fm

Similar documents
14.531~539(08-037).fm

17.393~400(11-033).fm

untitled

(k07-057).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

10(3)-10.fm

27(5A)-07(5806).fm

06.177~184(10-079).fm

fm

10(3)-09.fm

15.529~536(11-039).fm

12.077~081(A12_이종국).fm

304.fm

605.fm

16(1)-3(국문)(p.40-45).fm

10(3)-12.fm

DBPIA-NURIMEDIA

9(3)-4(p ).fm

05.581~590(11-025).fm

07.051~058(345).fm

12(4) 10.fm

< DC1A4C3A5B5BFC7E22E666D>

15.101~109(174-하천방재).fm

untitled

DBPIA-NURIMEDIA

82.fm

82-01.fm

27(5A)-13(5735).fm

23(4) 06.fm

11(5)-12(09-10)p fm

12(3) 10.fm

untitled

Microsoft Word - KSR2013A320

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

untitled

69-1(p.1-27).fm

50(1)-09.fm

26(3D)-17.fm

23(2) 71.fm

fm

14(4) 09.fm

04.159~168(10-069).fm

27(5A)-15(5868).fm

10(3)-02.fm

4.fm

416.fm

25(3c)-03.fm

09.479~486(11-022).fm

14.091~100(328-하천방재).fm

11(1)-15.fm

10.063~070(B04_윤성식).fm

16(2)-7(p ).fm

<30332DB9E8B0E6BCAE2E666D>

10(3)-11.fm

fm

12(2)-04.fm

50(5)-07.fm

09권오설_ok.hwp

07.045~051(D04_신상욱).fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

19(1) 02.fm

31(3B)-07(7055).fm

51(2)-09.fm

14(2) 02.fm

15(2)-07.fm

26(2A)-13(5245).fm

14(4)-14(심고문2).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

Microsoft Word - KSR2012A038.doc

<30312DC0CCC7E2B9FC2E666D>

8(3)-15(p ).fm

01.01~08(유왕진).fm

歯전용]

11(4)-03(김태림).fm

???? 1

16-기06 환경하중237~246p

32(4B)-04(7455).fm

한 fm

Microsoft Word - KSR2012A103.doc

202.fm

<BAB0C3A5BABBB9AE2E687770>

85.fm

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

10(1)-08.fm


27(6A)-10(5570).fm

Microsoft Word - KSR2013A291

51(4)-13.fm

143.fm

93.fm

14.fm

(163번 이희수).fm

27(4C)-07.fm

50(4)-10.fm

17(1)-05.fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

( )-53.fm

fm

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

fm

Transcription:

Journal of the Korea Concrete Institute Vol. 24, No. 1, pp. 015~023, February, 2012 GGGGG http://dx.doi.org/10.4334/jkci.2012.24.1.015 인장증강효과에기반한콘크리트구조부재의사용성능검증» 1) Á½ 2) Á½ 2) Á y 3) * 1) w m 2) û w m œw 3) w w ful vp œw Serviceability Verification Based on Tension Stiffening Effect in Structural Concrete Members Gi-Yeol Lee, 1) Min-Joong Kim, 2) Woo Kim, 2) and Hwa-Min Lee 3) * 1) Dept. of Civil Engineering, Suncheon First College, Suncheon 540-744, Korea 2) Dept. of Civil Engineering, Chonnam National University, Gwangju 500-757, Korea 3) Dept. of Computer Software Engineering, Soonchunhyang University, Asan 336-745, Korea ABSTRACT This paper is about proposal of a calculation method and development of an analytical program for predicting crack width and deflection in structural concrete members. The proposed method numerically calculate stresses in steel rebar using a parabola-rectangle stress-strain curve and a modified tension stiffening factor considering the effect of the cover thickness. Based on the study results, a calculation method to predict crack width and deflection in reinforced concrete flexural members is proposed utilizing effective tension area and idealized tension chord as well as effective moment-curvature relationship considering tension stiffening effect. The calculation method was applied to the test specimens available in literatures. The study results showed that the crack width and deflections predicted by the proposed method were closed to the experimentally measured data compared the current design code provisions. Keyword : crack width, curvature, deflection, parabola-rectangle stress-strain curve, tension stiffening effect 1. gj p { m w w, ³ s, v x w w ü w dwš w w. gj p œ» 1) w š xy w», x w ³ s w» w d x w yw w y š. w k» w CEB-FIP Model Code 1990 2) (MC 90) EUROCODE 2 3) (EC 2) w ³ s z w w.» ³ w z 4) v Ì y ³ w sƒw wš. *Corresponding author E-mail : leehm@sch.ac.kr Received August 17, 2011, Revised November 20, 2011, Accepted November 23, 2011 2012 by Korea Concrete Institute z j» w w ƒ. MC 90 EC 2 gj p» - 5)(KCI) w gj p - x x ƒ w k w. ù ww k ³ w w» ƒ. 6,7) gj p - x w EC 2 w» yw w w. š, w ³ s wš, MC 90 EC 2 ³ w z w w. gj p w» w ƒ» ³ w ³ s w w. w x w x swwš» w. w w w z y sƒw» w 4) w v Ì y w. š yw w» w gj p - x s - ƒx(parabola- 15

