DBPIA-NURIMEDIA

Similar documents
DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

ePapyrus PDF Document

DBPIA-NURIMEDIA

PDF

DBPIA-NURIMEDIA

06( ) 임옥택-CNG.Diesel Dual-Fuel 엔진의.hwp

< C0B1C1D8B1D42D434E4720C8A5BCD2C0B220BAAFC8ADBFA120B5FBB8A52E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

17(2)-00(268).fm

DBPIA-NURIMEDIA

<B3BBB3EDB9AE2E687770>

<303220B1E8C8ABC1FD2E687770>

20(3)-01(369).fm

대형디젤기관의 Cooled-EGR제어 시스템 개발에 관한 실험적 연구

17(3)-00(282).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

10(3)-10.fm

<4D F736F F F696E74202D203032C0DAB5BFC2F7BFA3C1F8205BC8A3C8AF20B8F0B5E55D>

< C0CCB9CEC1A42D20C8EDB1E220B8C5B4CFC6FAB5E520B0A1BDBAC4CF20BAEDB7B9C0CCB5E520C0FBBFEBBFA120B5FBB8A520B9E8C3E2B0A1BDBA20B0EDC2FB2E687770>

Microsoft PowerPoint - Powertrain_Sensor

<303120B9DAB8EDC8A32D4C5047B0A1BCD6B8B D C20BFA3C1F8BCBAB4C9BFA120B0FCC7D120BDC7C7E8C0FB20B0EDC2FB2E687770>

04_이근원_21~27.hwp

14.531~539(08-037).fm

인문사회과학기술융합학회

DBPIA-NURIMEDIA

<30312DB3EBB1E2C3B62EBCB3B5BFC0CF2EC7E3B0E6B9CC2EB1E8BCBCC8C62E687770>

한국액체미립화학회지제 19 권제 1 호 (2014)/ 41 화시기진각을통한연소속도지연보상으로출력및연소효율을향상시킬수가있다 (3). Bang 등 (4) 은점화각은압축비에의해서도조정이되는데이것은기관의압축비가증가함에따라혼합기의초기온도가증가하여화염전파속도가빨라져서초기연소시간이

< DBFACB7E1BAD0BBE728C3D6C1BE292E485750>

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

14.fm

Microsoft PowerPoint - emschapt1 [호환 모드]

Æ÷Àå82š

[수도권대기환경청 소식] 1. 제10차 수도권 대기환경정책 연구회 년도 1/4분기 직장교육 26 제5절 환경용어 해설 교토메카니즘(Kyoto Mechanism) 라돈(Rn) 배출가스 재순환장치(EGR, Exhaust G

플라즈마응용고에너지점화시스템개발및적용 존재한다. 플라즈마를점화시스템에적용하기위해서앞서언급한회사들은크게아크방전시직류고전압을공급하여플라즈마제트를발생시키거나, 펄스전원을인가하여코로나방전이일어나게하는두가지방법을이용하였다. 플라즈마제트를이용한점화시스템에관하여 2000년대이전부터

12.077~081(A12_이종국).fm

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

KAERIAR hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

02 Reihe bis 750 bar GB-9.03

Corporation Limited MODEL 제 품 제 원 스텐레스장축 NS_100 10A -사용압력 : 5.0 MPa -사용온도: -196 ~+60 -사용유체 : LN₂, LO₂, LAr, -사용용도 : 초저온배관, 초저온 저장탱크, 기타 50A Cryogenic

<33335FC0CCC1F8BFEC2DB5F0C1A920BFACB7E120BFC2B5B5BFA120B5FBB8A528C7A5B9F8C8A3C8AEC0CE292E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

