항산화-2

Similar documents
109~118

γ

제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

063~078 인삼

033~50 ¿ŁÃ³¸® ¹×

untitled

Journal of Life Science 2011, Vol. 21. No μ μ

05~14 â©âõÃßÃâ¹ýÀ¸·Î

<C7D1BDC4BFAC20B1E8B5BFBCF6B9DABBE7B4D4676C75636F20C3D6C1BE5B315D2E687770>

012임수진

27 2, 1-16, * **,,,,. KS,,,., PC,.,,.,,. :,,, : 2009/08/12 : 2009/09/03 : 2009/09/30 * ** ( :

untitled

개최요강

Statistical Data of Dementia.

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

Lumbar spine

03-서연옥.hwp

139~144 ¿À°ø¾àħ

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

歯kjmh2004v13n1.PDF

103.fm

03-2ƯÁý -14š


서론 34 2

( )Kju269.hwp

09È«¼®¿µ 5~152s

main.hwp


Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

-, BSF BSF. - BSF BSF ( ),,. BSF -,,,. - BSF, BSF -, rrna, BSF.

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

한약재품질표준화연구사업단 작약 ( 芍藥 ) Paeoniae Radix 생약연구과

학술원논문집 ( 자연과학편 ) 제 50 집 2 호 (2011) 콩의식품적의의및생산수급과식용콩의자급향상 李弘䄷 * 李英豪 ** 李錫河 *** * Significance of Soybean as Food and Strategies for Self Suffici

한국성인에서초기황반변성질환과 연관된위험요인연구

<31335FB1C7B0E6C7CABFDC2E687770>

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

김범수

13장문현(541~556)ok

03-ÀÌÁ¦Çö

41

歯49손욱.PDF

:,,.,. 456, 253 ( 89, 164 ), 203 ( 44, 159 ). Cronbach α= ,.,,..,,,.,. :,, ( )

03이경미(237~248)ok

14.531~539(08-037).fm

Can032.hwp

기관고유연구사업결과보고

<313120B9DABFB5B1B82E687770>

hwp

Æ÷Àå82š

12.077~081(A12_이종국).fm

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

歯1.PDF

lastreprt(....).hwp

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

1..

#Ȳ¿ë¼®


Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

- 1 -


<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

패션 전문가 293명 대상 앙케트+전문기자단 선정 Fashionbiz CEO Managing Director Creative Director Independent Designer

환경중잔류의약물질대사체분석방법확립에 관한연구 (Ⅱ) - 테트라사이클린계항생제 - 환경건강연구부화학물질연구과,,,,,, Ⅱ 2010

KISEP Otology Korean J Otolaryngol 2000;43: 마우스대식세포주에서항산화제및 Dexamethasone 이유발형산화질소합성효소발현과산화질소생성에미치는효과 강준명 여상원 이흥엽 장기홍 서병도 Effect of Antioxidants

16(1)-3(국문)(p.40-45).fm

DBPIA-NURIMEDIA

PJTROHMPCJPS.hwp

박치영논문-1

09-감마선(dh)

Kbcs002.hwp

00내지1번2번

2009;21(1): (1777) 49 (1800 ),.,,.,, ( ) ( ) 1782., ( ). ( ) 1,... 2,3,4,5.,,, ( ), ( ),. 6,,, ( ), ( ),....,.. (, ) (, )

歯TR PDF

141(26) () ( ( ) () () () ) 2) 1932 ()()3) 2 1) ( ) ( ) () () () 4) ( ) 5) 6) ) ) ( ) () 42 () )

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

10 (10.1) (10.2),,

00약제부봄호c03逞풚

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

이 발명을 지원한 국가연구개발사업 과제고유번호 KGM 부처명 교육과학기술부 연구관리전문기관 연구사업명 전북분원운영사업 연구과제명 저탄소 녹생성장을 위한 바이오매스/에너지 개발 주관기관 한국생명공학연구원 연구기간 2009년 01월 01일 ~ 2009년 12월

untitled

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

노인정신의학회보14-1호

388 The Korean Journal of Hepatology : Vol. 6. No COMMENT 1. (dysplastic nodule) (adenomatous hyperplasia, AH), (macroregenerative nodule, MR

82-01.fm

02-³í´Ü1

DBPIA-NURIMEDIA


Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: A study on Characte


Sheu HM, et al., British J Dermatol 1997; 136: Kao JS, et al., J Invest Dermatol 2003; 120:

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특


Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: * The Grounds and Cons

μ

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

,......

