44(2)-09.fm

Similar documents
[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

12.077~081(A12_이종국).fm

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

untitled

00....

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

304.fm

untitled

Lumbar spine

18(3)-10(33).fm

14.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

107.fm

14.531~539(08-037).fm

82-01.fm

10(1)-08.fm

< C6AFC1FD28B1C7C7F5C1DF292E687770>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

PDF

05À±Á¸µµ

Microsoft Word - KSR2012A132.doc

09권오설_ok.hwp

<30365F28BFCFB7E129BEC8BAB4C5C22E687770>

19(1) 02.fm

04_이근원_21~27.hwp

<4D F736F F F696E74202D2028B9DFC7A5BABB2920C5C2BEE7B1A420B8F0B5E220C8BFC0B220BDC7C1F520BDC3BDBAC5DB5FC7D1B1B94E4920C0B1B5BFBFF85F F726C F72756D>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

구리 전해도금 후 열처리에 따른 미세구조의 변화와 관련된 Electromigration 신뢰성에 관한 연구

Microsoft Word - KSR2012A103.doc

fm

012임수진

KAERIAR hwp

<312D303128C1B6BAB4BFC1292E666D>

605.fm

26(2)-04(손정국).fm

untitled

VP3145-P1495.eps

Microsoft Word - KSR2012A038.doc

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

< DC1A4C3A5B5BFC7E22E666D>

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

PDF

16(5)-03(56).fm

Microsoft Word - KSR2013A320

Microsoft Word - KSR2013A299

10(3)-09.fm

50(1)-09.fm

Microsoft Word - KSR2013A291

16(5)-06(58).fm

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

< C3DFB0E8C7C1B7CEB1D7B7A576325B315D2E312E687770>

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

416.fm

44(3)-16.fm

PJTROHMPCJPS.hwp

82.fm

12-17 총설.qxp

139~144 ¿À°ø¾àħ

12(4) 10.fm

18211.fm

12(2)-04.fm

50(4)-10.fm


DBPIA-NURIMEDIA

16(5)-04(61).fm

10(3)-12.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

DBPIA-NURIMEDIA

07.051~058(345).fm

<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>

10(3)-10.fm

책임연구기관

untitled

Æ÷Àå½Ã¼³94š

64.fm

08.hwp

Microsoft Word - KSR2012A172.doc

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

38(6)-01.fm

72.fm

DBPIA-NURIMEDIA

Microsoft Word - KSR2012A021.doc

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

???? 1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

γ

14(4) 09.fm

Electropure EDI OEM Presentation

04.fm

:,,.,. 456, 253 ( 89, 164 ), 203 ( 44, 159 ). Cronbach α= ,.,,..,,,.,. :,, ( )

Can032.hwp

. 45 1,258 ( 601, 657; 1,111, 147). Cronbach α=.67.95, 95.1%, Kappa.95.,,,,,,.,...,.,,,,.,,,,,.. :,, ( )

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

43(4)-08.fm

17(4)-04(41).fm

<31312EC1DF2DBBFDB9B02E687770>

PDF

PDF

Transcription:

Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006, pp. 179-186 vtž r v qx}v xy d dö rgö vöd Öqr *Öi i { z l, *ˆ fgywu h 561-756 { {~l 1 664-14 (2005 12x 2z {j, 2006 1x 20z ) The Preparation and Property of Dye Sensitized Solar Cells using Gil-Sung Kim, Young-Soon Kim, Hyung-Il Kim, Hyung-Kee Seo, O-Bong Yang* and Hyung-Shik Shin Thin Film Technology Laboratory, *Center for Advanced Radiation Technology, School of Chemical Engineering, Chonbuk National University, 664-14, 1 Ga, Duckjin-dong, Duckjin-gu, Jeonbuk 561-756, Korea (Received 2 December 2005; accepted 20 January 2006) t š (nanotube)v zz(nanoparticle)y { u z 450 o Cug y i {y u h y { u. z h y zw fw u u y t{ { šhy f u. zz ji u š 180 o Cug 24l s ju ˆ y n h u. z zz h y fw u {z u y t{ y u y(η)y 8.07Ûz, {s(open-circuit potential, V OC ), { (short-circuit current, I SC )v fill factor(ff) y 0.81 V, 18.29 mv/cm 2 v 66.95Ûzu. š { wu NaOH wty 3M 5M l. 3M NaOH wtug h š h y fw u {z u y t{ y u y(η)y 6.19Ûzuy, V OC, I SC v FF y 0.77 V, 12.41 mv/cm 2 v 64.49Ûzu. u 5 M NaOHug {zz hz } ss yz 4.09Û i u. u ju u y { zz { u y t{ y yz z s. q Abstract Two types of, nanotube and nanoparticle, were used for the mesoporous coatings by doctor blade technique followed by calcining at 450 o C. The coatings were used as working materials for dye-sensitized solar cells (DSCs) later on and their photovoltaic characterization was carried out. The nanoparticle was synthesized from hydrogen titanate nanotube by hydrothermal treatment at 180 o C for 24 hr. The solar energy conversion efficiency (η) of DSCs prepared by this nanoparticle reached 8.07 with V OC (open-circuit potential) of 0.81 V, I SC (short-circuit current) of 18.29 mv/cm 2, and FF (fill factor) of 66.95, respectively. For the preparation of nanotube, the concentration of NaOH solution varied from 3 M to 5 M. In the case of DSCs fabricated with nanotubes from 3 M NaOH solution, the η reached 6.19Û with V OC of 0.77 V, I SC of 12.41 mv/cm 2, and FF of 64.49Û, respectively. On the other hand, in the case of 5 M solution, the photovoltaic η was decreased with 4.09Û due to a loss of photocarriers. In conclusion, it is demonstrated that the solar energy conversion efficiency of DSCs made from nanoparticle showed best results among those under investigation. Key words: Dye-sensitized Solar Cells, Solar Energy Conversion Efficiency, Hydrothermal Treatment, Nanotube, Nanoparitcle 1. d fug fw z y u xy g u z. g u z y zy d s l vuz f { { z., 1997 u To whom correspondence should be addressed. E-mail: hsshin@chonbuk.ac.kr y{g(kyoto protocol)u y u v y l t l{ug zg u y why w ~wl z. Ÿ{z zg u tu, j u, Ÿ u, u z z. z ~ug y u {v { j z zgu xy n tu { (photovoltaic effect)u y u { u { z t{ (photovoltaic cell solar cell)z. 10Ûy yy 179