12(4) 10.fm

WOMA Pumps - Z Line


<30325FC1B6B0FCBFAC5F556E692D666C6F7720BCD2B1E2B9E6BDC42E687770>

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

< C6AFC1FD28B1C7C7F5C1DF292E687770>

05-1Ưº°±âȹ

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

(테마)33~66

PJTROHMPCJPS.hwp

1.25Cr-0.5Mo 강을이용한합성가스조성변화에따른 SNG 1 차반응기의부식특성에관한실험적연구 김진현 1, 조홍현 2* 1 조선이공대학교자동차과, 2 조선대학교기계공학과 Experimental Study on Corrosion Characteristics of 1.2

2016 올해의 10 대기계기술신청서 기술개발기관기술 / 제품명기술의정의핵심기술내용 ( 기술적난이도 ) 파급효과주요기술개발실적 한국기계연구원시내버스용수소-천연가스혼합연료 (HCNG) 엔진 - 차세대에너지로서수소시대를가장효과적으로견인할수있는수소-천연가스혼합연료 (HCNG

< C0B1C1D8B1D42DB9D9C0CCBFC0BFF8C0AF2DBFA1C5BABFC32EC6C4C0CFB7B520B5F0C1A9C0AF2E687770>

Microsoft PowerPoint - Powertrain_Actuator

09권오설_ok.hwp

82-01.fm

03 장태헌.hwp

< C6AFC1FD28C3E0B1B8292E687770>

Coriolis.hwp

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

(Table of Contents) 2 (Specifications) 3 ~ 10 (Introduction) 11 (Storage Bins) 11 (Legs) 11 (Important Operating Requirements) 11 (Location Selection)


DBPIA-NURIMEDIA

(specifications) 3 ~ 10 (introduction) 11 (storage bin) 11 (legs) 11 (important operating requirements) 11 (location selection) 12 (storage bin) 12 (i

폐비닐수거기-김태욱.hwp

Contents 02 COMPANY INTRODUCTION 04 COMPANY Certification status HYUNDAI MACHINERY PRODUCTS 05 H6D8&9 Series 06 H6D2 Series 07 H4D Series 08 HYUNDAI L

04김호걸(39~50)ok

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

γ

10 이지훈KICS hwp

歯기구학

exp

<31325FB1E8B0E6BCBA2E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

Æ÷Àå½Ã¼³94š

<4D F736F F F696E74202D2035BBF3C6F2C7FC5FBCF8BCF6B9B0C1FA2E BC8A3C8AF20B8F0B5E55D>

12(3) 10.fm

?

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -


저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

슬라이드 제목 없음

03이경미(237~248)ok

歯Trap관련.PDF

À̵¿·Îº¿ÀÇ ÀÎÅͳݱâ¹Ý ¿ø°ÝÁ¦¾î½Ã ½Ã°£Áö¿¬¿¡_.hwp

?????????????????2009-????????

09È«¼®¿µ 5~152s

Journal of the Korean Society of Mechanical Engineers 기 계 저 널 11 ISSN Vol. 51, No. 11 November 2011 CONTENTS 인터뷰 무한내마모연

012임수진

139~144 ¿À°ø¾àħ

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

DBPIA-NURIMEDIA

歯1.PDF

차례.hwp

Transcription:

Transactions of KSAE, Vol. 16, No. 2, pp.158-165 (2008) Copyright C 2008 KSAE 1225-6382/2008/092-22 LPG - DME 압축착화엔진에서흡기가변밸브영향 염기태 배충식 * 한국과학기술원기계공학과 LPG - DME Compression Ignition Engine with Intake Variable Valve Timing Kitae Yeom Choongsik Bae * Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea (Received 16 August 2007 / Accepted 29 October 2007) Abstract : The combustion and exhaust emissions characteristics of a liquefied petroleum gas-di-methyl ether compression ignition engine with a variable valve timing device were investigated under various liquefied petroleum gas injection timing conditions. Liquefied petroleum gas was used as the main fuel and was injected directly into the combustion chamber. Di-methyl ether was used as an ignition promoter and was injected into the intake port. Different liquefied petroleum gas injection timings were tested to verify the effects of the mixture homogeneity on the combustion and exhaust emission characteristics of the liquefied petroleum gas-di-methyl ether compression ignition engine. The average charge temperature was calculated to analyze the emission formation. The ringing intensity was used for analysis of knock characteristics. The combustion and exhaust emission characteristics differed significantly depending on the liquefied petroleum gas injection and intake valve open timings. The CO emission increased as the intake valve open and liquefied petroleum gas injection timings were retarded. However, the particulate matter emission decreased and the nitrogen oxide emission increased as the intake valve open timing was retarded in the diffusion combustion regime. Finally, the combustion efficiency decreased as the intake valve open and liquefied petroleum gas injection timings were retarded. Key words : CI(Compression Ignition: 압축착화 ), DME(Di-methyl Ether), LPG(Liquefied Petroleum Gas: 액화석유가스 ) Nomenclature 1) : 전체연료의공기과잉률 : LPG의공기과잉률 : DME의공기과잉률 : 분사연료의유량 : 크랭크각도 : 비열비 * Corresponding author, E-mail: csbae@kaist.ac.kr P Q R T V : 효율 : 연소실압력 : 열 : 기체상수 : 혼합기온도 : 연소실부피 1. 서론 예혼합압축착화 (HCCI: homogeneous charge com- 158

LPG - DME 압축착화엔진에서흡기가변밸브영향 pression ignition) 엔진의연소상 (combustion phase) 을제어하기위한방법중하나로최근많은연구자들에의하여가변밸브기구 (VVT: variable valve timing) 가연구되어지고있다. 가변밸브기구를이용하여흡기또는배기밸브의개폐시기를조절함에따라혼합기가쉽게자발화할수있는열을공급하는잔류가스 (internal residual gas) 와체적효율 (volumetric efficiency), 그리고유효압축비 (effective compression ratio) 를제어할수있다. 1) HCCI 연소의가장큰문제중하나는연소온도저하로인한팽창행정중산화반응부족에의한탄화수소 (HC: hydrocarbon) 와일산화탄소 (CO: carbon monoxide) 배출이다. 2) 이와같은배기배출물저감을위하여연료공급시기를변화시켜연료를국부적으로농후하게성층화시킴으로써연소온도를증가시키고자하는연구가시도되었다. 3) 연소실내의혼합기의성층화정도를제어하기위하여직접분사 (DI: direct injection) 기구가필요하지만 DI를통하여연료를공급하는경우입자상물질 (PM: particulate matter) 배출물이문제로대두된다. PM 배출물은 DI방식엔진의반드시해결하여야하는문제이며기화특성이우수한연료를사용함에따라 PM 배출물을저감시킬수있는가능성이있다. 따라서 PM 배출물을저감하기위하여디메틸에테르 (DME: di-methyl ether) 를디젤대신에고속직접분사 (HSDI: high speed direct injection) 엔진에사용하는연구결과가발표되었다. 4) DME는디젤을대체하는대체연료로최근주목을받고있다. DME는이산화탄소배출량이기존디젤보다적고, 빠른기화특성과연료에포함된산소의산화촉진을통하여검댕이를비롯한입자상물질의배출을현저하게줄일수있는장점이있다. 5) 그러나 DME는착화가빠르고고부하운전에적합하지않는특성이있어서넓은부하범위의운전을위하여낮은세탄가의연료와함께사용함으로써운전영역을넓히고자하는시도가있었다. 2) 대표적인고옥탄가저탄소대체연료인액화석유가스 (LPG: liquefied petroleum gas) 는가솔린에비하여탄소를적게함유하고있어이산화탄소배출량을줄이는데큰도움을줄수있다. 이러한 LPG를 HCCI 엔진에적용하면가솔린과비교하여더욱많은양의배출가스를저감할수있는가능성이있다. 2) 가스상 (gas phase) 연료인 LPG를연소실내에 DI를통하여연료를공급하는경우연소실내에서매우빠른시간내에기화되기때문에 PM배출량을저감할수있는가능성이있다. 그러나 SI 방식의엔진에서노킹발생기구가 HCCI 엔진의노킹과다른점에착안하여새로운방법을이용하여 HCCI 엔진의노킹강도를판정해야하여노킹강도 (RI: ringing intensity) 를식 (1) 과같이고안하였다. 6) (1) 따라서본연구에서는배기배출물저감을위하여 DME 포트분사 (PFI: port fuel injection) 기구가장착된 LPG DME CI 엔진에서흡기밸브개폐시기가연소및배기배출물특성에미치는영향을규명하고자하였다. 2. 실험장치및실험방법 2.1 실험장치 실험장치는 Fig. 1에나타내었다. 본연구에사용된엔진은 4행정, 단기통, 더블오버헤드캠축 (DOHC: double over head camshaft) 가변밸브엔진이다. 엔진의제원은 Table 1에나타내었다. 흡기밸브의열림과닫힘시기는크랭크각도 40(CAD: crank angle degree) 까지변화시킬수있으나흡기밸브열림기간 (valve duration) 은고정되어있다. 엔진의부하와회전수제어는교류 (AC: alternating current) 다이나모미터 (82 kw, Unico Co.) 를사용하였다. LPG 직접분사를위해본연구에서는연소실에스월 (swirl) 분사구를가진인젝터 (Mitsubishi Co.) 를장착하였다. LPG는질소를이용하여 5 MPa로가압된상태로스월인젝터를이용하여액상으로분사된다. 균일한혼합기를만들기위하여 DME는배기행정중슬릿 (slit) 분사구를가진인젝터 (Denso Co.) 를이용하여흡기밸브상류 30 cm 지점인흡기매니폴드에분사하였다. 주연료는프로판과부탄이 Transactions of the Korean Society of Automotive Engineers, Vol. 16, No. 2, 2008 159