表紙(化学)

Transcription:

67 DOI:10.3831/KPI.2008.11.3.067 A study on the comparison of antioxidant effects among wild ginseng, cultivated wild ginseng, and cultivated ginseng extracts Hae Young, Jang Hee Soo, Park Ki Rok, Kwon Tae Jin, Rhim** *Department of Acup & Moxi, Korean Medical College, Sangji University **Devision of Animal resourses and life science, Sangji University ABSTRACT Objective Methods Results Conclusions The objective of this study was to compare the antioxidant effects among wild ginseng, cultivated wild ginseng, and ginseng extracts. In vitro antioxidant activities were examined by total antioxidant capacity(tac), oxygen radical scavenging capacity(orac), total phenolic content, 1, 1- Diphenyl- 2- picrylhydrazyl( DPPH) radical scavenging activity, inhibition of induced lipid peroxidation using liver mitochondria, reactive oxygen species(ros) scavenging effect using 2, 7 -dichlorofluorescein(dcf) fluorescence. 1. TAC of 1.5 and 3.75 mg extracts was highest in cultivated wild ginseng, followed by wild ginseng and lowest in ginseng. 2. ORAC of 2, 10, and 20 g extracts was highest in cultivated wild ginseng, followed by wild ginseng and lowest in ginseng. 3. Total phenolic content of 0.375, 0.938, and 1.875 mg extracts was highest in cultivated wild ginseng, followed by wild ginseng and lowest in ginseng. 4. DPPH(1, 1- Diphenyl- 2- picrylhydrazyl) scavenging activity between wild ginseng and cultivated wild ginseng did not differ significantly(p>0.05). 5. Induced lipid peroxidation, measured by TBARS concentration in solution containing rat liver mitochondria incubated in the presence of FeSO4/ascorbic acid was inhibited as amounts of wild ginseng, cultivated wild ginseng, and ginseng extracts increased. TBARS concentration of ginseng extracts were significantly(p<0.05) higher than wild ginseng or cultivated wild ginseng extracts. 6. DCF fluorescence intensity was decreased as concentrations of wild ginseng, cultivated wild ginseng, and ginseng extracts increased, demonstrating that ROS generation was inhibited in a concentrationdependent manner. In summary, the results of this study demonstrate that cultivated wild ginseng extracts had similar antioxidant activities to wild ginseng extracts and greater that of cultivated ginseng extracts. Key words antioxidant activity, cultivated wild ginseng, wild ginseng, TAC, ORAC, DPPH, Total phenolic content, TBARS, 238 Tel : 033-741-9257, E-mail : beevenom@paran.com / Received 2008.8.6, Accepted 2008.8.27

68 11 3 2008 9 I II free radical 1954 R. Gerschman D. Harman 1956 DNA Panax ginseng C.A.Meyer:Ginseng radix Stress 1 1 2, 7 -Dichlorofluorescin-diacetate(DCFH-DA, Molecular Probes. Co. U.S.A Trolox, fluorescein H 2 O 2 Aldrich. Co. U.S.A. 96-well micro-plate Cambrex Co. U.S.A. Sigma Chemical. Co. U.S.A. 2 6 Sprague-Dawley rat 1 Hovius 3 20-30 Fig. 1 10 Fig. 2 5 Fig. 3 Total antioxidant capacity TAC Oxygen radical absorbance capacity ORAC Total phenolic content 1, 1-Diphenyl- 2-picrylhydrazyl DPPH Reactive oxygen species ROS Fig. 1 Wild ginseng with approximately 20-30 years old.

