).fm

50(5)-07.fm

16(5)-04(61).fm

19(1) 02.fm

10(3)-10.fm

49(6)-06.fm

17.393~400(11-033).fm

304.fm

15.101~109(174-하천방재).fm

<30332DB9E8B0E6BCAE2E666D>

12(3) 10.fm

93.fm

<30312DC0CCC7E2B9FC2E666D>

202.fm

12(4) 10.fm

<312D303128C1B6BAB4BFC1292E666D>

10.063~070(B04_윤성식).fm

82-01.fm

한 fm

12(2)-04.fm

DBPIA-NURIMEDIA

51(4)-13.fm

38(6)-01.fm

01.01~08(유왕진).fm

untitled

416.fm

26(3D)-17.fm

10(3)-02.fm

26(2)-04(손정국).fm

3.fm

51(2)-09.fm

( )-83.fm

27(5A)-07(5806).fm

18103.fm

16(5)-06(58).fm

untitled

fm

fm

07.051~058(345).fm

50(6)-03.fm

untitled

32(4B)-04(7455).fm

16(2)-7(p ).fm

15(2)-07.fm

15.fm

16(5)-03(56).fm

DBPIA-NURIMEDIA

16(5)-02(57).fm

fm

14(2) 02.fm

82-02.fm

16(2)-03.fm

64.fm

85.fm

57.fm

415.fm

8(2)-4(p ).fm

( )-123.fm

18(3)-10(33).fm

4.fm

3-15(3)-05(이주희).fm

8(3)-15(p ).fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

50(6)-04.fm

27(5A)-13(5735).fm

41(6)-09(김창일).fm

(민슬기).fm

16(4)-05.fm

14(4) 09.fm

한 fm

fm

23(2) 71.fm

107.fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

31(3B)-07(7055).fm

201.fm

( )-94.fm

17(1)-08(06).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

( )-113.fm

50(6)-09.fm

Transcription:

Journal of the Korean Electrochemical Society Vol. 11, No. 3, 2008, 211-222 p» w ½ SDI (2008 8 18 :2008 8 25 k) Recent Developments in Anode Materials for Li Secondary Batteries Sung-Soo Kim* Energy LAB, CRD center, Samsung SDI (Received August 18, 2008 : Accepted August 25, 2008) {»» œ š p HEV(Hybrid Electric Vehicle) IT wš. p p w k wš» y w w y š w. w» w, ƒ y ƒš p k e w j š w.» p ƒ y z z w w š w. Abstract : Li secondary batteries, which have been in successful commercialization, are becoming important technology as power sources in non-it application like HEV(Hybrid Electric Vehicle) as well as in portable electronics. It is not the overstatement that the commercialization of Li secondary battery was a result of the development of carbonaceous anode material and safety mechanisms. The R&D of electrode materials of Li secondary batteries is one of the core technologies in the development and it has enormous influences on various fields as well as on the battery industry. Here, the current research of anode materials is described and the underlying problems associated with development, advantages and drawbacks is analyzed. Keywords : Li secondary battery, Anode, Carbon, Graphite, Alloy. 1. p 1991 w ty m»» w p» wš. p w 1950 NASAƒ, w» p» w w» 30 ó k *E-mail: augustine.kim@samsung.com y w ty. ty p t œ y mw, 10% w g ù, ƒ txw e y y e( ƒ )» w. ù», œ» w w w ww. p w p w e, 211

212 J. Korean Electrochem. Soc., Vol. 11, No. 3, 2008 w w m œw w, j 4ƒ w» w š w. w w w» w š w.» p ƒ w 4ƒ, p» breakthroughƒ ù ty k sww w r š w. 2. p 2-1. p»» p p w ù, û y y xkw ƒ ùkû p p w x» w xkw ƒ p t (dendrites) ü j» w. 1,2) p lf ƒ w k w p w w š, k p»yw ƒ p ƒ¾, yƒ yy ƒ w w Table 1. y p z * p (mah/g) (mah/g) s³ (V) (g/cc) p 3,800 - ~0.0 0.535 0382 0,~360 ~0.1 2.200 gj - 0,~170 0~0.15 <2.2000 g 4,200 ~1,000 0~0.16 2.360 0790 0,~700 0~0.40 7.300 * z :( š w ) w š q j ùký» œw. x j š y š y», š y k w j p 372 mah/g w w» w g ù» w k y wš, š y k» ƒ w wš. š y z w w Fig. 1 Table 1 ùký. 2-2. k m ƒ û x p k t 3 V û ƒ. p Fig. 1. y. 3)