rectangule) š ( w p-r š ) w. w Ì p-r š w w ³ s wš, ww v w. l ƒ» w ³ sƒwš, z w k y w. 2.» ³ 2.1 ³ s w ³ s Fig. 1(a) gj p x k. ³ s Fig. 1(b) ¼ (transfer length) l t ü Fig. 1(c) w ³ l ¼ w w x ε sx gj p x x ƒ ³ w. ( ) dx l t w 2 ε sx s MC 90, EC 2 KCI» (1)» w Fig. 1(d) s³ x w ³ s ³ w., ³ s³ x ε sm gj p s³ x m w x š w s ¼ l ³ s r, max (1) w ³ s w k w k w ³ w., ε sm m s s r max ( ) (2) w gj p s³ x 4) w MC 90 s³ x ( z ) w tx. ε sm m f so ( 1 + nρ ----- β ef )f ct E t ----------------------------- s E s ρ ef», f so ³ (MPa), f ct g j p s³ (MPa), E s k (MPa), n k. β t p w, KCI MC 90 ³ y» w 0.6,»w w 0.38 w. EC 2 Part I(general rules and rules for building) w xk»w 0.6,»w 0.4 w, Part II(concrete bridges) w xk 0.4 w. (3) Fig. 2(a)-(c) ³ w { Fig. 2(d) x (tension chord) yw w w. ¾ w { x w» w Fig. 2(d) sww x w Fig. 3 z¾ d ef t w z A c, ef w w. z ρ ef g j p z w w. (2) (3) ρ ef A s ---------- A c, ef A s d ef --------------- b (4)», A z ü (mm 2 s ). ³ ³ y» KCI, MC Fig. 1 Distribution of strain and bond stress in tension members (a) tension members (b) crack formation stage (c) bond stress at crack formation stage (d) stabilized cracking stage Fig. 2 Cracked RC flexural member and idealized chord model 16 w gj pwz 24«1y (2012)