Kitae Yeom Choongsik Bae Fig. 1 Schematic diagram of experimental apparatus Table 1 Engine specifications Bore (mm) 82 Stroke (mm) 93.5 Compression ratio 13 Displacement (cc) 494 Intake / Exhaust valve opening duration (CAD) 228 / 228 Intake / Exhaust valve lift (mm) 8.5 / 8.4 Intake valve open (ATDC) -29 ~ 11 Valve timing Intake valve close (ATDC) 199 ~ 239 (CAD) Exhaust valve open (ATDC) 498 Exhaust valve close (ATDC) 6 DME injection pressure (MPa) 5 DME injector type Swirl injector 60 : 40으로혼합된 LPG를사용하였다. 그리고연료공급장치의손상을방지하기위해 DME에윤활향상제 (Infineum, R655) 를 500 ppm 첨가하였다. 배기가스배출물은배기가스분석기 (Horiba, Mexa 1500d) 를이용하여 HC, NOx, 이산화탄소 (CO 2: carbon dioxide), CO를측정하였으며 PM은 PM meter (AVL Co., 416S) 를이용하여측정하였다. 모든데이터는데이터수집장치 (Io Tech, Wavebook 512H) 를이용하여수집저장하였다. 데이터수집장치의속도와정확도는 1 MHz와전체범위의 ± 0.025% 이다. 배기배출물은 1 khz 의샘플링속도로측정되었다. 측정된연소압력데이터로부터열방출율해석 (heat release analysis) 을통하여연소해석을수행하였다. 엔진연소실내의연소압력및체적변화는에너지보존법칙에따라식 (2) 로표현된다. 7) dq γ dv 1 dp = P + V dθ γ 1 dθ γ 1 dθ 2.2 연소압력계측및처리 (2) 실험은 Table 2와같이공기과잉률과흡기밸브개폐시기에따라수행되었다. 흡기밸브개폐시기와 LPG 분사시기는 Fig. 2에나타내었다. LPG의분사시기조건에따라서흡기행정과압축행정중반에 LPG를연소실내에직접분사하면흡기포트에서분사한선행연구결과와유사한연소특성이관찰 Table 2 Experimental conditions Engine speed (rpm) 1000 Intake valve open timing (ATDC) -29, -19, -9, 1, 11 LPG injection timing (ATDC) 0, 100, 200, 300, 320, 325, 335, 340 DME injection timing (ATDC) 470 λtotal 1.67 λlpg 3.00 λdme 3.70 Intake charge temperature ( C) 30 160 한국자동차공학회논문집제 16 권제 2 호, 2008