69 22.5, 33.75 45 nmol Trolox Trolox TAC nmol Trolox equivalent Fig. 2 Cultivated wild ginseng of 10 years old. Fig. 3 Cultivated ginseng 5 years old. 2 1 80 ethanol HPLC-grade 2 evaporation 35.8 34.3 30.4 500 mg/ml dh 2O 4 2 Total antioxidant capacity TAC Total antioxidant status Trolox equivalent antioxidant capacity TEAC Erel TAC ph 2 2 -azinobis 3-ethylbenzothiazoline- 6-sulfonate ABTS H 2O 2 ABTS + ABTS + 660 nm TAC 0, 2.25, 4.5, 9.0, 3 Oxygen radical absorbance capacity ORAC TEAC ORAC assay Huang 37 excitation 485 nm emiss-ion 530 nm 2 36 ORAC assay free radical inhibition method fluorescein peroxyl radical 2, 2 - azobis 2-amidinopropane dihydrochloride AAPH free radical 0, 0.02, 0.2, 1 2 nmol gallic acid area under the curve AUC ORAC AUC nmol gallic acid equivalent 4 Total phenolic content phenolic gallic acid Singleton Orthofer 20 760 nm phenolic 0, 4.69, 9.38, 18.75, 37.5, 62.51 93.75 nmol gallic acid Gallic acid phenolic phenolic nmol gallic acid equivalent 5 1, 1-Diphenyl-2-picrylhydrazyl DPPH 1, 1-Diphenyl-2-picrylhydrazyl DPPH free radical Malterud DPPH 45 g/ml methanol 515 nm 30 5 Free radical pyrogallol 125

70 11 3 2008 9 g/ml DMSO 100 6 thiobarbituric acid reactive substances TBARS 0.5 mg/ml 10 mol FeSO 4 100 mol ascorbic acid 37 60 Stacey Klaassen excitation 530 nm emission 590 nm TBARS 0, 0.063, 0.127, 0.253, 0.506, 1.013 2.025 nmol 1, 1, 3, 3,-tetraethoxypropane 7 Reactive oxygen species ROS 2, 7 -dichlorofluorescin diacetate DCFH-DA sodium hydroxide DCFH deesterification DCFH ROS dichlorofluorescein DCF 1 M H 2O 2 10 M FeSO 4 ROS DCFH DCF ROS H 2O 2 radical DCF LeBel SPECTRAmax GEMINI XS Microplate Spectrofluorometer Molecular Devices Sunnyvale CA USA ROS 96-well plate 100 l 40 mm Tris 10 50 l DCFH DCFH 37 20 10 M H 2O 2 20 100 M FeSO 4 0 min excitation 488 nm emission 525 nm 2 10 10min 8 bovine serum albumin BSA Lowry 3 SPSS Version 10.0 for Windows U.S.A. Duncan s multiple range test p 0.05 III 1 Total antioxidant capacity TAC Trolox 660 nm Y 1.325-0.021X Y 660 nm X Trolox Trolox 660 nm R 2 0.990 TAC Fig. 4 0.75, 1.5 3.75 mg 19.6, 29.1 35.8 nmol Trolox equivalent TAC TAC Y 18.484 4.843X 1 mg 23.3 nmol Trolox 0.75, 1.5 3.75 mg 22.0, 33.5 48.5 nmol Trolox equivalent TAC TAC Y 18.059 8.312X 1 mg 26.4 nmol Trolox 0.75, 1.5, 3.75 7.5 mg 11.5, 16.3, 29.0 40.6 nmol Trolox equivalent TAC TAC Y 9.904 4.275X 1mg 14.2 nmol Trolox TAC 1.5 3.75 mg p 0.05

71 ORAC peroxyl radical 20 g AAPH radical 100 ORAC 2, 10 20 g p 0.05 Fig. 4 Total antioxidant capacities of wild ginseng, cultivated wild ginseng, and ginseng extracts. Data results were expressed as in terms of nmol Trolox equivalent. Each bar represents the mean SEM of triplicate determinations. a,b,c Values with different letters within same group are significantly different(p 0.05). 2 Oxygen radical absorbance capacity ORAC ORAC assay AUC free radical gallic acid AUC Y 302541 382872X Y AUC X gallic acid Gallic acid AUC R 2 0.965 ORAC Fig. 5 2, 10 20 g 0.31, 0.91 1.01 nmol gallic acid equivalent ORAC ORAC Y 0.342 0.0375X 5 g 0.53 nmol gallic acid 2, 10 20 g 0.44, 1.02 1.06 nmol gallic acid equivalent ORAC ORAC Y 0.487 0.0333X 5 g 0.65 nmol gallic acid 2, 10 20 g 0.15, 0.68 0.94 nmol gallic acid equivalent ORAC ORAC Y 0.133.0431X 5 g 0.35 nmol gallic acid Fig. 5 Oxygen radical absorbance capacities of wild ginseng, cultivated wild ginseng, and ginseng extracts. Data results were expressed as in terms of nmol gallic acid equivalent. Each bar represents the mean SEM of triplicate determinations. a,b,c Values with different letters within same group are significantly different(p 0.05). 3 Total phenolic content Phenolic compound gallic acid 760 nm Y 0.031 0.019X Y 760 nm X gallic acid Gallic acid 760 nm R 2 0.997 phenol Fig. 6 0.375, 0.938 1.875 mg 12.68, 27.58 52.53 nmol gallic acid equivalent phenol phenol Y 2.708 26.565X

