Microsoft PowerPoint - T4S3_허준영.ppt
|
|
- 효리 운
- 6 years ago
- Views:
Transcription
1 In-Database Analytics Page 1 허준영 DW&BI Business Development Manager 기술컨설팅본부한국오라클
2 목차 정보분석개요 효율적인정보분석방안고찰 오라클의정보분석전략 : In-Database Analytics DB 상에서의정보분석방안 In-Database Statistics OLAP Option Data Mining Option 요약및Q&A Page 2 Page 2
3 목차 정보분석개요 효율적인정보분석방안고찰 오라클의정보분석전략 : In-Database Analytics DB 상에서의정보분석방안 In-Database Statistics OLAP Option Data Mining Option 요약및Q&A Page 3 Page 3
4 정보분석개요 Query and Reporting OLAP Data Mining 상세정보의추출 요약및경향분석 숨겨진패턴의발견을통한지식획득 정보 분석 통찰 & 예측 지난 3 년간펀드를구입한사람들은누구인가? 펀드구매자들의지역별, 연도별평균이득은얼마인가? 다음 6 개월동안펀드를구매할것으로예측되는사람들은누구이며그이유는? Business Intelligence Page 4 Page 4
5 정보분석관련주요트렌드 정보의크기는점점커지는추세 3년전전세계에서가장큰 DW : 30TB 작년세계에서가장큰 DW : 100TB 2,3년내로 PB급 DW가나올것으로예상됨 정보의저장은이제큰문제가아님. 진짜문제는정보분석방법임 차원이 4000 개이고크기가 2TB 인정보를어떻게분석할것인가? [2005 Winter Corp] Page 5 Page 5
6 현재의정보분석프로세스 분석업무의분리서로다른곳에서분석수행 : 다른시스템, 다른담당자 개별적인분석애플리케이션사용업무별전문패키지사용 : 전문성은좋으나통합성은? 주요고찰이슈 : 구축및유지비용, 실시간대응성 Data Integration Engine Data Warehouse OLAP Engine Mining Engine Page 6 Page 6
7 현재프로세스의문제점 데이터의빈번한이동 데이터의크기가적을때는별문제가없음. 하지만, 분석해야할데이터의크기가커진다면?( 예 :TB급의고객정보분석 ) 데이터의크기가커질수록중요한이슈로대두됨 데이터중복저장비용 데이터이동에따르는시간손실 전문패키지의정보확장성및성능이슈 업무프로세스의분리 전체분석프로세스의지연 실시간분석및대응이불가능 Page 7 Page 7
8 바람직한정보분석프로세스 한곳에서정보관리및분석수행 데이터이동을최소화하여서버간이동에따르는불필요한시간지연제거 중복저장불필요 안전하고효율적인정보관리 Security, Scalability, Availability 정보분석업무의유기적연결및차별화 일반정보분석업무의상시 & 실시간화 단일 SQL로정보분석업무처리 필요시전문패키지를통한고급분석수행 Page 8 Page 8
9 오라클의정보전략 :In-Database Analytics Oracle 10g DB Data Warehousing ETL 단일 DB 내에서통합된정보분석업무지원 Data Warehouse Built-in Statistics OLAP Option Data Mining Option OLAP Statistics Data Mining Page 9 Page 9
10 Oracle Business Intelligence Know More, Do More, Spend Less! Query & Reporting Oracle BI Solution BI Beans Oracle Reports Oracle 10g DB Data Warehousing OLAP ETL Statistics PRODUCT TIME REGION Drill for Detail OLAP Option Spreadsheet Add-In Data Mining Access & Assemble Data Oracle Warehouse Builder Page 10 Page 10 Mine for New Insights Oracle Data Mining Option Spreadsheet Add-In Statistics Text Mining
11 In-Database Analytics 의장점 기술적인측면 데이터는항상적절한제어하에 DB 상에존재함 복합질의를통해직관적인분석처리가능 확장의용이성및우수한처리성능 Fast scoring : 단일 CPU 시스템에서 250만개의레코드를단6초만에점수부여작업을마침 Oracle 10g DB Data Warehousing OLAP ETL Data Mining Statistics 비즈니스적인측면 실시간의정보분석처리가능 TCO 의절감가능 Page 11 Page 11
12 In-Database Analytics : 사례 예제 : DVD 마케팅캠페인시행결과의통계적검정 사전정의된분류방법에의해반응모델이만들어져있을때, 이를이용하여어떤고객이마케팅캠페인에응할것인가를예측 각각의고객들이캠페인시행이전 3개월과이후 3개월동안얼마만큼 DVD를구매했는가를분석 예측된고객들의캠페인성공률과반응하지않은고객들의구매율을서로다른지역과회사별로비교하고, 이정보들의통계적으로유의한지의여부를검정 Page 12 Page 12
13 In-Database Analytics : 사례기존의처리방법 1단계 : 데이터마이닝프로그램 DB로부터고객데이터를전달받음 프로그램상에서예측작업수행 예측된사용자정보를 DB에재전송 2단계 : DB 검색 예측된고객정보를로딩 해당고객들의캠페인전후구매상황을검색 캠페인성공여부정보를검색하여정리 3단계 : 통계패키지 캠페인성공률정보를 DB로부터받음 통계적검증작업을수행 Page 13 Page 13
14 In-Database Analytics : 사례오라클상에서의처리방법 하나의 SQL 로수행가능 select responder, cust_region, count(*) as cnt, sum(post_purch pre_purch) as tot_increase, avg(post_purch pre_purch) as avg_increase, stats_t_test_paired(pre_purch, post_purch) as significance from ( select cust_name, prediction(campaign_model using *) as responder, sum(case when purchase_date < 15-Apr-2005 then purchase_amt else 0 end) as pre_purch, sum(case when purchase_date >= 15-Apr-2005 then purchase_amt else 0 end) as post_purch from customers, sales, products@proddb where sales.cust_id = customers.cust_id and purchase_date between 15-Jan-2005 and 14-Jul-2005 and sales.prod_id = products.prod_id and contains(prod_description, DVD ) > 0 group by cust_id, prediction(campaign_model using *) ) group by rollup responder, cust_region order by 4 desc; 통계 : 유의성검증 마이닝 : 캠페인예측 기본 DB 정보검색 Page 14 Page 14
15 In-Database Analytics : 사례 사례를통해본오라클방법의장점 데이터이동이전혀없음 (SQL 안에서 pipelining) 분석프로세스가단순해짐 실시간분석이가능 고려사항 DB와 DM, 통계를모두아는전문가필요 일반및고급분석프로세스의분리 일반분석 : 상시화및실시간화 고급분석 : 전문화 Page 15 Page 15
16 목차 정보분석개요 효율적인정보분석방안고찰 오라클의정보분석전략 : In-Database Analytics DB 상에서의정보분석방안 In-Database Statistics OLAP Option Data Mining Option 요약및Q&A Page 16 Page 16