LPG - DME Compression Ignition Engine with Intake Variable Valve Timing 3. 실험결과 3.1 배기배출물결과연소실최고온도와배기배출물의관계를규명하기위하여식 (4) 를이용하여연소실최고온도를계산하였다. 9,10) (4) Fig. 2 Intake valve open, exhaust valve close and DME injection timing at 1000 rpm 되는것으로보아 LPG 분사조건 0 ~ 400 CAD ATDC(after top dead center) 의조건은예혼합연소조건으로판정하였다. 또한예혼합연소조건과확연하게다른연소및배기배출물특성을보이는압축행정말기부터연소시작시기직전까지의 320과 325 CAD ATDC는성층혼합연소조건으로정의하였다. 그리고 LPG의분사가연소중에이루어지는 335와 340 CAD ATDC의조건은확산연소조건으로정의하였다. 그리고각각의분사조건은 5가지의흡기밸브개폐시기 (intake valve open and close timing) 에대하여엔진실험을진행하였다. LPG와 DME의전체공기과잉률은연소방정식으로부터유도하여식 (3) 과같이정의하였다. Fig. 3은연소실최고온도와 CO 배출물을도시하였다. 예혼합연소의경우모든실험조건에서 CO 배출물이 0.2% 를넘지않았다. 이는높은연소실최고온도에기인하는것으로판단된다. Sjoberg등은연소실최고온도가 1480K 이상에서 CO의산화가촉진되며배출물이급격히감소함을밝힌바있다. 11) 그러나성층혼합연소에서는예혼합연소와비교하여더욱높은연소실최고온도에서도 LPG 의성층화로인하여 CO의배출량이증가하는경향 (3) HCCI 엔진에서연소압력을계측하고노킹강도를분석하기위하여연소실에압력센서 (Kistler, 6052B) 를장착하였다. 연소압력센서의장착방법에따라관진동 (pipe oscillation) 이발생하여신호의왜곡이발생할수있는가능성을배제하기위하여연소압력센서장착방식은센서의측정면이연소실벽면에드러나있는표면장착 (flush-mounting) 방식을사용하였다. 8) 또한연소압력신호의샘플링간격이짧아질수록연소압력의왜곡이적게발생하기때문에 8) 정밀한데이터분석을위해크랭크축에 2048 pulse/rev 엔코더 (encoder) 를장착하여크랭크각도 (crank angle) 0.175도에한번씩데이터를취득하였다. (a) Combustion regime (b) Effects of intake valve open and start of injection timing Fig. 3 CO emissions of compression ignition engine at 1000 rpm : (a) Combustion regime (b) Effects of intake valve open and start of injection timing Transactions of the Korean Society of Automotive Engineers, Vol. 16, No. 2, 2008 161