72 11 3 2008 9 1 mg 29.27 nmol gallic acid phenol 0.375, 0.938 1.875 mg 16.39, 29.32 63.51 nmol gallic acid equivalent phenol phenol Y 3.001 31.804X 1 mg 34.80 nmol gallic acid phenol 0.375, 0.938, 1.875, 3.75 7.5 mg 4.65, 11.13, 21.88, 38.34 71.74 nmol gallic acid equivalent phenol phenol Y 2.632 9.331X 1 mg 11.96 nmol gallic acid phenol phenol 0.375, 0.938 1.875 mg phenol p 0.05 DPPH 1.2 DPPH free radical free radical pyrogallol 100 DPPH free radical Fig. 7 3.3, 6.7 16.7 mg/ml radical 45.7, 65.3 87.3 free radical Y 38.921 3.001X 50 radical 3.69 mg/ml 3.3, 6.7 16.7 mg/ml radical 42.9, 60.2 86.7 free radical Y 34.449 3.202X 50 radical 4.86 mg/ml 3.3, 6.7 16.7 mg/ml radical 20.5, 30.5 55.2 free radical Y 12.274 2.592X 50 radical 14.55 mg/ml DPPH free radical 3.3, 6.7 16.7 mg/ml p 0.05 p 0.05 Fig. 6 Total phenolic contents of wild ginseng, cultivated wild ginseng, and ginseng extracts. Data results were expressed as in terms of nmol gallic acid equivalent. Each bar represents the mean SEM of triplicate determinations. a,b,c Values with different letters within same group are significantly different(p 0.05). 4 1, 1-Diphenyl-2-picrylhydrazyl DPPH DPPH radical 515 nm 45 g/ml Fig. 7 DPPH free radical scavenging activities of wild ginseng, cultivated wild ginseng, and ginseng extracts. Data results were expressed as % radical scavenging activity relative to 100% radical scavenging activity of pyrogallol solution as a reference. Each bar represents the mean SEM of triplicate determinations. a,b,c Values with different letters within same group are significantly different(p 0.05).

73 5 hydroxyl radical FeSO 4 ascorbic acid TBARS excitation 530 nm emission 590 nm Y 4.939 235.546X Y X TBARS TBARS R 2 0.999 Fig. 8 0 10 M FeSO 4 100 M ascorbic acid TBARS 1.19 nmol 1.25, 6.2 5, 12.5 31.25 mg TBARS 1.14, 0.98, 0.63 0.04 nmol 6.25 mg TBARS p 0.05 TBARS 31.25 mg 97 TBARS Y 1.182-0.037X 50 15.97 mg 1.25, 6.25, 12.5 31.25 mg TBARS 1.11, 1.00, 0.75 0.05 nmol 6.25 mg TBARS p 0.05 TBARS 31.25 mg 96 TBARS Y 1.194-0.036X 50 16.58 mg 1.25, 6.25, 12.5 31.25 mg TBARS 1.15, 1.12, 1.05 0.55 nmol 12.5 mg TBARS p 0.05 31.25 mg 54 TBARS Y 1.217-0.020X 50 30.43 mg TBARS 6.25, 12.5 31.25 mg TBARS p 0.05 TBARS 6.25 31.25 mg p 0.05 12.5 mg p 0.05 Fig. 8 The effects of wild ginseng, cultivated wild ginseng, and ginseng extracts on inhibition of lipid peroxidation in rat liver mitochondria. Rat liver mitochondria were incubated with FeSO4/ascorbic acid in the absence or presence of various concentrations of the extract. Lipid peroxidation was determined by measuring the release of TBARS. Each bar represents the mean SEM of triplicate determinations. a,b,c Values with different letters within same group are significantly different(p 0.05). 6 Reactive oxygen species ROS FeSO 4/H 2O 2 ROS DCFH DCF DCF ROS DCF ROS Fig. 6 DCFH DCF 0 464, 10 556 FeSO 4/H 2O 2 background DCF 0 150, 10 199 2.5, 5, 12.5 25 mg/ml