17 10g 가제공하는통계처리기능들 Ranking functions rank, dense_rank, cume_dist, percent_rank, ntile Window Aggregate functions (moving and cumulative) Avg, sum, min, max, count, variance, stddev, first_value, last_value LAG/LEAD functions Direct inter-row reference using offsets Reporting Aggregate functions Sum, avg, min, max, variance, stddev, count, ratio_to_report Statistical Aggregates Correlation, linear regression family, covariance Linear regression Fitting of an ordinary-least-squares regression line to a set of number pairs. Frequently combined with the COVAR_POP, COVAR_SAMP, and CORR functions. Note: Statistics and SQL Analytics are included in Oracle Database Standard Edition Descriptive Statistics average, standard deviation, variance, min, max, median (via percentile_count), mode, group-by & roll-up DBMS_STAT_FUNCS: summarizes numerical columns of a table and returns count, min, max, range, mean, stats_mode, variance, standard deviation, median, quantile values, +/- n sigma values, top/bottom 5 values Correlations Pearson s correlation coefficients, Spearman's and Kendall's (both nonparametric). Cross Tabs Enhanced with % statistics: chi squared, phi coefficient, Cramer's V, contingency coefficient, Cohen's kappa Hypothesis Testing Student t-test, F-test, Binomial test, Wilcoxon Signed Ranks test, Chisquare, Mann Whitney test, Kolmogorov-Smirnov test, One-way ANOVA Distribution Fitting Kolmogorov-Smirnov Test, Anderson-Darling Test, Chi-Squared Test, Normal, Uniform, Weibull, Exponential Pareto Analysis (documented) 80:20 rule, cumulative results table Page 17 Page 17
18 In-Database Statistics 통계패키지로의데이터이동없이단순통계분석처리가능 예 : 가설검정 Note: Statistics and SQL Analytics are included in Oracle Database Standard Edition Page 18 Page 18
19 OLAP 개요 OLAP 의중요성 SQL 로처리가힘든 Ad-Hoc 질의의효율적인처리 다차원정보모델의효율적인처리 빠른처리성능 별도 OLAP 서버구성의단점 구축과유지에따르는고비용 가용성과확장성문제 임의적 API에따른애플리케이션호환성문제 Customer Product Aggregation Rules Month Quarter Year Product Share Sales Year to Date Profit Sales Average Selling Price Time Forecast Rules Manufacturer Brand Item Allocation Rules Page 19 Page 19
20 Oracle 10g OLAP Option DW 상에서 OLAP 동시구현 하나의 DB 상에서대규모의관계형데이터와다차원데이터집합동시지원 별도의데이터구축작업없이매핑작업만으로다차원큐브의신속한구축가능 압축, 파티션, 병렬처리를통한신속한 Ad-Hoc 질의처리가능 다차원데이터타입에대한일반적인 SQL 인터페이스지원 OLAP API를통한최적화및확장지원 주요장점 빠른데이터처리성능 큐브구축및질의실행모두빨라짐 손쉬운사용 SQL 및 OLAP API를통한손쉬운개발및검색가능 Page 20 Page 20
21 Integrated RDBMS-MDDS : OLAP in Oracle Single RDBMS-MDDS process Single Data Store Single Metadata Repository Single Set of Management Tools Single Security Model OLAP APIs Page 21 SQL Query Page 21
22 Oracle OLAP Platform Oracle HTML DB OracleBI Reports OracleBI Discoverer OLAP OracleBI Spreadsheet Add-In Oracle BI Beans Oracle Demand Planning Oracle Enterprise Planning & Budgeting Database OLAP Option: Query Analysis Planning Oracle Warehouse Builder Analytic Workspace Manager Page 22 Page 22
23 Oracle DB 에서 OLAP 다차원이점 쉽고빠르게차원데이터집계 쿼리속도가빠르고일관적 사용자에게쉽게비즈니스분석을제공 Calculations that compare things e.g. last year to now Advanced data selections using many combined criteria More sophisticated analytical calculations Page 23 Page 23
24 쉽고빠르게차원데이터집계 1A. 집계정의가쉽다. Page 24 Page 24
25 쉽고빠르게차원데이터집계 1B. 집계가빠르다 Build time for Oracle Financials dataset Million Input Rows Minutes Materialized Views (partially aggregated*) 9 OLAP (fully aggregated**) * MV aggregated 1 dimension and 1 measure ** OLAP aggregated 7 dimensions and 11 measures Page 25 Page 25
26 쿼리속도가빠르고일관적 Slower Relational Query Response OLAP Faster Standardized queries Few calculations Simple calculations Nature of Query More Ad-hoc Many calculations Multi-level, multi-step calculations Planning Applications See Page 26 Page 26
27 쿼리속도가빠르고일관적 Time To Prepare Data for Query More Time Preparation Time Without OLAP With OLAP Less Time Less Ad-Hoc Predictable Queries Simple Calculations More Ad-Hoc Unpredictable Query Patterns Sophisticated Calculations Page 27 Ad-Hoc Nature of Application and Query Patterns Page 27
28 Case Study 10 dimensional model 4,608 level combinations 7.54 * 1020 cells Dimension Levels Member s Shipping Location 2 52 Market Maker Buyer 2 38 Customer 3 4,998 Supplier 2 3 Product 3 7,099 Time Area 2 13 Shipping Location 2 53 Shipped From 2 41 Page 28 Page 28
29 Case Study: Simple Queries Time to build Time to execute simple queries Analytic Workspace 14 MVs 214 MVs 518 MVs Page 29 Page 29
30 Case Study: OLAP Queries Time to build Time to execute OLAP queries Analytic Workspace 14 MVs 214 MVs 518 MVs Page 30 Page 30
31 사용자에게쉽게비즈니스분석을제공 3A. OLAP End-User Tool Page 31 Page 31