염기태 배충식 을보인다. CO 배출물은공기과잉률 (air excess ratio) 의함수이며공기과잉률이감소하여혼합기가농후하면급격하게증가하는경향을갖는다. 7) 그러나성층혼합연소에서농후한영역에서 CO가발생하는양이높은연소온도로인하여산화되는양보다많기때문에같은최고온도영역에서예혼합연소보다높은배출물을보이고있다. Fig. 3(b) 에나타낸바와같이흡기밸브개폐시기가지각됨에따라최고연소온도는감소하며이에따라 CO 배출물은증가하는경향을갖는다. 흡기밸브개폐시기가지각됨에따라체적효율과잔류가스율과유효압축비가감소하며이에따라연소되는공기와연료의양이감소하고최고연소온도가감소하게된다. HC 배출물의경우 CO와같이팽창행정중산화반응의부족으로과다배출되는특성을갖고있다. 이러한 HC 배출물을확인하기위하여 Fig. 4에 HC 배출물을도시하였다. HC 배출물의경우성층연소와확산연소의경우예혼합연소에비하여낮은수준이며이는상대적으로덜희박한혼합기와약한소염효과 (quenching effect) 에기인하는것으로판단된다. 성층혼합연소와확산연소의경우 LPG가연소실중앙부에집중되며소염효과에의한 HC 배출량이집중되는연소실벽면에는희박한 DME만위치하기때문에소염효과에의한 HC 발생이예혼합압축연소에비하여감소하게된다. 또한전술한바와같이 CO 배출물과동일한이유로흡기밸브개폐시기가지각되면최고연소온도가감소하게되고 HC 배출량이증가하는경향을보이게된다. Fig. 5는 PM 배출량을나타내었다. 예혼합과성층혼합연소조건에서는 PM 배출량이관찰되지않으나확산연소조건은 PM이배출됨을알수있다. PM 배출물은 LPG 연료분사시작 (SOI: start of injection) 이지각되면발생량이증가하는경향을갖는다. 이는연료의불균일한혼합때문이다. 늦은시기에분사를시작할수록분위기압력이증가하고 LPG 분무도달거리 (penetration length) 가짧아지고분무가가운데로몰리면서 LPG가좁은영역에분포하게된다. 12) 흡기밸브개폐시기의영향을살펴보면흡기밸브개폐시기가지각되면 PM 배출량이감소하는특징이있음을확인할수있다. 이는 CO와 HC 배출량이흡기밸브개폐시기가지각되면증가하는경향과반대의경향으로 Fig. 5(b) 에자세히나타내었다. 이와같은경향은분무특성과연소온도에기인한다. Tree등은높은분위기온도가분무의기화를촉 (a) Combustion regime Fig. 4 HC emissions of compression ignition engine (b) Effects of intake valve open and start of injection timing Fig. 5 PM emissions of compression ignition engine at 1000 rpm : (a) Combustion regime (b) Effects of intake valve open and start of injection timing 162 한국자동차공학회논문집제 16 권제 2 호, 2008