180 hù ujù zùg Ùtv Ùl l t{ { y 1Û x z w u y 10 { j z u t u z. zˆ t u z y f w u xy { hy z. t{ y uf 1839 l z Edmond Becquerel i { h hy t u l {y ty { g { (photovoltaic effect) g lz u. z u } y t{ ~ l y z w t{ 25Û y { {y y z fw z, { u y z fw, x y u { u z. zu { { j z t{ u lz z, z ~ zz zw u y t{ y ~ y z. u y t { y w 1991 O Regan Grätzel[1]u y u y u y t{ { z uy, z z y u y t{ y l t{ v y u yy l t{ { y 1/5 u s Ÿ g u y t{ f w { zy u. zˆ u y t { {, y t u { u { l ~ [2-4]. z u y t{ lw yz 20Ûz, { y { l y 5 y 1 j z, 20 y j z z, t yw hy zu, h {y y u zv u y ~{z u z. u y t{ y z x Ÿ ( y xu {, working electrode)u u z {y n- zz ( ~h y zz, working material)u t ( l g)z j u z( t jw u z, dye) {z-{ my gh, {z f y { ~z. f { y ~z {z zz y u { h ( {, counter electrode) y { u { gl. u zug gh { y f - x { (electrolyte)u y {z s l x y l y h x yw { z [5-6]. z { y t{ v {z z{y, y t{ ug tu y j { {z-{ mz u { y y {z ug lu zu u, tu y j { { z {z u tu j u, { y z y {zy ug z. z z x y u y t{ y y xu { (working electrode) u { u z zz h (working material), zz xu z y u z(dye) { (working and counter electrode) fzu z 50~100 µm y y w z f - xw { (electrolyte) wtz uz z. u y t{ u zz fw d s, Š g zw fz {, NO Agy { z ywhz t z z [7-12]. zz z {y s fz { fw u {. Li [13] y w, v wtu fz fw u h ž ž x44 x2 2006 4t {y { uy, Kambe [14]y v sy ug u wtu fz j u f(singlephase) {y h u. š y w } (high aspect ratio)u y u u { {Š y { y z z g u zz l u u y t{ y u yy fl y u z [15-17]. u y sg l ug { z titanium isopropoxide (Ti{OCH(CH 3 ) 2 } 4 y zw[18] P25 w zw[19] u s š { y u {y s { u. z y u z { u g { P25 w zw u u zz š u z z ss., ju h Š u g NaOH ˆ u sodim titanate nanotube ji u š y h u u y ~ z zw y {u u y ~ NaOHy u u w. zu, u ug 3M 5My NaOH wtug ji u š ju u y u zz h u, 450 o Cug 1l s i ˆ u š h u., zzv š h y fw u { z u y t{ y { šhy, u. 2. i 2-1. vvs žd zzv š hu P25 w (Gegussa, z) v 3 M 5 M jf š wt 0.1 M uf wt g s sj(~ph 10) z fw u. Fig. 1y zzv š y h {y u~ z. P25 w (Gegussa, z) 2g 3M 5My jf š jwt 75 mlv u 100 mly s y u 150 o Cug 48l s yl. z fw w v s y y {Š x ˆ u y yy s~ u. z ty fvug l Ž{ y j u hˆ, z Ž{ 0.5 g y l fvug 1l s 0.1 M uf wt 100 mlu {u ~u. l j hˆ zuy u ph 7z Ž{ y 60 o Cug 12l s l ji u š uy j z, 450 o C 1l s i (calcination)l y n s {fy š uy j z. ji u š 180 o Cug 24l s ju ˆ (hydrothermal treatment), h zz g s s w t(ph ~10)y ~ ˆ, z u j hˆ u l y n zz u. h y { 10 mly ju zzv š 0.5 g Šy u y u yl, z tu yuh s {hy l x ˆ { u (PEG( z : 20,000), Junsei, z ) 2 ml ˆ l ul j {. z zzv š l { h xu z y t fvug l, ~ ug 450 o Cug 30 s i l y n h y { u

Fig. 1. The synthesis steps of (a) nanoparticle and (b) nanotube.. z y y f š y X-g { g (XRD, X-ray diffraction), { ~f {z (FESEM, field-emission scanning electron microscopy), {z (TEM, transmission electron microscopy) y fw u f u. 2-2. r v qx}v xy { h y l g uuu 80Ûy y y { (ρ)z 2y ~8 Ω/cm FTO y y fw u. { h xu f { y xy Fig. 1 y y { y zzv š y h y f w u. (Ru) y i (C 58 H 86 O 8 N 8 S 2 Ru, Solaronix) y h u u t y j y{ fw u. f - x { sh š (acetonitrile)u 0.3 M LiIv 15 ml I 2 u fw u. { u {sy l x 0.2 M tert-butyl pyridine ˆ { fw uy, { u fw tÿ y Aldrich(USA)ug z u. f { (counter electrode)y ITO y xu (Pt)y u fw u. z (Pt)y {z (electron beam evaporation)u y u ~10 nm ITO glass xu u, z{(sealing agent) {uh (SX 1170-60, Solaronix) fw u. t{ { {y 2y 5mm 5mm=25mm Ÿ {y zw u y t{ y { šh 181 š v zz h y j u v (Ru) y i h u wtu 24l s u u { y u v hˆ u fvug l. z f { u y zy y, h { u 5 mm, ~60 µm {uh y hl 2~3 s y { fzy zuz v. z {u u t 100 C o y l. ITO y u z y zy y u f - x { y { ( { fzy ) ~z, y y zy l ty y y. {y x {y u {z t { y {y t 2 0.25 cm. 2-3. x}x d x { { šhy { x u { fzu {s, { (Model 2000, Keithley) (load) g u { -{s g(photocurrent-voltage curve)y { u. {{x{s (EG&G173, i šxu: EG&G M542)v lock-in amplifier fw uy xy g 150 Watty Xe(Xenon) fw u AM-1.5 f v yf y h { u. y h power analyzer(fielmaster GS, Coherent)v thermal smartsensor (LM-30V, Coherent)u y u { u. 3. 3-1. š Fig. 1(b)y y h, 150 Cug o 48l P25 jf š wtug sodium titanate š h 0.1 M HCl wt ˆ v hˆ {ug + +y Na H zv g gh. Fig. 2 3 M jf š 5 My jf š wtug h 0.1 M uf wt ˆ v i {y u, Fig. 1(b)y y uu š y XRD patternsy u~ z. š y ~ z y s {(anatase) fz u., 3 M jf š w ty { š y XRD patternz Fig. 2(a)ug z(rutile) fz z, 5 M jf š wtz Fig. 2(b) ug Žzš(brookite) fz. s { (101) zy FWHM(full-width at half-maximum) y 3M jf š ug 0.421z 5M jf š wtug 0.589 5M jf š wtug { š y. x z P25 zz {hy z š {hz z s. g 3 M NaOH š h u y z {hz [20-22] yf. Fig. 2y XRD šhy š zw u z y { h y SEM micrograph Fig. 3u u. Fig. 3(a), (b)v (e) 3 M jf š wtug h š y fw u {z h y Ÿ y Fig. 3(a)ug y u jl µmz y z z y j zy, Fig. 3(a) Fig. 3(b)ug zzy 20~30 nmz x y zz h uyy z j z., Fig. 3(a), (b)y z Fig. 3(e)ug Ÿ z uz z y z j z. 5 M jf š Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006