32 사용자에쉽게비즈니스분석을제공 3B. 분석을위한최적의 Technology 2004 년 UK 에서 Oracle 의매출은? 일반 SQL Select sum(f.sales) from fact f, time t, prod p, geog g where f.time_id = t.time_id and f.prod_id = p.prod_id and f.geog_id = g.geog_id group by t.year, p.prod, g.country having t.year = 2004 and p.prod = RDBMS and g.country = UK OLAP Limit prod to RDBMS Limit geog to UK Limit time to 2005 Show sales Page 32 Page 32
33 사용자에쉽게비즈니스분석을제공 3B. 분석을위한최적의 Technology 2004 년 UK 에서 Oracle 의매출은? 작년보다실적이좋은가? 일반 SQL Select lag(sum(f.sales), 1) over (partition by p.prod, g.country order by t.year) / sum(f.sales) from fact f, time t, prod p, geog g where f.time_id = t.time_id and f.prod_id = p.prod_id and f.geog_id = g.geog_id group by t.year, p.prod, g.country having t.year IN ( 2003, 2004 ) and p.prod = RDBMS and g.country = UK OLAP Show lagpct( sales, 1, time ) Page 33 Page 33
34 사용자에쉽게비즈니스분석을제공 3B. 분석을위한최적의 Technology 2004년 UK에서 Oracle의매출은? 작년보다실적이좋은가? 작년보다이익기여도는어떠한가? 일반 SQL Select lag(sum(f.sales) / sum(f.sales) over (partition by g.country),1) over (partition by g.country, p.prod order by t.year) from fact f, time t, prod p, geog g where f.time_id = t.time_id and f.prod_id = p.prod_id and f.geog_id = g.geog_id group by t.year, p.prod, g.country having t.year IN ( 2003, 2004 ) and p.prod = RDBMS and g.country = UK OLAP Show lagpct( sales /sales( prod ALL ), 1, time) Page 34 Page 34
35 사용자에게쉽게비즈니스분석을제공 3B. 분석을위한최적의 Technology Accessible via simplified SQL SELECT time_desc, channel_desc, product_desc, geography_desc, sales, sales_ly_pct, sales_pp_pct, sales_shr_parentprod FROM sales_cubeview WHERE product_colour = 'RED', geography_level = 'REGION', time_level = 'MONTH', time_parent = '2002'; Simple SQL No Joins No SQL Calcs No SQL Aggregations Very Clever, Very Fast Page 35 Page 35
36 Data Mining 개요 대량의데이터안에서숨겨진패턴들과새로운통찰적지식을찾아가는프로세스 Data Mining 이제공할수있는가치 목표속성과밀접히연관된요인들의파악 (Attribute Importance) 고객행위의예측 (Classification) 목표고객혹은물품의프로화일구축 (Decision Trees) 샘플정보의세그먼트화 (Clustering) 대상체내에존재하는중요한관련성의탐색 (Associations) 사기등과같은드문사건의파악 (Anomaly Detection) Page 36 Page 36
37 Data Mining 응용사례 금융 경쟁감손 (churn) 사기적발 대출부도 (Basel II) 판매기회파악 통신 이탈고객예측및일생가치를가지는목표고객탐색 교차판매기회파악 DB 마케팅 목표고객대상제품캠페인 교차및상향판매기회파악 보험, 공공 회계이상체크 (Sarbanes-Oxley) 의심되는업무의감사를통한비용절감 유통 충성고객프로그램 교차판매 시장바스켓분석 사기적발 생명과학 환자들과연관된의심요인들분석 목표유전자및단백질발견 신약개발의주도물질파악 Page 37 Page 37
38 Oracle Data Mining 10gR2 Oracle in-database Mining Engine Oracle Data Miner (GUI) Simplified, guided data mining Spreadsheet Add-In for Predictive Analytics 1-click data mining from a spreadsheet PL/SQL API & Java (JDM) API Develop advanced analytical applications 지원하는알고리즘 Anomaly detection Attribute importance Association rules Clustering Classification & regression Nonnegative matrix factorization Structured & unstructured data (text mining) BLAST (life sciences similarity search algorithm) Page 38 Page 38
39 Oracle Data Mining Oracle Data Mining provides summary statistical information prior to data mining Page 39 Page 39
40 Oracle Data Mining Oracle Data Mining provides model performance and evaluation viewers Oracle Data Mining s Activity Guides simplify & automate data mining for business users Page 40 Page 40
41 Oracle Data Mining Apply model viewers Additional model evaluation viewers Page 41 Page 41
42 Oracle BI EE 와의연계 -Administration in BI EE Oracle BI EE defines results for end user presentation Oracle Data Mining results available to Oracle BI EE administrators Page 42 Page 42
43 Oracle BI EE Reports Likelihood to buy Page 43 Page 43
44 Oracle BI EE Reports Create Categories of Customers Oracle Data Mining reveals important relationships, patterns, predictions & insights to the business users Page 44 Page 44
45 Use Results in Discover Reports Copyright 2006 Oracle Corporation Page 45 Page 45
46 Oracle Spreadsheet Add-In for Predictive Analytics 엑셀사용자가 Oracle이나엑셀 data를 predictive analytics 기능을이용하여쉽게사용 사용자는엑셀에서테이블 / 뷰등을지정하고속성을선택 Page 46 Page 46
47 Oracle Data Mining 알고리즘과응용예제 Attribute Importance 목표속성에가장큰영향을미치는속성들을파악함 고비용과가장밀접히연관된요인의파악 Classification & Prediction 다음의경향이가장큰고객을예측 캠페인혹은제안에반응 가장많은이익을제공 최고의고객을파악하고프로파일개발 Regression A1 A2 A3 A4 A5 A6 A7 Married >$50K Gender Income <=$50K Age M F >35 <=35 Status Gender HH Size Single F M >4 Buy = 0 Buy = 1 Buy = 0 Buy = 1 Buy = 0 <=4 Buy = 1 수치적예측을수행 평균구매금액및비용예측 Page 47 Page 47