w»ywz, 11 «, 3 y, 2008 213 Fig. 2. x Unit cell (a) 1) x Unit cell (b). 2) ƒ 2 j w p š mw š k w š w. k» d s c w ABAB... d (hexagonal graphite) wù d ƒ x ABCABC... d x (rhombohedral graphite) sww. (graphite crystal) C w w» (Basal plane) c w sww (edge plane) ùkü. w k ùkü. p»yw w e,»»yw w y (inactive) ù w y (active) ùkü.»»yw p w e w» sww t»(surface group) x. y w y w k y k (graphitizable carbons) w, ƒ ƒ w. 2,500 o C w k ù y k (non-graphitzable carbons) w.» w» vp e (soft carbon) w, z w e (hard carbon) š w. y k y ƒ û (1,000 o C w) d s sww d C w d w w ùd (turbostratic Fig. 3. k turbostratic structure 3-D. 3) disorder) ƒ ƒw s d j»ƒ ƒw s d sww d. vp e 2,000 o C c w w d j w 3,000 o C. w» p (intercalation) p w ƒ 0.8 V sk ùkü z w w, 0.25 V w p ( k ) ù. p w k. Li x C C + xli + + xe ( :, : ) k y w Li k ü Li x C yw x w k y ù

214 J. Korean Electrochem. Soc., Vol. 11, No. 3, 2008 Fig. 5. d p l x. : š (schematic galvanostatic curve). : - š (schematic voltammetric curve). 4) Fig. 4. LiN(SO 2 CF 3 ) 2 /ethylene carbonate/dimethyl carbonate w (graphite Timrex KS 44) / š. (a) 1 st cycle and (b) 2 nd cycle, (C irr : ƒ, C rev : ƒ ). 4) k l Li k w,, x p ùkù. p lf w k j w e w. w vp e w w ƒw» 2,400 C w o y ƒ û k ùkù. vp e y 1,000 o C w ùkü. p m w ù» w ú. 0.25 V w ù p p ƒ û p d x wš w d w. p d» ü p ƒ ƒw p d d ƒ p LiC 6 k p d d kƒ. w p l w. w p l x w w d š š sk œ w w p ƒ ƒw l (stage) û l y p k ( ) w. w r w ƒ j d Fig. 6. l -1 k (In-plane). 7)

w»ywz, 11 «, 3 y, 2008 215 Fig. 7. y k ù y k. 9) ƒ š š ùk ù sk vj(peak) xk ùkù. p d d ABAB... AAAA... y LiC 6 k w d w 5) p w ƒw. LiC 6 k» 10.3% ƒ w. 5,6) LiC 6 k d p d p w w k w LiC 6 k 372 mah/g w ùkü. ù y k k d w g š j»ƒ ƒ w» 2,500 o C š w y w. Fig. 7 y k ù y k (nongraphitizable carbon) ùkü. wr yƒ w y k d s sww x w» yƒ w. Fig. 8. y k ù y k La, Lc y. 11) ù kyœ k ƒ k j»(la, Lc) ƒw. Fig. 8 y k ù y k La, Lc y ùkü. l y k La 3,000 C o 100 nm. ù ù y k 10 nm. Lc ƒ y k 100 nm w ù y k 4nm ùkü. k d s (crystallites) j»ƒ» d s p œ ƒ w. 8,11) ƒ p c w d d s j» y w p w p ƒ w w. p w w sw» š w sk x š š ùkü. w e w k d s d š 3 w œ (micro pore) w w (armorphous structure) ùkü. 800 o C w w w e w vp e ƒ swwš w š ù, 1,000 o C w