Fig. 4 Strain distribution and deflection curve Fig. 3 90 EC 2-Part II (5a), EC 2-Part I (5b) w. ------------- 3.6ρ ef d b s r, max d, 3.4c + 0.425e 1 e b 2 ------ s r max Effective tension area, (a) beams dominantly subjected to flexure (b) slabs subjected to flexure (c) tension members ρ ef (5a) (5b)», d b (mm), c v Ì(mm), e 1 p w x 0.8, x 1.6 š, e 2 x s { 0.5, 1.0. JSCE Standard specifications for concrete structures -2002 Structural Performance Verification 8) (JSCE 02)» ³ s d w {³ s(flexural crack width) ³ w. f so [ ( )] E s w 1.1 j 1 j 2 j 3 4c + 0.7 c s d b ----- + sd», j 1 t x 1.0, x 1.3 š, j 2 (7a) gj p, j 3 (7b) ed(layer) w. w, c v Ì (mm), c s (mm), sd j v w x 150 10, š gj p ³ 6 100 10 6 w. 15 j 2 ----------------- + 0.7 f ck + 20 (6) (7a) ( + ) 5 n l 2 j 3 --------------------- 7n l + 8 z» w gj p (7b)», f ck» (MPa), n l ed. xk 9) Gergly-Lutz x ³ s w m w ³ s dw w, rw x ¾ š. 2.2 { gj p w p-š w, š ¼ ƒ y w w. š ³ j»ƒ yw ³ p M cr w ƒ p M a w M a < M cr ³ M a M cr ³ w w. Fig. 4(a) ³ š ( 1 r ) I k w w w yw ƒ w. Fig. 4(b) ³ ³ x x j ƒ ³ x y ³ p w w. ³ y š ( 1 r ) II g j p z š w x w w. l ³ š. 1 -- r 1 -- r I II ε so ------------- d c 1 : uncracked section (8a) ε so ------------- ε ts ----- d c 2 d : cracked section (8b)», d z¾ (mm), c 1 c 2 ³ ¾ (mm), ε so x, ε ts z w x. (8) š w Fig. 4(c) ƒ y dθ w š, ƒ w w. 17

xd θ x 1 -- r, { p ³ w ³ w. w š w w w. w MC 90 EC 2 zš ³ w. 1 -- r e 1 r ( ) e ξ 1 -- r II dx (9) w rw w + ( 1 ξ 1 ) -- r I (10)» ξ z sww ³ w s. ξ 1 β f scr ------ k f so (11)», β s³ x w w xk MC 90»w 0.8,»w w 0.5, EC 2»w 1.0,»w 0.5. k MC 90 EC 2 2.0. (10) w zš w. ηl 2 1 -- r e (12)», η w xk { p xk 10), L z ¼ (mm). KCI JSCE 02 (10) zš 11) Branson w z 2 p w w. ³ 2 p, I crack ³ 2 p. α KCI 3.0, JSCE 02 4.0. (13) w z 2 pƒ w. M ηl 2 --------- a E c I e (14)» E c gj p k. (13) w ³ p l { w, p-š w š rw w. w r KCI JSCE 02 m wš, x w z 2 p p, w w» w ù ƒ w w. 12) 3. š w w ³ s z wì w w w š w.»» w w gj p - x w { w - x k w w x - x wš. { w w w gj p w ƒ w w. w MC 90 EC 2 gj p - x w Fig. 5 s - ƒx - x š (parabolarectangle stress-strain curve, p-r š ) w w. I e α M -------- cr M a M cr I uncrack + 1 -------- I crack M a (13)», M a p, M cr ³ p, I uncrack α f c f cd 1 1 ------ for 0 2 f c n ε c 2 f cd for 2 u2 (15a) (15b) Fig. 5 Parabola-rectangle stress-strain curve for concrete 18 w gj pwz 24«1y (2012)

Fig. 6 Distribution of stress and strain for single RC beam», 2 x, u2 ww x, n š x w, Fig. 5 t. f cd gj p (MPa), w. f cd α cc f ck γ c (16)», α cc» w š w» w z 0.85, γ c gj p w k 1.0, ww k 1.5. w 1.0 w. gj p p-r š w ƒx { w» w x s Fig. 6 ww. Fig. 6(a) { p M w w w j». C (17a) (17b)», ρ A { š, s bd γ s w k 1.0, w w k 1.15. š α w w v w, s³ f cd w. Fig. 5 w p-r š w - x (15) w α d gj p x w w w. ( 6 ) α ---------------------- for 0 ε 12 c 2 3 2 α ---------------- for ε 3ε c2 u2 c», αf cd bc ( ( )) T A s f s γ s ρf s bd γ s (18a) (18b) gj p x ( ) txw. (17) w p q¼ z. z d βc ( 1 βk )d z» w gj p (19)», k c d z¾ w ¾. š β p-r š s w e w, l d w ¾ ¾ w. (15) w - x (18) w α w gj p x w w w. ( 8 ) β --------------------- for 0 ε 46 ( 2 c ) ( 3 4 ) + 2 β ----------------------------------- for ε 2 ( 3 2 c 2 u2 ) (20a) (20b) βc w C e l ƒ, { p. M Cz αf cd y( 1 βy)bd 2 M Tz f s A s ( 1 βy)d γ s (21a) (21b) (21b) w w» w v w y { p j» w» w» w sx x w w ¾ w w. rw w w w { p j»(intensity) ùkü m w. m M -------------- f cd bd 2 (22) m (21a) w w y w w. y 1 1 4mβ α ---------------------------------------- 2β (23) l w» w x ƒ w, (18) (20) w α β w. (23) w ¾ y w z, ƒ w wì Fig. 6(b) x s»w w. 1 y f s E s ε s ---------- y f y γ s --- (24) 19