182 hù ujù zùg Ùtv Ùl l Fig. 2. XRD patterns of nanotubular materials treated with 0.1 M HCl solution and calcined at 450 o C for 1 hr, which is obtained from sodium titanate nanotube synthesized at different concentration of NaOH solution at 150 o C for 48 hr: (a) 3 M NaOH, (b) 5M NaOH ( Anatase, Rutile and brookite). wtug h š y fw u {z h y Ÿ z Fig. 3(c)ug uz z sy zz y y z { zu y z j z. Fig. 3(d)ug 10~20 nm x y zz 10~20 nmz š v, š xu h u z y z j z. u z sgg u u [19, 23] 10 M NaOH zw u { w h FESEM TEM y f š y y t 10 nm, z t 200 nm z Fig. 3(d)v yf s š zy z j zu. Fig. 3(f)ug uz z s y j zy 3M j f š wtug h (Fig. 3(e)) w Ÿ zy z j z. Fig. 3y u jf š wty ji u š y h {hu u y ~ 5M jf š wtug š h y g. Fig. 3y š h y zw { u y Fig. 3. FE-SEM images of various films prepared by nanotubular (anatase) materials. 3 M NaOH(a, b) and 5 M NaOH (c, d). Cross-section images of 3 M NaOH(e) and 5 M NaOH(f). ž ž x44 x2 2006 4t

zw u y t{ y { šh 183 Fig. 4. I-V curves of two types films prepared by anatase phase nanotubular materials at 3 M NaOH and 5 M NaOH solution. t{ y { -{s šhy Fig. 4ug jf š wty u u~ z. 3 M 5 M jf š wty { t{ y {s(v OC )y 0.77 Vv 0.82 Vz, { (I SC ) 12.41 ma/cm 2 v 7.25 ma/cm 2 zy u~. Fig. 4 { -{s gy u Fig. 5u u. 3 M 5 M jf š wty { t{ y { (P m )y 5.7 mwv 4 mwz z {s(v m ) { (I m ) y 0.55 V, 10.3 ma/cm 2 z 0.67 V, 6.1 ma/cm 2 z. { z 3 M NaOH ug { š ug zy zz fzy {zz hz š } z y g. Fig. 4 5ug u y t{ y { šhy Table 1ug u~ z. jf š wty 3 Mug 5 M u g { y V OC 0.77 Vug 0.82 V. tu { yy jf š wty 3Mug 5M u g 6.19Ûug 4.09Û i Fig. 5. Power-V curves of two types films prepared by anantase phase nanotubular materials at 3 M NaOH and 5 M NaOH solution. Table 1. Photovoltatic performance of DSCs fabrication with 3 M, 5 M NaOH concentration and Ru-dye Conditions V OC (V) I SC (ma/cm 2 ) FF ( ) η ( ) 3 M, 450 o C 0.77 12.41 64.49 6.19 5 M, 450 o C 0.82 7.25 68.69 4.09. z xy P m y y t{ y { z u {zz hz i u tu { yu zs y f. 3-2. vv Fig. 6y ji u š { u ju u y h Fig. 1(a)y y { zzy SEM TEM micrograph u ~ z. Fig. 6(a) Fig. 3(b)v Fig. 6. (a) FE-SEM images, (b) TEM image of nanotubular (anatase) particles synthesized hydrothermal treatment with 0.1 M HCl solution at 180 o C for 24 hr. Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006