216 J. Korean Electrochem. Soc., Vol. 11, No. 3, 2008 Fig. 11. w e p» (A) œ w w en (B). 13) Fig. 9. vp e (soft carbon, coke) j š. 12) Fig. 10. w e (hard carbon) j š. 12) e ƒ ùkü. w, ƒ p š p ùkü. p, p w 0.05 V û j sk. w e ƒ p k ù œ ü p j l(li cluster) x w» w ù, ƒ 1,000 o C ƒw, œ w ƒ w w e j w. w, œ w enƒ w p ƒ w š š. 30,31) p k 10% Fig. 12. vp e w e ƒ y ( : w e, : vp e ). 10) q w vp e w e p w œ j» yƒ. 14) Fig. 12 vp e w e ƒ y. v p e 1,000 o C w w ùkü 1800~2000 o C š z ƒ ƒw 372 mah/g. wr w e 1,000 o C w 600 mah/g ùkü, ƒ ƒw w 2,000 o C w œ w yƒ w vp e û ùkü. Fig. 12 1 2,400 o C vp e w k ùkü, 2 vp e ù w e 500~700 o C w sww. 3 k d d ù š w w»œ sww w e ùkü.

w»ywz, 11 «, 3 y, 2008 217 Fig. 13.» t p w x w t ) v w p z v y š w. Fig. 14. v y( ), 16) xsi v y ùkü (w, œ:») 2-3 /w p p Li Li-Al, Li-Si w mw ù, p w / y ƒ y w. w» w Li w (Si, In, Pb, Ga, Ge Sn, Al, Bi, Sb ) w m. 17) p w w (Li x M) x w» t III, IV, V w t Fig. 13 t w.

218 J. Korean Electrochem. Soc., Vol. 11, No. 3, 2008 w. Li x M xli + + xe + M ( :, : ) w - p û ü ù w ùkù p y k» w w û k. ù p ù ƒ p ƒ¾ ƒ š p t» k š w. Sn-Li Sn Li ƒ Li 2 Sn 5, LiSn, Li 5 Sn 2, Li 13 Sn 5 Li 22 Sn 5 yw x Li-Si Li 12 Si 7, Li 7 Si 3, Li 13 Si 4 Li 22 Si 5 yw x. k 6 1 p w p w, p j. p w p j» k w w p 100~300% v yƒ j. w ( p w x ) ùkù v y Fig. 14 ùkü. p- w (Li x M) w p ƒ» w v y w» w q ƒ ù j p j w. p w w y» k w» w v y y j ù w w y ƒ w. p w k y y w mw w w ƒ v w š, w. - p w y - p w - y / y (active/inactive) w 27) - p w /k w y w» w p w p w» ³ x ù y j w. y w j» w p» q ƒ ù. p ùkù v y w x ƒ ³ x w j»ƒ ³ x t ù f w» w j»ƒ ùký š š w. 28) 32.2γ 1 ( 2V)2V 2 d = 0 ---------------------------------------------- crit E V 2» d crit : j», γ : t V : s (passion s ratio) V 0 :» v, V : v y p w w w w (multiphase metal) w w / j p» w. ( Sn) y w p w, x w ( Sn/SnSb) p w. Fig. 15 ùkù SnSbƒ 800~850 mv p w ù Sn û 650~700 mv w ƒ p w vq y j w w j p w k. 1 : SnSb + 3Li + 3e Li 3 Sb + Sn 2 : Sn + 4.2Li + + 4.2e Li 4.2 Sn w Ag3Sn/Sn LiAg2Sn/ Li4.4Sn + LiAg Li2AgSn Fig. 15. Sn p w. 16)