74 11 3 2008 9 DCF 0 450, 424, 360 324 5 mg/ml DCF p 0.05 DCF 25 mg/ml DCF 44 2.5, 5, 12.5 25 mg/ml DCF 10 510, 471, 398 336 2.5 mg/ml DCF p 0.05 DCF 25 mg/ml 10 DCF 61 2.5, 5, 12.5 25 mg/ml DCF 0 460, 437, 408 359 12.5 mg/ml DCF p 0.05 25 mg/ml DCF 33 2.5, 5, 12.5 25 mg/ml DCF 10 542, 501, 461 372 5 mg/ml DCF p 0.05 DCF 25 mg/ml 10 DCF 51 p 0.05 2.5, 5, 12.5 25 mg/ml DCF 0 467, 465, 442 414 25 mg/ml DCF 16 p 0.05 2.5, 5, 12.5 25 mg/ml DCF 10 558, 538, 515 465 12.5 mg/ml DCF p 0.05 25 mg/ml 10 DCF 25 0 DCF 2.5 mg/ml 5 mg/ml DCF p 0.05 12.5 25 mg/ml DCF p 0.05 ROS 10 DCF 0 Fig. 9 The effects of wild ginseng, cultivated wild ginseng, and ginseng extracts on inhibition of ROS generation. DCFH oxidation to DCF by FeSO4/H2O2-induced ROS generation in the absence or presence of various concentrations of the extract was measured for 10 min. Each bar represents the mean SEM of triplicate determinations. a,b,c,a,b,c Values with different letters within same group are significantly different(p 0.05). IV free radical Free radical superoxide radical O 2 hydroxyl radical OH hydrogen peroxide H 2O 2 singlet oxigen 1 O 2 free radical SOD superoxide dismutase free radical SOD superoxide anion radical

75 Panax ginseng C.A. Meyer Araliaceae 30 22 panaxtriol HL-60 DNA TNF- nitric oxide NO Erel Total antioxidant capacity TAC TAC ABTS radical TAC 1.5 3.75 mg ORAC assay free radical inhibition method free radical ORAC 2 10 20 g Phenolic compound Total phenolic content phenol phenol TAC ORAC phenol phenol DPPH hydroxy radical OH Malterud DPPH DPPH free radical DPPH free radical OH O2 H2O2

76 11 3 2008 9 TBARS 6.25 12.5 31.25 mg TBARS TBARS 6.25 31.25 mg 12.5 mg FeSO 4/H 2O 2 ROS DCFH DCF DCF ROS DCF ROS ROS DCF 2.5 mg/ml 5 mg/ml DCF 12.5 25 mg/ml DCF ROS Total antioxidant capacity ORAC assay phenol DPPH free radical Reactive oxygen species ROS 10 V TAC ORAC phenol DPPH free radical ROS 1 TAC 2 ORAC 3 phenol 4 DPPH free radical 5 6 ROS VI 1. M. Valko, D. Leibfritz, J. Moncol, Mark T.D. Cronin, M. Mazur, J. Telser. Free radicals and antioxidant in normal physiological funtions