48 Oracle Data Mining 알고리즘과응용예제 Clustering 자연스럽게발생하는그룹을발견 시장세그먼테이션 질병유발그룹파악 정상및비정상행위의구분 Association Rules 시장바스켓에서동시발생하는물품들파악 물품결합을제안 보다효율적인제품전시지원 Feature Extraction 대규모데이터를대표적인속성몇가지로축약 clustering 및 text mining 에활용 F1 F2 F3 F4 Page 48 Page 48
49 metagroup.com Copyright 2004 META Group, Inc. All rights reserved. METAspectrum 60.1 Page 49 Page 49
50 오라클의정보분석전략의이점 In-Database Analytics Benefit 분석애플리케이션을위한플랫폼제공 데이터이동을없애고보안이슈에의노출을최소화할수있음 빠른정보관리체인제공 넓은범위마이닝및통계처리알고리즘제공 대부분의정보분석문제에대한해결방안을제공 복수의 H/W, O/S 에서운용가능 다양한운영환경에서분석애플리케이션수행가능 오라클 DB 기술을최대한활용가능 Grid, RAC, 통합 BI, SQL & PL/SQL 사용가능 기존의 DB 기술최대한활용 Page 50 Page 50
51 Oracle Advanced Analytics Know More! Leverage your data and discover new hidden information and valuable insights Do More! Oracle 10g DB Data Warehousing OLAP ETL Data Mining Statistics Build applications that automate the extraction and dissemination of data mining s insights Move from Tool to Enterprise BI Application Spend Less! Option to Oracle 10g Database Enterprise Edition Eliminates need for new servers, new software, and new support skills/resources Page 51 Page 51
<4D F736F F F696E74202D20C0E5BCBABFEC5F4442BBF3BFA1BCADC0C720C1A4BAB8BAD0BCAE2DC3D6C1BEBABB2E707074>
In-Database Analytics : DB 상에서의효율적인 정보분석방안 장성우 Oracle 10g DB Data Warehousing ETL BI/DW 팀장한국오라클 OLAP Data Mining Statistics 목차 Flashback : RTE 개요및대응방안 정보분석개요 효율적인정보분석방안고찰 오라클의정보분석전략 : In-Database Analytics
More informationIntra_DW_Ch4.PDF
The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology
More informationPortal_9iAS.ppt [읽기 전용]
Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Oracle9i Application Server e-business Portal Client Database Server e-business Portals B2C, B2B, B2E, WebsiteX B2Me GUI ID B2C
More information김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More information歯목차45호.PDF
CRM CRM (CRM : Customer Relationship Management ). CRM,,.,,.. IMF.,.,. (CRM: Customer Relationship Management, CRM )., CRM,.,., 57 45 (2001 )., CRM...,, CRM, CRM.. CRM 1., CRM,. CRM,.,.,. (Volume),,,,,,,,,,
More informationDW 개요.PDF
Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.
More informationETL_project_best_practice1.ppt
ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication
More informationOracle Apps Day_SEM
Senior Consultant Application Sales Consulting Oracle Korea - 1. S = (P + R) x E S= P= R= E= Source : Strategy Execution, By Daniel M. Beall 2001 1. Strategy Formulation Sound Flawed Missed Opportunity
More informationMS-SQL SERVER 대비 기능
Business! ORACLE MS - SQL ORACLE MS - SQL Clustering A-Z A-F G-L M-R S-Z T-Z Microsoft EE : Works for benchmarks only CREATE VIEW Customers AS SELECT * FROM Server1.TableOwner.Customers_33 UNION ALL SELECT
More informationecorp-프로젝트제안서작성실무(양식3)
(BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing
More informationSlide 1
BI Workshop for Partitioning Customer - OLAP, Data Mining & BI Suite EE Yong Han Kim Business Intelligence Analytics Agenda 기업 IT 현황과발전방향 Oracle의가치제안 Oracle OLAP Oracle Data Mining
More informationMicrosoft PowerPoint - S4_통계분석시스템.ppt
Oracle 10g 기반의통계분석시스템사례 디비코아 ( 주 ) BI (Business Intelligence) 란? BI 란데이터와정보의가치를극대화하는것 Data? Information : 정제, 정렬, 조합, 결합된 Data 예 ) 특정상품구매자에대한성별, 수입별, 지역별고객리스트 Intelligence : 유기체적인특징 조직내에서증식 예 ) 구매정보를활용한마케팅팀의프로모션
More informationPowerPoint 프레젠테이션
Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING
More informationuntitled
(shared) (integrated) (stored) (operational) (data) : (DBMS) :, (database) :DBMS File & Database - : - : ( : ) - : - : - :, - DB - - -DBMScatalog meta-data -DBMS -DBMS - -DBMS concurrency control E-R,
More information歯CRM개괄_허순영.PDF
CRM 2000. 8. KAIST CRM CRM CRM CRM :,, KAIST : 50%-60%, 20% 60%-80%. AMR Research 10.. CRM. 5. Harvard Business review 60%, 13%. Michaelson & Associates KAIST CRM? ( ),,, -,,, CRM needs,,, dynamically
More information슬라이드 1
[ CRM Fair 2004 ] CRM 1. CRM Trend 2. Customer Single View 3. Marketing Automation 4. ROI Management 5. Conclusion 1. CRM Trend 1. CRM Trend Operational CRM Analytical CRM Sales Mgt. &Prcs. Legacy System
More informationPowerPoint 프레젠테이션
CRM Fair 2004 Spring Copyright 2004 DaumSoft All rights reserved. INDEX Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved.
