67 DOI:10.3831/KPI.2008.11.3.067 A study on the comparison of antioxidant effects among wild ginseng, cultivated wild ginseng, and cultivated ginseng extracts Hae Young, Jang Hee Soo, Park Ki Rok, Kwon Tae Jin, Rhim** *Department of Acup & Moxi, Korean Medical College, Sangji University **Devision of Animal resourses and life science, Sangji University ABSTRACT Objective Methods Results Conclusions The objective of this study was to compare the antioxidant effects among wild ginseng, cultivated wild ginseng, and ginseng extracts. In vitro antioxidant activities were examined by total antioxidant capacity(tac), oxygen radical scavenging capacity(orac), total phenolic content, 1, 1- Diphenyl- 2- picrylhydrazyl( DPPH) radical scavenging activity, inhibition of induced lipid peroxidation using liver mitochondria, reactive oxygen species(ros) scavenging effect using 2, 7 -dichlorofluorescein(dcf) fluorescence. 1. TAC of 1.5 and 3.75 mg extracts was highest in cultivated wild ginseng, followed by wild ginseng and lowest in ginseng. 2. ORAC of 2, 10, and 20 g extracts was highest in cultivated wild ginseng, followed by wild ginseng and lowest in ginseng. 3. Total phenolic content of 0.375, 0.938, and 1.875 mg extracts was highest in cultivated wild ginseng, followed by wild ginseng and lowest in ginseng. 4. DPPH(1, 1- Diphenyl- 2- picrylhydrazyl) scavenging activity between wild ginseng and cultivated wild ginseng did not differ significantly(p>0.05). 5. Induced lipid peroxidation, measured by TBARS concentration in solution containing rat liver mitochondria incubated in the presence of FeSO4/ascorbic acid was inhibited as amounts of wild ginseng, cultivated wild ginseng, and ginseng extracts increased. TBARS concentration of ginseng extracts were significantly(p<0.05) higher than wild ginseng or cultivated wild ginseng extracts. 6. DCF fluorescence intensity was decreased as concentrations of wild ginseng, cultivated wild ginseng, and ginseng extracts increased, demonstrating that ROS generation was inhibited in a concentrationdependent manner. In summary, the results of this study demonstrate that cultivated wild ginseng extracts had similar antioxidant activities to wild ginseng extracts and greater that of cultivated ginseng extracts. Key words antioxidant activity, cultivated wild ginseng, wild ginseng, TAC, ORAC, DPPH, Total phenolic content, TBARS, 238 Tel : 033-741-9257, E-mail : beevenom@paran.com / Received 2008.8.6, Accepted 2008.8.27
68 11 3 2008 9 I II free radical 1954 R. Gerschman D. Harman 1956 DNA Panax ginseng C.A.Meyer:Ginseng radix Stress 1 1 2, 7 -Dichlorofluorescin-diacetate(DCFH-DA, Molecular Probes. Co. U.S.A Trolox, fluorescein H 2 O 2 Aldrich. Co. U.S.A. 96-well micro-plate Cambrex Co. U.S.A. Sigma Chemical. Co. U.S.A. 2 6 Sprague-Dawley rat 1 Hovius 3 20-30 Fig. 1 10 Fig. 2 5 Fig. 3 Total antioxidant capacity TAC Oxygen radical absorbance capacity ORAC Total phenolic content 1, 1-Diphenyl- 2-picrylhydrazyl DPPH Reactive oxygen species ROS Fig. 1 Wild ginseng with approximately 20-30 years old.