184 hù ujù zùg Ùtv Ùl l z x y zzz Fig. 3(b) h y zz u y z. Fig. 6(b) u ~10 nmz zzy g ly j z. Fig. 7 Fig. 6ug uu, ju ˆ u y uu zz z 450 o Cug 30 y i ˆ y n {z h y XRD SEM f y u ~ z. Fig. 7(a) { h z FTO y y XRD z. i sy l z Fig. 7(c)ug Žz š f z fz 450 o Cugy i {y h zzz Fig. 7(b)ug f Žzš fz z y s { f z y z j z., Fig. 7(d) y i {y u { h y Ÿ u s Fig. 5(a) v uz uyy u ~ u{ zzy y fy z j z. Fig. 7(e)y SEM f y uz u y j z. Fig. 8y s { fz zz { h y {, { -{s g { -{s gy u ~ z. z i {u y {z s { fy zz h y V OC v I SC 0.81 Vv 18.29 mv/cm 2 y., P m y 7.87 mwz z V m I m y 0.52 V, 16.0 ma/cm 2., FFv tu { y (η)y 66.95Ûv 8.07Û y. 4. u ug zw g s š v zz f w u u y t{ {z u. š v zz { {ug NaOH wty 3 M NaOH 5M NaOH l y, z uu s { fz z 450 o Cy i {y zw u h y { u. z h y fw u {z u y t{ y { { šhy { u. 3M jf š ug h š h y fw u y t{ y V OC, I SC y 0.77Vv 12.41 mv/cm 2 y., FFv tu { y(η)y 66.49Ûv 6.19Û y. u 5M jf š ug h š h y fw u y t{ y w w zy iv š h FTO y {Š z i u { { šhz i. u ug fw zw y z (anatase) zz ji u š { fw u ju Fig. 7. XRD patterns and FE-SEM images of fims prepared by nanostructured (anatase) paricles synthesized hydrothermal treatment with 0.1 M HCl solution at 180 o C for 24 hr as a function of calcination temperature. XRD patterns (a) FTO glass, (b) nanoparticle calcined at 450 o C for 1 hr, (c) mesoporus coating of room temperature, (d) Cross-section image (e,f) Surface image of nanoparticle calcined at 450 o C for 1 hr, ( Anatase, brookite, and PEG) ž ž x44 x2 2006 4t