More informationoracle9i_newfeatures.PDF
Oracle 9i .?.?.? DB.? Language.?.?.? (DW,OLAP,MINING,OLTP ) DB.?.? Technology Evolution High Availability Scalability Manageability Development Platform Business Intelligence Technology Evolution Technology
More informationPowerPoint 프레젠테이션
CRM Data Quality Management 2003 2003. 11. 11 (SK ) hskim226@skcorp.com Why Quality Management? Prologue,,. Water Source Management 2 Low Quality Water 1) : High Quality Water 2) : ( ) Water Quality Management
More informationPowerPoint Presentation
Oracle9i Application Server Enterprise Portal Senior Consultant Application Server Technology Enterprise Portal? ERP Mail Communi ty Starting Point CRM EP BSC HR KMS E- Procurem ent ? Page Assembly Portal
More informationJ2EE & Web Services iSeminar
9iAS :, 2002 8 21 OC4J Oracle J2EE (ECperf) JDeveloper : OLTP : Oracle : SMS (Short Message Service) Collaboration Suite Platform Email Developer Suite Portal Java BI XML Forms Reports Collaboration Suite
More informationModel Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based
e- Business Web Site 2002. 04.26 Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based Approach High E-Business Functionality Web Web --based based KMS/BIS
More informationAnalyst Briefing
. Improve your Outlook on Email and File Management iseminar.. 1544(or 6677)-3355 800x600. iseminar Chat... Improve your Outlook on Email and File Management :, 2003 1 29.. Collaboration Suite - Key Messages
More informationE-BI Day Presentation
E-Business Intelligence Agenda Issue E-BI Architecture ORACLE E-BI Solutions ORACLE E-BI ORACLE E-BI I. Issue? KPI. (KPI ). Jeff Henley, CFO, Oracle Corporation I. Issue? I. Issue Many Sources, Users,and
More informationVoice Portal using Oracle 9i AS Wireless
Voice Portal Platform using Oracle9iAS Wireless 20020829 Oracle Technology Day 1 Contents Introduction Voice Portal Voice Web Voice XML Voice Portal Platform using Oracle9iAS Wireless Voice Portal Video
More informationWINDOW FUNCTION 의이해와활용방법 엑셈컨설팅본부 / DB 컨설팅팀정동기 개요 Window Function 이란행과행간의관계를쉽게정의할수있도록만든함수이다. 윈도우함수를활용하면복잡한 SQL 들을하나의 SQL 문장으로변경할수있으며반복적으로 ACCESS 하는비효율역
WINDOW FUNCTION 의이해와활용방법 엑셈컨설팅본부 / DB 컨설팅팀정동기 개요 Window Function 이란행과행간의관계를쉽게정의할수있도록만든함수이다. 윈도우함수를활용하면복잡한 SQL 들을하나의 SQL 문장으로변경할수있으며반복적으로 ACCESS 하는비효율역시쉽게해결할수있다. 이번화이트페이퍼에서는 Window Function 중순위 RANK, ROW_NUMBER,
More informationuntitled
SAS Korea / Professional Service Division 2 3 Corporate Performance Management Definition ý... is a system that provides organizations with a method of measuring and aligning the organization strategy
More information슬라이드 제목 없음
(Electronic Commerce/Electronic Business) ( ) ,, Bio Bio 1 2 3 Money Money ( ) ( ) 4025 39 21 25 20 13 15 13 15 17 12 11 10 1 23 1 26 ( ) 1 2 2 6 (1 3 ) 1 14:00 20:00 1 2 1 1 5-6 4 e t / Life Cycle (e-commerce)
More informationSAS Customer Intelligence SAS Customer Intelligence Suite은 기업이 당면한 다양한 마케팅 과제들을 해결하기 위한 최적의 통합 마케팅 제품군으로 전사적 마케팅 자원관리를 위한 Marketing Operation Manageme
Advanced Analytics 기반의 고객가치 극대화 SAS Customer Intelligence SAS 고객 인텔리전스 SAS Customer Intelligence SAS Customer Intelligence Suite은 기업이 당면한 다양한 마케팅 과제들을 해결하기 위한 최적의 통합 마케팅 제품군으로 전사적 마케팅 자원관리를 위한 Marketing
More informationRUCK2015_Gruter_public
Apache Tajo 와 R 을연동한빅데이터분석 고영경 / 그루터 ykko@gruter.com 목차 : R Tajo Tajo RJDBC Tajo Tajo UDF( ) TajoR Demo Q&A R 과빅데이터분석 ' R 1) R 2) 3) R (bigmemory, snowfall,..) 4) R (NoSQL, MapReduce, Hive / RHIPE, RHive,..)
More information(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re
EMF Health Effect 2003 10 20 21-29 2-10 - - ( ) area spot measurement - - 1 (Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern
More information1.장인석-ITIL 소개.ppt
HP 2005 6 IT ITIL Framework IT IT Framework Synchronized Business and IT Business Information technology Delivers: Simplicity, Agility, Value IT Complexity Cost Scale IT Technology IT Infrastructure IT
More informationdbms_snu.PDF
DBMS : Past, Present, and the Future hjk@oopsla.snu.ac.kr 1 Table of Contents 2 DBMS? 3 DBMS Architecture naive users naive users programmers application casual users casual users administrator database
More informationCRM Fair 2004
easycrm Workbench ( ) 2004.04.02 I. CRM 1. CRM 2. CRM 3. II. easybi(business Intelligence) Framework 1. 2. - easydataflow Workbench - easycampaign Workbench - easypivot Reporter. 1. CRM 1.?! 1.. a. & b.
More informationMicrosoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM
中 규모 기업의 실용주의CRM 전략 (CRM for SMB) 공영DBM 솔루션컨설팅 사업부 본부장 최동욱 2007. 10. 25 Agenda I. 중소기업의 고객관리, CRM의 중요성 1. 국내외 CRM 동향 2. 고객관리, CRM의 중요성 3. CRM 도입의 기대효과 II. CRM정의 및 우리회사 적합성 1. 중소기업에 유용한 CRM의 정의 2. LTV(Life
More information<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>
327 Journal of The Korea Institute of Information Security & Cryptology ISSN 1598-3986(Print) VOL.24, NO.2, Apr. 2014 ISSN 2288-2715(Online) http://dx.doi.org/10.13089/jkiisc.2014.24.2.327 개인정보 DB 암호화
More informationSW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013
SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING
More informationCopyright 2012, Oracle and/or its affiliates. All rights reserved.,.,,,,,,,,,,,,.,...,. U.S. GOVERNMENT END USERS. Oracle programs, including any oper
Windows Netra Blade X3-2B( Sun Netra X6270 M3 Blade) : E37790 01 2012 9 Copyright 2012, Oracle and/or its affiliates. All rights reserved.,.,,,,,,,,,,,,.,...,. U.S. GOVERNMENT END USERS. Oracle programs,
More informationsolution map_....