LPG - DME 압축착화엔진에서흡기가변밸브영향 (a) Combustion regime (b) Effects of intake valve open and start of injection timing Fig. 6 NOx emissions of compression ignition engine at 1000 rpm : (a) Combustion regime (b) Effects of intake valve open and start of injection timing 진하고주변공기의분무내유입이억제되어분무도달거리가감소하여 PM 배출량이증가함을밝힌바있다. 13) Stojkovic등은농후한영역이 PM의주생성영역이며생성된 PM이주변뜨거운연소가스와만나서산화되는과정을거치게됨을밝혔다. 14) 그러나확산연소의경우최고연소온도가 PM의산화온도인 1500K 보다낮기때문에국부적으로농후한혼합기가 PM 배출물의주원인으로판단된다. Fig. 6은 LPG-DME 압축착화엔진의 NOx 배출물을도시하였다. NOx 배출물의경우국부적으로비교적농후한혼합기가형성되는성층혼합연소와확산연소조건에서배출량이증가하는경향을보인다. 15) NOx와 PM 배출물결과를바탕으로판단할때, 성층혼합연소조건은국부적으로매우농후한혼합기가존재하지않는것을유추할수있다. 또한성층혼합연소조건에서 325 CAD ATDC의조건이 320 CAD ATDC보다 LPG가더욱좁은영역에분포하게되고이에따라 NOx 배출량이상대적으로많이배출된다. 성층혼합연소의경우흡기밸브개폐시기가지각되면앞에서설명한바와같이연소최고온도가감소하면서 NOx 배출량이감소하는경향을갖는다. 그러나 Fig. 6(b) 에나타낸바와같이확산연소의경우흡기밸브개폐시기가지각되면배출량이증가하는상반된결과를보이고있다. 이는확산연소조건에서흡기밸브개폐시기가지각됨에따라분무가넓은영역에분포하기때문이다. DME 의저온산화반응 (LTO: low temperature oxidation) 이후에연료를분사하는확산조건의경우흡기밸브개폐시기가지각되면연소상이지각되고 LPG를분사하는시기에연소압력이낮기때문에분무가더넓은영역에비교적고르게분포할수있다. 이와반하여 LTO가시작되기이전에 LPG의분사가끝나는성층혼합연소에서의연료분포는분무의분위기압력이거의일정하기때문에 NOx 배출물의경향이성층혼합연소와확산연소가반대의경향을갖는이유인것으로판단된다. 3.2 연소특성결과 Fig. 7은 LPG-DME 압축착화엔진의연소효율과노킹강도의관계를나타내었다. 연소효율은식 (5) 를이용하여계산하였다. 7) (5) 연소효율의경우흡기밸브개폐시기가지각되면 Fig. 7 Combustion efficiency of compression ignition engine with respect to knock intensity at 1000 rpm Transactions of the Korean Society of Automotive Engineers, Vol. 16, No. 2, 2008 163

Kitae Yeom Choongsik Bae 감소하는경향을갖고있으며이는전술한바와같이유효압축비가감소하고자발점화에필요한열을공급하는잔류가스율이감소하기때문으로판단된다. 또한확산연소조건의연소효율이다른조건에비하여낮은이유는 LTO 이후 LPG가분사됨에따라분사된 LPG가모두연소되지못하고 PM과 HC 의형태로배출되기때문으로판단된다. Fig. 8은전술한흡기밸브개폐시기에따른확산연소조건과성층혼합연소조건의 PM 배출량경향이다르게관찰되는이유인연소시작시기를나타낸다. 늦은시기에 LPG를분사함에따라 20% 질량연소율 (MFB: mass fraction burned) 의위치로대표되는연소시작시기가지각되며연소최고압력이감소함을확인할수있다. 또한잔류가스율이감소하고유효압축비가감소함에따라연소최고압력이감소하며연소시작시기가지각됨도확인할수있다. 또 한 Fig. 9에나타낸전체연소기간을살펴보면예혼합연소조건과성층혼합연소조건은전체연소기간이비슷하지만확산연소조건은연소말기에국부적으로농후한 LPG의저하된연소속도로인하여연소기간이매우증가함을확인할수있다. 4. 결론 LPG를주연료로사용하고 DME를착화촉진제로사용하는압축착화엔진에서 LPG의분사시기에따른 HCCI와 SCCI 연소를구현하였고다음과같은결론을얻었다. 흡기밸브개폐시기와 LPG 분사시기에따라배기배출물특성과연소특성은명확하게구분되었다. 흡기밸브개폐시기가지각됨에따라연소최고온도가감소하여 HC와 CO 배출물은증가하는경향을보이나확산연소조건에서 PM은감소하는경향을확인할수있었다. NOx 배출물의경우성층혼합연소조건의경우흡기밸브개폐시기가지각됨에따라감소하였으나확산연소조건은분무발달정도에따라증가하는경향을보였다. 흡기밸브개폐시기가지각됨에따라연소효율은감소하며연소상은지각되고연소최고압력은감소하는결과를얻을수있었다. 후 기 Fig. 8 20% mass fraction burned position of compression ignition engine with respect to maximum combustion pressure at 1000 rpm 본연구는과학재단의우수연구센터 (ERC) 의지원아래연소기술연구센터의과제로써수행되었으며, 이에관계기관에감사의뜻을표합니다. References Fig. 9 Burn duration of compression ignition engine with respect to mass fraction burned at 1000 rpm 1) F. Zhao, T. Asmus, D. Assanis, J. Dec, J. Eng and P. Najt, Homogeneous Charge Compression Ignition (HCCI) Engines : Key Research and Development Issues, TP-94, SAE, 2003. 2) K. Yeom, J. Jang, and C. Bae, Homogeneous Charge Compression Ignition of LPG and Gasoline using Variable Valve Timing in an Engine, Fuel, Vol.86, No.4, pp.494-503, 2007. 3) H. Ogawa, N. Miyamoto, N. Kaneko and H. Ando, Combustion Control and Operating 164 한국자동차공학회논문집제 16 권제 2 호, 2008