zw u y t{ y { šh 185 Ÿ Fig. 8. (a) Photocurrent, (b) I-V curve, (c) Power-V curve of film prepared by nanostructured fims prepared by nanostructured (anatase) paricles synthesized hydrothermal treatment with 0.1 M HCl solution at 180 o C for 24 hr and calcination at 450 o C. u y h u. z (anatase) zz h y fw u {z u y t{ y V OC, I SC, FF, tu { y(η)y 0.81 V, 18.29 mv/cm 2 66.95Ûv 8.07Ûy y. z (anatase) zz (anatase) š u u y t{ ywu y zz y z fly s j z. 1. O Regan, B. and Grätzel, M., A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Fimls, Nature, 353, 737-740(1991). 2. Grtzel, M., Photoelectrochemical Cells, Nature, 414, 338(2001). 3. Hara, K., Tachibana, Y., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H. and Arakawa, H., Dye-sensitized Nanocrystalline Solar Cells Based on Novel Coumarin Dyes, Solar Energy Materials and Solar Cells, 77(1), 89(2003). 4. Qiu, F. L., Fisher, A. C. and Walker, A. B., The Distribution of Photoinjected Electrons a Dye-sensitized Nanocrystalline Solar Cell Modelled by a Boundary Element Method, Electrochemistry Communications, 5(8), 711-716(2003). 5. Nguyen, T.-V., Lee, H.-C. and Yang, O-B., The Effect of Prethermal Treatment of Nano-particles on the Performances of Dye-sensitized Solar Cells, Solar Energy Materials and Solar Cells, In Press, Corrected Proof, Available online 11 July(2005). 6. Park, N. G., Dye-sensitized Solar Cell, J. Korean Ind. Eng. Chem., 15(3), 268(2004). 7. Kim, K. Y., Lee, K. Y., Kwon, O. K., Shin, D. M., Sohn, B. C. and Choi, J. H., Size Dependence of Electroluminescence of Nanoparticle (rutile- ) Dispersed MEH-PPV Films, Synthetic Metals, 110-112, 207-211(2000). 8. Houzouil, T., Saito, N., Kudo, A. and Sakata, T., Electroluminescence of Film and :Cu 2+ Film Prepared by the Sol-gel Method, Chemical Physics Letters, 254(1-2), 109-113(1996). 9. Na, Y. S., Song, S. K. and Park, Y. S., Photocatalytic Decoloriation of Rhodamine B by Immobilized /UV in a Fluidizedbed Reactor, Korean J. Chem. Eng., 22(2). 196-200(2005). 10. Nam, W. S. and Han, G. Y., A Photocatalytic Performance of Photocatalyst Prepared by the Hydrothermal Method, Korean J. Chem. Eng., 20(1), 180-184(2003). 11. Lee, Y. G., Lee, T. G. and Kim, W. S., Comparison of the Mercury Removal Efficiency Using Powder under Various Light Source, Korean Chem. Eng. Res., 43(1), 170-175 (2005). 12. Kwon, T. R., Roo, W. H., Lee, C. W. and Lee, W. M., Preparation of Wall Paper Cated with Modified and their Photocatalytic Effects for Removal of No in Air, Korean Chem. Eng. Res., 43(1), 1-8(2005). 13. Li, Y., Hagen, J., Schaffrath, W., Otschik, P. and Haarer, D., Titanium Dioxide Films for Photovaltaic Cells Derived from a Solgel Process, Solar Energy Materials and Solar Cells, 56(2), 167-174(1998). 14. Kambe, S., Murakoshi, K., Kiramura, T., Wada, Y., Yanagida, S., Komiriami, H. and Kera, Y., Mesoporous Electrodes having tight Aqqlomeration of Single-phase Anatase Nanocrystallites: Application to Dye-sensitized Solar Cells, Solar Energy Materials and Solar Cells, 61(4), 427-441(2000). 15. Uchida, S., Chiba, R., Tomiha, M., Masaki, N. and Shirai, M., Application of Titania Nanotubes to a Dye-sensitized Solar Cell, Electrochemistry, 70(6), 418(2002). 16. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Nihara, K., Formation of Titanium Oxide Nanotube, Langmuir, 14, 3160(1998). 17. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Nihara, K., Titania Nanotubes Prepared by Chemical Processing, Advanced Materials, 11(15), 1308(1999). Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006

186 hù ujù zùg Ùtv Ùl l 18. Godbole, V. P., Kim, G. S., Dar, M. A., Kim, Y. S., Seo, H. K., Khang, G. and Shin, H. S., Hot Filament Chemical Vapor Deposition Processing of Titanate Nanotube Coatings, Nanotechnology, 16(8), 1186(2005). 19. Godbole, V. P., Kim, Y. S., Kim, G. S., Dar, M. A. and Shin, H. S., Synthesis of Titanate Nanotubes and Its Procesing by Different Methods, Electrochimica Acta(in accepted). 20. Seo, D. S., Lee, J. K. and Kim, H., Preparation of Nanotubeshaped Powder, Journal of Crystal Growth, 229, 428-432 (2001). 21. Seo, D. S., Lee, J. K., Lee, E. G. and Kim, H., Effect of Aging Agents on the Formation of Nanocrystalline Powder, Materials Letters, 51, 115-119(2001). 22. Chen, Y. F., Lee, C. Y., Yeng, M. Y. and Chin, H. T., Preparing titanium Oxide with Various Morphologies, Materials Chemistry and Physics, 81, 39-44(2003). 23. Kim, G. S., Godbole, V. P., Kim, Y. S., Seo, H. K. and Shin, H. S., Sodium Removal from Titanate Nanotubes in Electrodeposition Process, Electrochemistry Communications(in accepted). ž ž x44 x2 2006 4t