SOLUTION BROCHURE RELIABLE STORAGE SOLUTIONS ETERNUS FOR RELIABILITY AND AVAILABILITY PROTECT YOUR DATA AND SUPPORT BUSINESS FLEXIBILITY WITH FUJITSU STORAGE SOLUTIONS kr.fujitsu.com INDEX 1. Storage System
More informationPowerPoint 프레젠테이션
2003 CRM (Table of Contents). CRM. 2003. 2003 CRM. CRM . CRM CRM,,, Modeling Revenue Legacy System C. V. C. C V.. = V Calling Behavior. Behavior al Value Profitability Customer Value Function Churn scoring
More informationSimplify your Job Automatic Storage Management DB TSC
Simplify your Job Automatic Storage Management DB TSC 1. DBA Challenges 2. ASM Disk group 3. Mirroring/Striping/Rebalancing 4. Traditional vs. ASM 5. ASM administration 6. ASM Summary Capacity in Terabytes
More informationOracle9i Real Application Clusters
Senior Sales Consultant Oracle Corporation Oracle9i Real Application Clusters Agenda? ? (interconnect) (clusterware) Oracle9i Real Application Clusters computing is a breakthrough technology. The ability
More informationOracle Database 10g: Self-Managing Database DB TSC
Oracle Database 10g: Self-Managing Database DB TSC Agenda Overview System Resource Application & SQL Storage Space Backup & Recovery ½ Cost ? 6% 12 % 6% 6% 55% : IOUG 2001 DBA Survey ? 6% & 12 % 6% 6%
More information04-다시_고속철도61~80p
Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and
More informationBusiness Agility () Dynamic ebusiness, RTE (Real-Time Enterprise) IT Web Services c c WE-SDS (Web Services Enabled SDS) SDS SDS Service-riented Architecture Web Services ( ) ( ) ( ) / c IT / Service- Service-
More informationPowerPoint 프레젠테이션
Trading Partner Portal IBM Business Consulting Services Trading Partner Portals (CPG) Wal Mart (CPG) EDI. EDI G A T E W A Y G A T E W A Y ,,. Trading Partners 3. RFI, RFP, RFQ Life Cycle / RFI, RFP, RFQ
More information정보기술응용학회 발표
, hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management
More information비식별화 기술 활용 안내서-최종수정.indd
빅데이터 활용을 위한 빅데이터 담당자들이 실무에 활용 할 수 있도록 비식별화 기술과 활용방법, 실무 사례 및 예제, 분야별 참고 법령 및 활용 Q&A 등 안내 개인정보 비식별화 기술 활용 안내서 Ver 1.0 작성 및 문의 미래창조과학부 : 양현철 사무관 / 김자영 주무관 한국정보화진흥원 : 김진철 수석 / 김배현 수석 / 신신애 부장 문의 : cckim@nia.or.kr
More information±èÇö¿í Ãâ·Â
Smartphone Technical Trends and Security Technologies The smartphone market is increasing very rapidly due to the customer needs and industry trends with wireless carriers, device manufacturers, OS venders,
More informationIT현황리포트 내지 완
2007 Global Information Technology Development Reports 8 9 12 13 14 15 16 18 19 20 21 24 25 26 27 28 29 32 33 34 35 36 38 39 40 41 42 43 46 47 48 49 50 51 54 55 56 57 58 60 61 62 63
More informationPCServerMgmt7
Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network
More informationBackup Exec
(sjin.kim@veritas.com) www.veritas veritas.co..co.kr ? 24 X 7 X 365 Global Data Access.. 100% Storage Used Terabytes 9 8 7 6 5 4 3 2 1 0 2000 2001 2002 2003 IDC (TB) 93%. 199693,000 TB 2000831,000 TB.
More informationDBMS & SQL Server Installation Database Laboratory
DBMS & 조교 _ 최윤영 } 데이터베이스연구실 (1314 호 ) } 문의사항은 cyy@hallym.ac.kr } 과제제출은 dbcyy1@gmail.com } 수업공지사항및자료는모두홈페이지에서확인 } dblab.hallym.ac.kr } 홈페이지 ID: 학번 } 홈페이지 PW:s123 2 차례 } } 설치전점검사항 } 설치단계별설명 3 Hallym Univ.
More information서론 34 2
34 2 Journal of the Korean Society of Health Information and Health Statistics Volume 34, Number 2, 2009, pp. 165 176 165 진은희 A Study on Health related Action Rates of Dietary Guidelines and Pattern of
More information02이승민선생_오라클.PDF
Oracle Internet Procurement Agenda 1 2 3 4 5 Introduction Oracle Solution Overview Oracle Internet Procurement Value Proposition Reference Conclusion e-procurement, E- Commerce Internet Automated Transactions
More informationThe characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowo
The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowon Lee 2 * 1 Program of Software Convergence, Soongsil
More information소프트웨어개발방법론
사용사례 (Use Case) Objectives 2 소개? (story) vs. 3 UC 와 UP 산출물과의관계 Sample UP Artifact Relationships Domain Model Business Modeling date... Sale 1 1..* Sales... LineItem... quantity Use-Case Model objects,
More informationBSC Discussion 1
Copyright 2006 by Human Consulting Group INC. All Rights Reserved. No Part of This Publication May Be Reproduced, Stored in a Retrieval System, or Transmitted in Any Form or by Any Means Electronic, Mechanical,
More information빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스
빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스 Agenda 1 Oracle In-Memory 소개 2 BI 시스템구성도 3 BI on In-Memory 테스트 4 In-Memory 활용한 BI 오라클인메모리목표 규모분석에대한속도향상 빠른속도 : 혼합워크로드업무 간편함 : 어플리케이션투명성및쉬운배치 저렴함 : 일부필요데이터만인메모리에존재가능 2 메모리운용방식
More information15_3oracle
Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.
More informationSchoolNet튜토리얼.PDF
Interoperability :,, Reusability: : Manageability : Accessibility :, LMS Durability : (Specifications), AICC (Aviation Industry CBT Committee) : 1988, /, LMS IMS : 1997EduCom NLII,,,,, ARIADNE (Alliance
More informationPowerChute Personal Edition v3.1.0 에이전트 사용 설명서
PowerChute Personal Edition v3.1.0 990-3772D-019 4/2019 Schneider Electric IT Corporation Schneider Electric IT Corporation.. Schneider Electric IT Corporation,,,.,. Schneider Electric IT Corporation..