77 and human disease. The International J. & Cell Biology. 2007; 39: 44-84. 2. Sawyer, DT., Valentine, JS. How super is superoxide? ACC. Chem. Res. 1981;14:393. 3. Fridorich, I. Biological effects of the superoxide radical. Arch. Biophys. 1986;247:1-11. 4. Ames, BN. Dietary carcinogens and anticarcinogens. Oxygen radical and degenerative disease. Science. 1983; 221:1256-1264. 5. Chance, B., Sies, H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979; 59: 527. 6. Kandawami, C., Middleton, EJ. Free radical scavenging and anti-oxident activity of plant flavonoids. Free Radicals in Diagnostic Medicine. Armstrong D. Plenum Press, New York and London. 1994;351-376. 7. 1979;1(1):45-52 8. 1955;51: 390. 9. Brekhman. I.I, Panax ginseng, Gosudarst Isdat et Med, Lit. Leningard, 1957;1. 10. 1984;13-14 11. 1996;56 12. Takagi, K, Proceedings International Ginseng Symposium, The Central Research Institute, Office of Monopoly, Seoul, Korea, 1974;119. 13. 2003;42(3):661-668 14. Choi, KJ., Kim, MW., Hong, SK., Kim, DH. Effect of solvents on the yield, brown color intensity, UV absorbance, reducing and antioxident activities of extracts from white and red ginseng. J. Korean Agric. Chem. Soc. 1983;26:8-18. 15. Korean J. Medicinal Crop. Sci. 2004;12 3 237-242 16. Hovius, R., H. Lambrechts, K. Nocolay and B. de Kruijff. Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim. Biophys. Acta. 1990;1021:217-226. 17. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26 :1231-1237. 18. Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004;37:277-285. 19. Huang, D., B. Ou, M. Hampsch-Woodill, J. A. Flanagan and R. L. Prior. High- throughput assay of oxygen radical absorbance capacity(orac) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002; 50:4437-4444. 20. Singleton, V.L. and R. Orthofer. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999; 299:152-178. 21. Malterud, K.E., T.L. Farbrot, A.E. Huse and R.B. Sund. Antioxidant and radical scavenging effects of anthraquinones and anthrones. Pharmacology 1993;47: 77-85. 22. Stacey, N.H. and C.D. Klaassen. Inhibition of lipid peroxidation without prevention of cellular injury in isolated rat hepatocytes. Toxicol. Appl. Pharm. 1981;58: 8-18. 23. LeBel, C.P., H. Ischiropoulos and S.C. Bondy. Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reative oxyten species formation and oxidative stress. Chem. Res. Toxicol. 1992;5:227-231. 24. Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 1951;193:265-275. 25. Devy, C. and Gautier, R. New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutase. Biochem.

78 11 3 2008 9 Pharmacol. 1990;39:399-405. 26. Kuramoto, T. Development and application of food materials from plant extracts such as SOD. Up to date Food Processing. 1992;27:22-23. 27. Rorald, W. Naturally occurring nitrite in food. J. Japan Soc. Food Agric. 1975; 26:1735-1742. 28. Jeon, HK., Kim, SC., Jung, NP. Effects of ginseng sponin fraction and cyclophosphamide on the tumoricidal activity of mouse macrophage and antitumor effect. Korean J. Ginseng Sci. 1991;15:99-105. 29. Kim, MJ., Jung, NP. The effects of ginseng saponin on the mouse immune system. Korean J. Ginseng Sci. 1987;11:130-135. 30. Kang, SY., Kim, ND. The anti-hypersensitive effect of red ginseng saponinand the endotheliumderived vascular relaxation. Korean J. Ginseng Sci. 1992;16:175-182. 31. Joo, CN., Kim, JH. Study on the hypoglycemic action of ginseng saponin on streptozotocin induced diabetic rats. Korean J. Ginseng Sci. 1991;16:190-197. 32. Oliveira, ACC., Perez, AC., Merino G., Prietp, JG., Alvarez, AI. Protective effects of Panax ginseng on muscle injury and inflammation after eccentric exercise. Comparative Biochemistry and Physiology Part C. 2001;130:369-377. 33. Kim, JS., Kim, KW., Choi, KJ., Kwak, YK., Im, KS., Lee, KM., Chung, HY. Screening of antioxidative components from red ginseng saponin. Korean J. Ginseng Sci. 1996;20:173-178. 34. Ryu, GH. Present status of red ginseng products and its manufacturing process. Food Industry and Nutrition. 2003;8:38-42. 35. Kitagawa, I. Chemical studies on crude drug processing. I. On constituents of ginseng radix rubra(1). Yakugaku Zasshi 1983;103: 612-622. 36. Kim, KH., Lee, YS., Jung, IS., Park, SY., Chung, HY., Lee, IR., Yun, YS. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy withr II-2. Planta media. 1998;64:110-115. 37. Lee, JW., Sohn, HO., Do, JH. Function of the water soluble browning reaction products isolated from Korean red ginseng 2. Linoleic acid, Oxbrain autoxidant and Fe 2+ ADP/NAD system. Korean J. Ginseng Res. 2000;24:35-40. 38. 2004;19(2):41-50 39. 1988;150 40. Yoshizawa, S., Horiuchi, T., Yoshida, T., Okuda, T. Antitumor promoting activity of (-) -epigallocatechin gallate, the main constitutent of tannin in green tea. Phytother. Res. 1987;1:44-47. 41. Fridovich, I. Biological effects of the superoxide radical. Adv. Enzymol. 1986;58:62.