Fig. 8 Crack width calculation program Fig. 7 Algorithm of steel stress calculation (24) (21b) { p w w w ƒ w x w { p w w. f s γ s M ---------------------------- A s ( 1 βy)d (25), (24) (25) w ƒ w, w ¾ x y j w w w w. w w w w w. w w» w Fig. 7 š w w ³ s v w. 4. 4.1 ³ s gj p w ³ s w w gj p p p-r š w w 4) w w., ³ s w (2) ³ MC 90 w (4a), gj p x (3) r 4) (5) w. wì w w. š y y w Fig. 8 ³ s v w. v w š w» ³ s Gergly- Lutz w ƒ w w y w. w ³ s ƒ» ³ s y y w» w Bilal, 13), š 15) ww { x 14) w Fig. 9 w. ³ s ƒ» ³ w w, x Fig. 3 (5) w z w. š» w x k w w w. Fig. 9 r, w w w ³ s x sƒw ³ y» ³ x yw dw. ù EC 2, JSCE 02 Gergly Lutz ³ s sƒwš, MC 90 x sƒw ùkû.» p»w w MC 90 EC 2-Part 1 ³ w ƒ w, ³ s w gj p s³ x (3), ³ w» q., MC 90 z, EC 2-Part 1 v Ì ƒ s ww ³ w» ³ j sƒ. 20 w gj pwz 24«1y (2012)

Fig. 9 Comparison of proposed crack width calculation method vs various design codes Table 1 Statistical analysis of crack width calculation results MC 90 EC 2 (Part 1) JSCE 02 Gergly & Lutz Proposed model Mean 0.697 1.474 1.820 1.599 0.954 Var. 0.056 0.210 0.573 0.329 0.117 St. dev 0.237 0.458 0.757 0.574 0.342 CV 0.340 0.311 0.416 0.359 0.359 w» ³ y q w» w x w m w Table 1 w. m r,» ³ w d y ƒ yw y w. ù MC 90 EC 2-Part 1 yw y w, JSCE 02 Gergly Lutz y ƒ w ùk û. ww, gj p x p w v Ì w w z w ³ s yw w q. 4.2 w ³ s Fig. 10 Deflection calculation program w w., w (12) (11) w zš (10) w. w k 4) w (7) w. š, w w y w Fig. 10 v w. v w š w» ƒ w w y w. r 4) w w w» ³ w» w Alwis, 16) z» w gj p 21

Fig. 11 Comparison of proposed deflection calculation method vs various design codes Table 2 Statistical analysis of deflection calcualtion results MC 90 EC 2 JSCE 02 KCI Proposed model Mean 0.804 0.846 0.850 0.756 1.033 Var. 0.004 0.005 0.019 0.004 0.010 St. dev 0.061 0.073 0.139 0.066 0.100 CV 0.076 0.086 0.164 0.088 0.097 Shah 17) Tan 18) ww x w Fig. 11 w. x gj p f ck,»ww, w xk - z¾ a dƒ x w. Fig. 11 r, w dw w w w w 1.5 M a M cr 3 19)» ³ w x yw dwš y w. w w 3M cr z w d y y š. MC 90, EC 2, KCI JSCE 02» x sƒw ùkû. xw» w xk w w ƒ û sƒ» q. wì zš j» w (11) s ξƒ v Ì w w w wš» q. w ƒ» ³ y» w x w m wš Table 2 w. m r, w EC 2» ³ w d y ƒ yw y w. ù MC 90 y w y w, z 2 p w KCI» w w y w. JSCE 02» w y yw, ƒ j ùkû. ww, ³ s w g j p x p w v Ì w w z w yw w q. 5. gj p w ³ s yw w w. w gj p x p w š wš, w v Ì w w z w., gj p s³ x w zš s ƒƒ w. w Ì, gj p p š w w» ³ w ³ s w v w. v w ³ s w x w,» ³ d y ƒ w ùkû. 2010 ( w» ) w» w ( y : 2010-0022773).. 22 w gj pwz 24«1y (2012)