More informationTitle of the presentation This is the subtitle
BI 2.0 을기반으로한 Dynamic Business Intelligence 박경도 Senior Sales Consultant 2008. 7. 8 SAP 2008 / Page 2 BI 2.0 의혁신 BI 환경의 5 가지혁신 1. 4. 2. 5. 3. SAP 2008 / Page 3 BI 2.0 핵심요소사용자 BI 1.0... on my desktop. BI
More informationService-Oriented Architecture Copyright Tmax Soft 2005
Service-Oriented Architecture Copyright Tmax Soft 2005 Service-Oriented Architecture Copyright Tmax Soft 2005 Monolithic Architecture Reusable Services New Service Service Consumer Wrapped Service Composite
More informationmethods.hwp
1. 교과목 개요 심리학 연구에 기저하는 기본 원리들을 이해하고, 다양한 심리학 연구설계(실험 및 비실험 설계)를 학습하여, 독립된 연구자로서의 기본적인 연구 설계 및 통계 분석능력을 함양한다. 2. 강의 목표 심리학 연구자로서 갖추어야 할 기본적인 지식들을 익힘을 목적으로 한다. 3. 강의 방법 강의, 토론, 조별 발표 4. 평가방법 중간고사 35%, 기말고사
More information?
한국감정원부동산연구원이만드는 부동산정책및시장분석전문저널 부동산포커스에수록된내용은필자개인의의견이며, 한국감정원부동산연구원의공식적인견해가아님을밝힙니다. 한국감정원부동산연구원홈페이지 (www.kab.re.kr) 를통해부동산포커스에실린기사및논문을제공하고있습니다. Tel:053)663-8135 Fax:053)663-8149 Tel:053)663-8705 Fax:053)663-8709
More informationORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O
Orange for ORACLE V4.0 Installation Guide ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE...1 1....2 1.1...2 1.2...2 1.2.1...2 1.2.2 (Online Upgrade)...11 1.3 ORANGE CONFIGURATION ADMIN...12 1.3.1 Orange Configuration
More information목차 BUG offline replicator 에서유효하지않은로그를읽을경우비정상종료할수있다... 3 BUG 각 partition 이서로다른 tablespace 를가지고, column type 이 CLOB 이며, 해당 table 을 truncate
ALTIBASE HDB 6.1.1.5.6 Patch Notes 목차 BUG-39240 offline replicator 에서유효하지않은로그를읽을경우비정상종료할수있다... 3 BUG-41443 각 partition 이서로다른 tablespace 를가지고, column type 이 CLOB 이며, 해당 table 을 truncate 한뒤, hash partition
More information#Ȳ¿ë¼®
http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research
More informationOrcad Capture 9.x
OrCAD Capture Workbook (Ver 10.xx) 0 Capture 1 2 3 Capture for window 4.opj ( OrCAD Project file) Design file Programe link file..dsn (OrCAD Design file) Design file..olb (OrCAD Library file) file..upd
More informationMicrosoft PowerPoint - SVPSVI for LGNSYS_20120320.ppt
IBM Partner Program March, 2012 Jaemin, Lee SWG Channels, IBM Korea SWG Channels 2012 IBM Corporation Agenda IBM Korea SWG Channels Software Value Plus Software Value Incentive Revalidation 2 IBM Software
More informationSQL Developer Connect to TimesTen 유니원아이앤씨 DB 기술지원팀 2010 년 07 월 28 일 문서정보 프로젝트명 SQL Developer Connect to TimesTen 서브시스템명 버전 1.0 문서명 작성일 작성자
SQL Developer Connect to TimesTen 유니원아이앤씨 DB 팀 2010 년 07 월 28 일 문서정보 프로젝트명 SQL Developer Connect to TimesTen 서브시스템명 버전 1.0 문서명 작성일 2010-07-28 작성자 김학준 최종수정일 2010-07-28 문서번호 20100728_01_khj 재개정이력 일자내용수정인버전
More information<31325FB1E8B0E6BCBA2E687770>
88 / 한국전산유체공학회지 제15권, 제1호, pp.88-94, 2010. 3 관내 유동 해석을 위한 웹기반 자바 프로그램 개발 김 경 성, 1 박 종 천 *2 DEVELOPMENT OF WEB-BASED JAVA PROGRAM FOR NUMERICAL ANALYSIS OF PIPE FLOW K.S. Kim 1 and J.C. Park *2 In general,
More information슬라이드 1
웹 2.0 분석보고서 Year 2006. Month 05. Day 20 Contents 1 Chapter 웹 2.0 이란무엇인가? 웹 2.0 의시작 / 웹 1.0 에서웹 2.0 으로 / 웹 2.0 의속성 / 웹 2.0 의영향 Chapter Chapter 2 3 웹 2.0 을가능케하는요소 AJAX / Tagging, Folksonomy / RSS / Ontology,
More informationThe Self-Managing Database : Automatic Health Monitoring and Alerting
The Self-Managing Database : Automatic Health Monitoring and Alerting Agenda Oracle 10g Enterpirse Manager Oracle 10g 3 rd Party PL/SQL API Summary (Self-Managing Database) ? 6% 6% 12% 55% 6% Source: IOUG
More information13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3
13 Lightweight BPM Engine SW 13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3 BPM? 13 13 Vendor BPM?? EA??? http://en.wikipedia.org/wiki/business_process_management,
More information最即時的Sybase ASE Server資料庫診斷工具
TOAD 9.5 Toad Oracle 料 SQL 料 行 理 SQLprofile Quest Software 了 Oracle -Toad Tools of Oracle Application Developers Toad 了 DBA DBA 理 易 度 Toad 料 SQL PL/SQL Toad Oracle PL/SQL Toad Schema Browser Schema Browser
More informationDIY 챗봇 - LangCon
without Chatbot Builder & Deep Learning bage79@gmail.com Chatbot Builder (=Dialogue Manager),. We need different chatbot builders for various chatbot services. Chatbot builders can t call some external
More informationPRO1_09E [읽기 전용]
Siemens AG 1999 All rights reserved File: PRO1_09E1 Information and - ( ) 2 3 4 5 Monitor/Modify Variables" 6 7 8 9 10 11 CPU 12 Stop 13 (Forcing) 14 (1) 15 (2) 16 : 17 : Stop 18 : 19 : (Forcing) 20 :
More information(, sta*s*cal disclosure control) - (Risk) and (U*lity) (Synthe*c Data) 4. 5.
1 (, ), ( ) 2 1. 2. (, sta*s*cal disclosure control) - (Risk) and (U*lity) - - 3. (Synthe*c Data) 4. 5. 3 1. + 4 1. 2.,. 3. K + [ ] 5 ' ', " ", " ". (SNS), '. K KT,, KG (PG), 'CSS'(Credit Scoring System)....,,,.