LPG - DME Compression Ignition Engine with Intake Variable Valve Timing Range Extension in an Homogeneous Charge Compression Ignition Engine with Direct incylinder Injection of Reaction Inhibitors, International Journal of Engine Research, Vol.6, No.4, pp.342-360, 2005. 4) C. Baek, H. Yoon, K. Yeom, J. Jang and C. Bae, The Effects of Hydrogen on DME HCCI Combustion, Transactions of KSAE, Vol.15, No.2, pp.15-21, 2007. 5) W. Ying, Z. Longbao and W. Hewu, Diesel Emission Improvements by the Use of Oxygenated DME/Diesel Blend Fuels, Atmospheric Environment, Vol.40, No.13, pp.1313-2320, 2007. 6) J. Eng, Characterization of Pressure Waves in HCCI Combustion, SAE 2002-01-2859, 2002. 7) J. B. Heywood, Internal Combustion Engine Fundamentals, McGraw Hill, New York, 1988. 8) A. Bertola, J. Stadler, T. Walter, P. Wolfer, C. Gossweiler and M. Rothe, Pressure Indication during Knocking Conditions, 7th Internal Symposium on Internal Combustion Diagnostics, May 2006, Kurhaus Baden-Baden, Germany, pp.7-21, 2006. 9) C. Bae and K. Yeom, LPG - DME Stratified Charge Compression Ignition Engine, Transaction of KSME, Vol.31, No.8, pp.672-679, 2007. 10) H. Zhao and N. Ladommatos, Engine Combustion Instrumentation and Diagnostics, SAE, 2001. 11) M. Sjoberg and J. Dec, An Investigation into Lowest Acceptable Combustion Temperatures for Hydrocarbon Fuels in HCCI Engines, Proceedings of the Combustion Institute, Vol.30, No.2, pp.2719-2726, 2005. 12) D. Mondal, A. Datta and A. Sarkar, Droplet Size and Velocity Distributions in a Spray from a Pressure Swirl Atomizer: Application of Maximum Entropy Formalism, IMechE. Part C: Journal of Mechanical Engineering Science, Vol.218, No.7, pp.737-750, 2004. 13) D. Tree and K. Svensson, Soot Processes in Compression Ignition Engines, Progress in Energy and Combustion Science, Vol.33, No.3, pp.272-309, 2007. 14) B. Stojkovic, T. Fansler, M. Drake and V. Sick, High-speed Imaging of OH and Soot Temperature and Concentration in a Stratified- charge Direct-injection Gasoline Engine, Proceedings of the Combustion Institute, Vol.30, No.2, pp. 2657-2665, 2005. 15) K. Lee and C. Lee, An Experimental Study of the Extent of the Operating Region and Emission Characteristics of Stratified Combustion Using the Controlled Autoignition Method, Energy and Fuels, Vol.20, No.5, pp.1862-1869, 2006. Transactions of the Korean Society of Automotive Engineers, Vol. 16, No. 2, 2008 165