w»ywz, 11 «, 3 y, 2008 219 Fig. 16. Nexelion ( œ : ). Table 2. Sn-Co w Nexelion p» ( m14430» ) Nexelion y Sn-Co w y LiCoO2 LiCoO2+Li (0.2C) 700 mah, 2.6 Wh t 4.2~3 V [MnCoNi]O2 yw 900 mah, 3.1 Wh 4.2~2.5 V 395 Wh/l, 144 Wh/Kg 18 g 20 g 478 Wh/l, 158 Wh/Kg w ƒ p w k. w 2005» t y Sony Nexelion» Li ƒ w ƒ Sn-Co w k wš. Sony e g, w sƒw. p w ƒ û q. y Nexelion» w t Fig. 16 Table 2 ùkü. p w j p w p w w w w w» w. w w» p w y (active phase; ) p w y (inactive phase; ) w y v q y j w w. 16) w w p w j» ywš p w p w ü w p w p w yw w. w p w w w y p w j x ù ƒ p w w w y w. j p w x w t y w. SnO, SnO 2 Sn x Al y B z P p O n y» j p w Li 2 O Sn x w ƒ j Li2O ü ù j» Sn ƒ sw y (Sn)/ y (Li 2 O) w x w j Sn Li ƒ w. j. SnO + 2Li + + 2e Sn + Li 2 O ù y Li 2 O x» ƒ w f p j š. w ƒ w w» w p w w ( Sn) ƒ p w ( Fe, Ni, Mn, Co ) yw x w. w x y w w. yw p» w yw w š p w (Sn) p w w w p w p w ù v y y g w w k. p w (, Si, Sn,...) p w ü w k p p w v y w ù y j w. w p w p w v y w ù v y w ³ y w» š w p w. w w y Si TiN, TiB 2, SiC p w yww w x w w x w Si w w / j p. ù p w v w y p

220 J. Korean Electrochem. Soc., Vol. 11, No. 3, 2008 k š p w mw p ƒ Li Si. 2-4. y y y w k p ù p y w w. w t y Li 4 O 12 ƒ. y 16d q e(octahedral sites) Li Ti yw w 8a e (tetrahedral sites) ù Li w Li[Li 1/3 /3 ]O 4 ùký. p Fig. 17. Li 4 O 12 y x š. 29) ü vƒ y ƒ wì ü p y ƒ j. y ù j» 15) w š wƒ p w. p 1.5 V ƒ 150 mah/g. Fig. 17 Li 4 O 12 y x š. Anatase ypk body-centered tetragonal (I4 1 /amd) a = 3.782 Å c=9.502å 3.904 g/ml. p»y w Li x Ti 1 O 2 x w ƒ 0.5¾.»yw Li 0.05 TiO 2 tetragonal Li 0.5 TiO 2 orthorhombic two-phase sx w š»yw 1.8 V(Li/Li + ) (Fig. 18). 18,19) Ti 1 O 2 + xli + + xe = Li x Ti 1 O 2 (x=0~0.5) Rutile ypk»yw y ù LiTiO 2 rocksalt x wš»yw ƒ 4.5% vq ƒ w anatase w potential sloping p (Fig. 18) ƒ. 20) Li(Li 1/3 /6 )O 4 (Li 4 O 12 ) w y ùkü zero strain 21-23).»yw 175 mah/g š 1.55 V(Li/Li + ) (Fig. 19)» w skw sk ùkü. 1 z k v x w». Li 1 (Li 1/3 /6 )O 4 Li 2 (Li 1/3 /6 )O 4 œ Fdm ƒƒ 8.3595 Å 8.3538 Å y 0.0682% ùkü. yƒ w p w. Li 1 (Li 1/3 /6 )O 4 + Li + + e = Li 2 (Li 1/3 /6 )O 4 Fig. 18. Anatase rutile TiO 2 y p. Anatase, rutile ramsdellite TiO 2 [30] TiO 2 -B 24,25) Li 4 O 12 titanium oxideƒ p»yw y ùkü 170~250 mah/g ù ƒ 26) 1.5~1.8 V(Li/Li + ) p» k w». wr ù j» (rock-salt structure) y MO(M:Co, Ni, Fe ) p ù j» x w y w ù Li 2 O sw. 26) CoO.