69 22.5, 33.75 45 nmol Trolox Trolox TAC nmol Trolox equivalent Fig. 2 Cultivated wild ginseng of 10 years old. Fig. 3 Cultivated ginseng 5 years old. 2 1 80 ethanol HPLC-grade 2 evaporation 35.8 34.3 30.4 500 mg/ml dh 2O 4 2 Total antioxidant capacity TAC Total antioxidant status Trolox equivalent antioxidant capacity TEAC Erel TAC ph 2 2 -azinobis 3-ethylbenzothiazoline- 6-sulfonate ABTS H 2O 2 ABTS + ABTS + 660 nm TAC 0, 2.25, 4.5, 9.0, 3 Oxygen radical absorbance capacity ORAC TEAC ORAC assay Huang 37 excitation 485 nm emiss-ion 530 nm 2 36 ORAC assay free radical inhibition method fluorescein peroxyl radical 2, 2 - azobis 2-amidinopropane dihydrochloride AAPH free radical 0, 0.02, 0.2, 1 2 nmol gallic acid area under the curve AUC ORAC AUC nmol gallic acid equivalent 4 Total phenolic content phenolic gallic acid Singleton Orthofer 20 760 nm phenolic 0, 4.69, 9.38, 18.75, 37.5, 62.51 93.75 nmol gallic acid Gallic acid phenolic phenolic nmol gallic acid equivalent 5 1, 1-Diphenyl-2-picrylhydrazyl DPPH 1, 1-Diphenyl-2-picrylhydrazyl DPPH free radical Malterud DPPH 45 g/ml methanol 515 nm 30 5 Free radical pyrogallol 125
70 11 3 2008 9 g/ml DMSO 100 6 thiobarbituric acid reactive substances TBARS 0.5 mg/ml 10 mol FeSO 4 100 mol ascorbic acid 37 60 Stacey Klaassen excitation 530 nm emission 590 nm TBARS 0, 0.063, 0.127, 0.253, 0.506, 1.013 2.025 nmol 1, 1, 3, 3,-tetraethoxypropane 7 Reactive oxygen species ROS 2, 7 -dichlorofluorescin diacetate DCFH-DA sodium hydroxide DCFH deesterification DCFH ROS dichlorofluorescein DCF 1 M H 2O 2 10 M FeSO 4 ROS DCFH DCF ROS H 2O 2 radical DCF LeBel SPECTRAmax GEMINI XS Microplate Spectrofluorometer Molecular Devices Sunnyvale CA USA ROS 96-well plate 100 l 40 mm Tris 10 50 l DCFH DCFH 37 20 10 M H 2O 2 20 100 M FeSO 4 0 min excitation 488 nm emission 525 nm 2 10 10min 8 bovine serum albumin BSA Lowry 3 SPSS Version 10.0 for Windows U.S.A. Duncan s multiple range test p 0.05 III 1 Total antioxidant capacity TAC Trolox 660 nm Y 1.325-0.021X Y 660 nm X Trolox Trolox 660 nm R 2 0.990 TAC Fig. 4 0.75, 1.5 3.75 mg 19.6, 29.1 35.8 nmol Trolox equivalent TAC TAC Y 18.484 4.843X 1 mg 23.3 nmol Trolox 0.75, 1.5 3.75 mg 22.0, 33.5 48.5 nmol Trolox equivalent TAC TAC Y 18.059 8.312X 1 mg 26.4 nmol Trolox 0.75, 1.5, 3.75 7.5 mg 11.5, 16.3, 29.0 40.6 nmol Trolox equivalent TAC TAC Y 9.904 4.275X 1mg 14.2 nmol Trolox TAC 1.5 3.75 mg p 0.05
71 ORAC peroxyl radical 20 g AAPH radical 100 ORAC 2, 10 20 g p 0.05 Fig. 4 Total antioxidant capacities of wild ginseng, cultivated wild ginseng, and ginseng extracts. Data results were expressed as in terms of nmol Trolox equivalent. Each bar represents the mean SEM of triplicate determinations. a,b,c Values with different letters within same group are significantly different(p 0.05). 2 Oxygen radical absorbance capacity ORAC ORAC assay AUC free radical gallic acid AUC Y 302541 382872X Y AUC X gallic acid Gallic acid AUC R 2 0.965 ORAC Fig. 5 2, 10 20 g 0.31, 0.91 1.01 nmol gallic acid equivalent ORAC ORAC Y 0.342 0.0375X 5 g 0.53 nmol gallic acid 2, 10 20 g 0.44, 1.02 1.06 nmol gallic acid equivalent ORAC ORAC Y 0.487 0.0333X 5 g 0.65 nmol gallic acid 2, 10 20 g 0.15, 0.68 0.94 nmol gallic acid equivalent ORAC ORAC Y 0.133.0431X 5 g 0.35 nmol gallic acid Fig. 5 Oxygen radical absorbance capacities of wild ginseng, cultivated wild ginseng, and ginseng extracts. Data results were expressed as in terms of nmol gallic acid equivalent. Each bar represents the mean SEM of triplicate determinations. a,b,c Values with different letters within same group are significantly different(p 0.05). 3 Total phenolic content Phenolic compound gallic acid 760 nm Y 0.031 0.019X Y 760 nm X gallic acid Gallic acid 760 nm R 2 0.997 phenol Fig. 6 0.375, 0.938 1.875 mg 12.68, 27.58 52.53 nmol gallic acid equivalent phenol phenol Y 2.708 26.565X