More informationMulti Channel Analysis. Multi Channel Analytics :!! - (Ad network ) Report! -! -!. Valuepotion Multi Channel Analytics! (1) Install! (2) 3 (4 ~ 6 Page
Multi Channel Analysis. Multi Channel Analytics :!! - (Ad network ) Report! -! -!. Valuepotion Multi Channel Analytics! (1) Install! (2) 3 (4 ~ 6 Page ) Install!. (Ad@m, Inmobi, Google..)!. OS(Android
More informationManufacturing6
σ6 Six Sigma, it makes Better & Competitive - - 200138 : KOREA SiGMA MANAGEMENT C G Page 2 Function Method Measurement ( / Input Input : Man / Machine Man Machine Machine Man / Measurement Man Measurement
More informationCopyright 0, Oracle and/or its affiliates. All rights reserved.,.,,,,,,,,,,,,.,...,. U.S. GOVERNMENT RIGHTS Programs, software, databases, and related
Virtual Machine Sun Fire X4800 M : E4570 0 8 Copyright 0, Oracle and/or its affiliates. All rights reserved.,.,,,,,,,,,,,,.,...,. U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation
More informationChap7.PDF
Chapter 7 The SUN Intranet Data Warehouse: Architecture and Tools All rights reserved 1 Intranet Data Warehouse : Distributed Networking Computing Peer-to-peer Peer-to-peer:,. C/S Microsoft ActiveX DCOM(Distributed
More informationAPOGEE Insight_KR_Base_3P11
Technical Specification Sheet Document No. 149-332P25 September, 2010 Insight 3.11 Base Workstation 그림 1. Insight Base 메인메뉴 Insight Base Insight Insight Base, Insight Base Insight Base Insight Windows
More information03여준현과장_삼성SDS.PDF
Procurement Extended IP Business Application Business Application Business Application Business Application Business Application Internet Business Application Sourcing Market efficiency Private e-marketplace
More information<31372DB9DABAB4C8A32E687770>
김경환 박병호 충북대학교 도시공학과 (2010. 5. 27. 접수 / 2011. 11. 23. 채택) Developing the Traffic Severity by Type Kyung-Hwan Kim Byung Ho Park Department of Urban Engineering, Chungbuk National University (Received May
More informationProblem New Case RETRIEVE Learned Case Retrieved Cases New Case RETAIN Tested/ Repaired Case Case-Base REVISE Solved Case REUSE Aamodt, A. and Plaza, E. (1994). Case-based reasoning; Foundational
More informationIBM SPSS Statistics 제품 소개 (2017 Aug)
IBM SPSS Statistics 제품소개 -V25 및 Subscription 2017 Aug ecustomercare Center 담당자 ( 한국어지원 ) 무료전화 : 007986112156 메일주소 : ecareap@sg.ibm.com 2017 IBM Corporation IBM SPSS ü SPSS Statistics SPSS Modeler SPSS
More informationCache_cny.ppt [읽기 전용]
Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Improving Performance and Scalability with Oracle9iAS Cache Oracle9i Application Server Cache... Oracle9i Application Server Web
More informationuntitled
Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)
More information<3035303432365FC8A8C6E4C0CCC1F620B0B3B9DF20BAB8BEC8B0A1C0CCB5E5C3D6C1BE28C0FAC0DBB1C7BBE8C1A6292E687770>
개 요 홈페이지 해킹 현황 및 사례 홈페이지 개발시 보안 취약점 및 대책 주요 애플리케이션 보안 대책 결 론 참고자료 [부록1] 개발 언어별 로그인 인증 프로세스 예제 [부록2] 대규모 홈페이지 변조 예방을 위한 권고(안) [부록3] 개인정보의 기술적 관리적 보호조치 기준(안) [부록4] 웹 보안관련 주요 사이트 리스트 7000 6,478 6000 5000
More informationSLA QoS
SLA QoS 2002. 12. 13 Email: really97@postech.ac.kr QoS QoS SLA POS-SLMS (-Service Level Monitoring System) SLA (Service Level Agreement) SLA SLA TM Forum SLA QoS QoS SLA SLA QoS QoS SLA POS-SLMS ( Service
More informationHTML5가 웹 환경에 미치는 영향 고 있어 웹 플랫폼 환경과는 차이가 있다. HTML5는 기존 HTML 기반 웹 브라우저와의 호환성을 유지하면서도, 구조적인 마크업(mark-up) 및 편리한 웹 폼(web form) 기능을 제공하고, 리치웹 애플리케이 션(RIA)을
동 향 제 23 권 5호 통권 504호 HTML5가 웹 환경에 미치는 영향 이 은 민 * 16) 1. 개 요 구글(Google)은 2010년 5월 구글 I/O 개발자 컨퍼런스에서 HTML5를 통해 플러 그인의 사용이 줄어들고 프로그램 다운로드 및 설치가 필요 없는 브라우저 기반 웹 플랫폼 환경이 점차 구현되고 있다고 강조했다. 그리고 애플(Apple)은 2010년
More information조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a
조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형
More informationSoftware Requirrment Analysis를 위한 정보 검색 기술의 응용
EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템 김석환 * 이청재 정상근 이근배 포항공과대학교 컴퓨터공학과 지능소프트웨어연구실 {megaup, lcj80, hugman, gblee}@postech.ac.kr An Example-Based Natural Language System for EPG Information Access Seokhwan Kim
More information에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -
에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>
More information, Analyst, 3774 1903, heather.kang@miraeasset.com, 3774 1782, yongdai.park@miraeasset.com Figure 1 우리은행 12 개월 forward P/B 및 업종 대비 할증(할인) 추이, NPL 비율 추이
Company update & Earnings preview Korea / Banks 14 July 2016 BUY 15,000 9,950 Upside/downside (%) 50.8 KOSPI 2,005.55 6,726 8,230-10,800 19.20 24.9 Forecast earnings & valuation Fiscal year ending Dec-14
More informationthesis
( Design and Implementation of a Generalized Management Information Repository Service for Network and System Management ) ssp@nile nile.postech.ac..ac.kr DPE Lab. 1997 12 16 GMIRS GMIRS GMIRS prototype
More information