š x 1. Kelvin, F. and Peter, H. B., Tension Stiffening and Cracking of High-Strength Reinforced Concrete Tension Members, ACI Structural Journal, Vol. 101, No. 4, 2004, pp. 447~456. 2. CEB-FIP, CEB-FIP Model Code 1990, Comite Euro-International Du Beton, Paris, 1991, pp. 247~251. 3. European Committee for Standardization, Eurocode 2- Design of Concrete Structures, European Committee for Standardization, Brussels, 2002, pp. 124~131. 4.», ½, ½, y, v Ì š w gj p z, gj pwz, 23«, 6y, 2011, pp. 791~797. 5. mw, gj p», w gj pwz, 2007, pp. 340~348. 6., ½, gj p - x» w gj p, wm wz, 30 «, 4Ay, 2010, pp. 383~389. 7., y, ½, gj p ³ s w z w, gj pwz, 22«, 6y, 2010, pp. 761~768. 8. JSCE, Standard Specifications for Concrete Structures- 2002, Structural Performance Verification, Japan Society of Civil Engineers, Tokyo, 2005, pp. 107~129. 9. Gergely, P. and Lutz, L. A., Maximum Crack Width in Renforced Concrete Flexural Members, Causes, Mechanism, and Control of Cracking in Concrete ACI Special Publication SP-20, ACI, Michigan, 1968, pp. 87~117. 10. Eibl, J., Concrete Structures Euro-Design Handbook, Ernst & Sohn, 1994, pp. 244~249. 11. Branson, D. E., Deformation of Concrete Structures, McGraw-Hill, Newyork, 1977, 546 pp. 12., gj p p š w { p-š w, gj pwz, 3«, 4y, 1991, pp. 97~106. 13. Bilal, S. H. and Mohamad, H. H., Effect of Fiber Reinforcement on Bond Strength of Tension Lap Splices in High-Strength Concrete, ACI Structural Journal, Vol. 98, No. 5, 2001, pp. 638~647. 14., y, gj p { ³ s ³, wm wz, 5«, 4y, 1985, pp. 103~111. 15. š, ³, p š w gj p { ³ s, wm wz, 22«, 4-Ay, 2002, pp. 825~835. 16. Alwis, W. A. M., Trilinear Moment-Curvature Relationship for Reinforced Concrete Beams, ACI Structural Journal, Vol. 87, No. 3, 1990, pp. 276~283. 17. Shah, S. P. and Shrikrishna, M. K., Response of Reinforced Concrete Beams at High Strain Rates, ACI Structural Journal, Vol. 95, No. 6, 1998, pp. 705~715. 18. Tan, K. H., Paramasivam, P., and Tan, K. C., Instantaneous and Long-Term Deflections of Steel Fiber Reinforced Concrete Beams, ACI Structural Journal, Vol. 91, No. 4, 1994, pp. 384~393. 19. ½, ½, y,,, gj p, y», 2007, pp. 260~261. gj p w ³ s w wš w v w. w gj p p s - ƒx - x š w v Ì w w w š w e w. wì ³ s w v w z z ³ w { x yw w. š w zš w. ³ s w ww x w, xw» ³ x yw dw ùkû. w : ³ s, š,, s - ƒx - x š, z z» w gj p 23