72 11 3 2008 9 1 mg 29.27 nmol gallic acid phenol 0.375, 0.938 1.875 mg 16.39, 29.32 63.51 nmol gallic acid equivalent phenol phenol Y 3.001 31.804X 1 mg 34.80 nmol gallic acid phenol 0.375, 0.938, 1.875, 3.75 7.5 mg 4.65, 11.13, 21.88, 38.34 71.74 nmol gallic acid equivalent phenol phenol Y 2.632 9.331X 1 mg 11.96 nmol gallic acid phenol phenol 0.375, 0.938 1.875 mg phenol p 0.05 DPPH 1.2 DPPH free radical free radical pyrogallol 100 DPPH free radical Fig. 7 3.3, 6.7 16.7 mg/ml radical 45.7, 65.3 87.3 free radical Y 38.921 3.001X 50 radical 3.69 mg/ml 3.3, 6.7 16.7 mg/ml radical 42.9, 60.2 86.7 free radical Y 34.449 3.202X 50 radical 4.86 mg/ml 3.3, 6.7 16.7 mg/ml radical 20.5, 30.5 55.2 free radical Y 12.274 2.592X 50 radical 14.55 mg/ml DPPH free radical 3.3, 6.7 16.7 mg/ml p 0.05 p 0.05 Fig. 6 Total phenolic contents of wild ginseng, cultivated wild ginseng, and ginseng extracts. Data results were expressed as in terms of nmol gallic acid equivalent. Each bar represents the mean SEM of triplicate determinations. a,b,c Values with different letters within same group are significantly different(p 0.05). 4 1, 1-Diphenyl-2-picrylhydrazyl DPPH DPPH radical 515 nm 45 g/ml Fig. 7 DPPH free radical scavenging activities of wild ginseng, cultivated wild ginseng, and ginseng extracts. Data results were expressed as % radical scavenging activity relative to 100% radical scavenging activity of pyrogallol solution as a reference. Each bar represents the mean SEM of triplicate determinations. a,b,c Values with different letters within same group are significantly different(p 0.05).
73 5 hydroxyl radical FeSO 4 ascorbic acid TBARS excitation 530 nm emission 590 nm Y 4.939 235.546X Y X TBARS TBARS R 2 0.999 Fig. 8 0 10 M FeSO 4 100 M ascorbic acid TBARS 1.19 nmol 1.25, 6.2 5, 12.5 31.25 mg TBARS 1.14, 0.98, 0.63 0.04 nmol 6.25 mg TBARS p 0.05 TBARS 31.25 mg 97 TBARS Y 1.182-0.037X 50 15.97 mg 1.25, 6.25, 12.5 31.25 mg TBARS 1.11, 1.00, 0.75 0.05 nmol 6.25 mg TBARS p 0.05 TBARS 31.25 mg 96 TBARS Y 1.194-0.036X 50 16.58 mg 1.25, 6.25, 12.5 31.25 mg TBARS 1.15, 1.12, 1.05 0.55 nmol 12.5 mg TBARS p 0.05 31.25 mg 54 TBARS Y 1.217-0.020X 50 30.43 mg TBARS 6.25, 12.5 31.25 mg TBARS p 0.05 TBARS 6.25 31.25 mg p 0.05 12.5 mg p 0.05 Fig. 8 The effects of wild ginseng, cultivated wild ginseng, and ginseng extracts on inhibition of lipid peroxidation in rat liver mitochondria. Rat liver mitochondria were incubated with FeSO4/ascorbic acid in the absence or presence of various concentrations of the extract. Lipid peroxidation was determined by measuring the release of TBARS. Each bar represents the mean SEM of triplicate determinations. a,b,c Values with different letters within same group are significantly different(p 0.05). 6 Reactive oxygen species ROS FeSO 4/H 2O 2 ROS DCFH DCF DCF ROS DCF ROS Fig. 6 DCFH DCF 0 464, 10 556 FeSO 4/H 2O 2 background DCF 0 150, 10 199 2.5, 5, 12.5 25 mg/ml