w»ywz, 11 «, 3 y, 2008 221 Fig. 19. Li 4 O 12 x p. Fig. 20. CoO, NiO, FeO. 21) Co + 2Li Li 2 O + Co» w Li 2 O l CoO x w w ù j» t w ú. w ƒ y ù j» w ƒ w š. w ƒ w p Fig. 20 ùkü 0.8 V š j ùkù. 3. p» w Breakthrough œw k w /w, š y w» w š Li 4 O 12 y ¾ r. w y w» š, šz e v w š q w. ƒ ùy y w w z š š, k, t v wd š š. x y p ¾ {»» w ey y ƒ y, m š» w. w x ¾ š, š w p ƒ q, w w ƒ v w q. š x 1. Handbook of Carbon, Graphite, Diamond and Fullerenes, Noyes Publications, William Andrew Publishing, Park Ridge NJ. (1993). 2. Chemistry and Physics of carbon - A series of Advances, 5: Walker PL Jr, Deposition, Structure and properties of Pyrolytic Carbon, Marcel Dekker, CRC Press, Boca, Florida. (1969). 3. J.-M. Tarascon and M. Armand, Nature, 414, 359 (2001). 4. M. Winter et al., Insertion Electrode Materials for Lithium Batteries, Adv. Mater. 10. No. 10 (1998). 5. X. Y. Song, K. Kinoshita, and T. R. Tran, J. Electrochem. Soc. 143, L120 (1996). 6. D. Billaud, E. McRae, and A. Herold, Mat. Res. Bull. 14, 857 (1979). 7. Walter A. van Schalkwijk, Bruno Scrosati, Advances in Lithium ion Batteries, Kluwer Academic/Publishers (2002). 8. M. winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Adv. Mat., 10, 725 (1998).

222 J. Korean Electrochem. Soc., Vol. 11, No. 3, 2008 9. I. Mochida, S. H. Yoon, Y. Korai, K. Kanno, Y. Sakai, and M. Komatsu. In: H. Marsh, F. Rodriguez-Reinoso, eds. Science of Carbon Materials. Alcante, Spain: Publicaciones de la Universidad de Alicante (2000). 10. J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Science 270, 590 (1995). 11. J. R. Dahn, A. K. Sleigh, H. Shi, J. N. Reimers, Q. Zhong, and B. N. Way, Electrochim. Acta 38, 1179 (1993). 12. Gholam-Abbas Nazri, Gianfranco Pistoia, Lithium batteries Science and Technology. Kluwer Academic Publishers (2004). 13. M. Winter, K. C. Moeller; and J. O. Basenhard, in: Science and Technology of Lithium Batteries, Gholam- Abbas Nazri, Gianfranco Pistoia Eds., kluwer Academic Publishers. 14. Y. Nishi, in: Lithium Ion Batteries, M. Wakihara, and O. Yamamoto, Eds., Kodansha/Wiley-VCH, Tokyo/Weinheim, chapter.8 (1998). 15. R. Spotnitz, J. Franklin, Journal of power sources 113, 81(2003). 16. M. Winter and J. O. Besenhard, Electrochim. Acta 45, 31 (1999). 17. R. A. Huggins, J. Power Sources, 81-82, 13-19 (1999). 18. S. W. Oh, S. H. Park, and Y. K. Sun, J. Power Sources, 161, 1314-1318. (2006). 19. H. Yamada, T. Yamato, I. Moriguchi, and T. Kudo, Solid State Ionics, 175, 195-198 (2004). 20. E. Baudrin, S. Cassaignon, M. Koelsch, J.-P. Jolivot, L. Dupont, and J.-M. Tarascon, Electrochem. Commun., 9, 337-342 (2007). 21. M. Julien, M. Massot, and K. Zaghib, J. Power Sources, 136, 72-79 (2004). 22. K. Ariyoshi, R. Yamato, and T. Ohzuku, Electrochimica Acta, 51, 1125 (2005). 23. T. Ohzuku, S. Takeda, and M. Iwanaga, J. Power Sources 81-82, 90-94 (1999). 24. A. R. Armstrong, G. Armstrong, J. Canales, and P. G. Bruce, J. Power Sources, 146, 501-506 (2005). 25. T. Brousse, R. Marchand, P.-L. Taberna, and P. Simon, J. Power Sources, 158, 571-577 (2006). 26. A. Kuhn, R. Amandi, and F. Garcia-Alvarado, J. Power Sources, 92, 221-227 (2001). 27. K. D. Kepler, J. T. Vaughey, and M. M. Thackeray, J. Power Sources, 81-82, 383-387 (1999). 28. J. Wolfenstine, J. Power sources, 79, 111 (1999). 29. T. Ohzuku, A. Ueda, and N. Yamamoto, J. Electrochem. Soc. 142, 1431 (1995). 30. A. Kuhn, R. Amandi, and F. Garcia-Alvarado, J. Power Sources, 92, 221-227 (2001). 31. P. Polzot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature, 407, 496 (2000).