74 11 3 2008 9 DCF 0 450, 424, 360 324 5 mg/ml DCF p 0.05 DCF 25 mg/ml DCF 44 2.5, 5, 12.5 25 mg/ml DCF 10 510, 471, 398 336 2.5 mg/ml DCF p 0.05 DCF 25 mg/ml 10 DCF 61 2.5, 5, 12.5 25 mg/ml DCF 0 460, 437, 408 359 12.5 mg/ml DCF p 0.05 25 mg/ml DCF 33 2.5, 5, 12.5 25 mg/ml DCF 10 542, 501, 461 372 5 mg/ml DCF p 0.05 DCF 25 mg/ml 10 DCF 51 p 0.05 2.5, 5, 12.5 25 mg/ml DCF 0 467, 465, 442 414 25 mg/ml DCF 16 p 0.05 2.5, 5, 12.5 25 mg/ml DCF 10 558, 538, 515 465 12.5 mg/ml DCF p 0.05 25 mg/ml 10 DCF 25 0 DCF 2.5 mg/ml 5 mg/ml DCF p 0.05 12.5 25 mg/ml DCF p 0.05 ROS 10 DCF 0 Fig. 9 The effects of wild ginseng, cultivated wild ginseng, and ginseng extracts on inhibition of ROS generation. DCFH oxidation to DCF by FeSO4/H2O2-induced ROS generation in the absence or presence of various concentrations of the extract was measured for 10 min. Each bar represents the mean SEM of triplicate determinations. a,b,c,a,b,c Values with different letters within same group are significantly different(p 0.05). IV free radical Free radical superoxide radical O 2 hydroxyl radical OH hydrogen peroxide H 2O 2 singlet oxigen 1 O 2 free radical SOD superoxide dismutase free radical SOD superoxide anion radical
75 Panax ginseng C.A. Meyer Araliaceae 30 22 panaxtriol HL-60 DNA TNF- nitric oxide NO Erel Total antioxidant capacity TAC TAC ABTS radical TAC 1.5 3.75 mg ORAC assay free radical inhibition method free radical ORAC 2 10 20 g Phenolic compound Total phenolic content phenol phenol TAC ORAC phenol phenol DPPH hydroxy radical OH Malterud DPPH DPPH free radical DPPH free radical OH O2 H2O2
76 11 3 2008 9 TBARS 6.25 12.5 31.25 mg TBARS TBARS 6.25 31.25 mg 12.5 mg FeSO 4/H 2O 2 ROS DCFH DCF DCF ROS DCF ROS ROS DCF 2.5 mg/ml 5 mg/ml DCF 12.5 25 mg/ml DCF ROS Total antioxidant capacity ORAC assay phenol DPPH free radical Reactive oxygen species ROS 10 V TAC ORAC phenol DPPH free radical ROS 1 TAC 2 ORAC 3 phenol 4 DPPH free radical 5 6 ROS VI 1. M. Valko, D. Leibfritz, J. Moncol, Mark T.D. Cronin, M. Mazur, J. Telser. Free radicals and antioxidant in normal physiological funtions
77 and human disease. The International J. & Cell Biology. 2007; 39: 44-84. 2. Sawyer, DT., Valentine, JS. How super is superoxide? ACC. Chem. Res. 1981;14:393. 3. Fridorich, I. Biological effects of the superoxide radical. Arch. Biophys. 1986;247:1-11. 4. Ames, BN. Dietary carcinogens and anticarcinogens. Oxygen radical and degenerative disease. Science. 1983; 221:1256-1264. 5. Chance, B., Sies, H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979; 59: 527. 6. Kandawami, C., Middleton, EJ. Free radical scavenging and anti-oxident activity of plant flavonoids. Free Radicals in Diagnostic Medicine. Armstrong D. Plenum Press, New York and London. 1994;351-376. 7. 1979;1(1):45-52 8. 1955;51: 390. 9. Brekhman. I.I, Panax ginseng, Gosudarst Isdat et Med, Lit. Leningard, 1957;1. 10. 1984;13-14 11. 1996;56 12. Takagi, K, Proceedings International Ginseng Symposium, The Central Research Institute, Office of Monopoly, Seoul, Korea, 1974;119. 13. 2003;42(3):661-668 14. Choi, KJ., Kim, MW., Hong, SK., Kim, DH. Effect of solvents on the yield, brown color intensity, UV absorbance, reducing and antioxident activities of extracts from white and red ginseng. J. Korean Agric. Chem. Soc. 1983;26:8-18. 15. Korean J. Medicinal Crop. Sci. 2004;12 3 237-242 16. Hovius, R., H. Lambrechts, K. Nocolay and B. de Kruijff. Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim. Biophys. Acta. 1990;1021:217-226. 17. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26 :1231-1237. 18. Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004;37:277-285. 19. Huang, D., B. Ou, M. Hampsch-Woodill, J. A. Flanagan and R. L. Prior. High- throughput assay of oxygen radical absorbance capacity(orac) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002; 50:4437-4444. 20. Singleton, V.L. and R. Orthofer. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999; 299:152-178. 21. Malterud, K.E., T.L. Farbrot, A.E. Huse and R.B. Sund. Antioxidant and radical scavenging effects of anthraquinones and anthrones. Pharmacology 1993;47: 77-85. 22. Stacey, N.H. and C.D. Klaassen. Inhibition of lipid peroxidation without prevention of cellular injury in isolated rat hepatocytes. Toxicol. Appl. Pharm. 1981;58: 8-18. 23. LeBel, C.P., H. Ischiropoulos and S.C. Bondy. Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reative oxyten species formation and oxidative stress. Chem. Res. Toxicol. 1992;5:227-231. 24. Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 1951;193:265-275. 25. Devy, C. and Gautier, R. New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutase. Biochem.
78 11 3 2008 9 Pharmacol. 1990;39:399-405. 26. Kuramoto, T. Development and application of food materials from plant extracts such as SOD. Up to date Food Processing. 1992;27:22-23. 27. Rorald, W. Naturally occurring nitrite in food. J. Japan Soc. Food Agric. 1975; 26:1735-1742. 28. Jeon, HK., Kim, SC., Jung, NP. Effects of ginseng sponin fraction and cyclophosphamide on the tumoricidal activity of mouse macrophage and antitumor effect. Korean J. Ginseng Sci. 1991;15:99-105. 29. Kim, MJ., Jung, NP. The effects of ginseng saponin on the mouse immune system. Korean J. Ginseng Sci. 1987;11:130-135. 30. Kang, SY., Kim, ND. The anti-hypersensitive effect of red ginseng saponinand the endotheliumderived vascular relaxation. Korean J. Ginseng Sci. 1992;16:175-182. 31. Joo, CN., Kim, JH. Study on the hypoglycemic action of ginseng saponin on streptozotocin induced diabetic rats. Korean J. Ginseng Sci. 1991;16:190-197. 32. Oliveira, ACC., Perez, AC., Merino G., Prietp, JG., Alvarez, AI. Protective effects of Panax ginseng on muscle injury and inflammation after eccentric exercise. Comparative Biochemistry and Physiology Part C. 2001;130:369-377. 33. Kim, JS., Kim, KW., Choi, KJ., Kwak, YK., Im, KS., Lee, KM., Chung, HY. Screening of antioxidative components from red ginseng saponin. Korean J. Ginseng Sci. 1996;20:173-178. 34. Ryu, GH. Present status of red ginseng products and its manufacturing process. Food Industry and Nutrition. 2003;8:38-42. 35. Kitagawa, I. Chemical studies on crude drug processing. I. On constituents of ginseng radix rubra(1). Yakugaku Zasshi 1983;103: 612-622. 36. Kim, KH., Lee, YS., Jung, IS., Park, SY., Chung, HY., Lee, IR., Yun, YS. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy withr II-2. Planta media. 1998;64:110-115. 37. Lee, JW., Sohn, HO., Do, JH. Function of the water soluble browning reaction products isolated from Korean red ginseng 2. Linoleic acid, Oxbrain autoxidant and Fe 2+ ADP/NAD system. Korean J. Ginseng Res. 2000;24:35-40. 38. 2004;19(2):41-50 39. 1988;150 40. Yoshizawa, S., Horiuchi, T., Yoshida, T., Okuda, T. Antitumor promoting activity of (-) -epigallocatechin gallate, the main constitutent of tannin in green tea. Phytother. Res. 1987;1:44-47. 41. Fridovich, I. Biological effects of the superoxide radical. Adv. Enzymol. 1986;58:62.