PowerPoint 프레젠테이션
|
|
- 서호 엄
- 6 years ago
- Views:
Transcription
1 OLTP 에서대용량실시간 다차원모델링구현사례 (Cube 를 OLTP 영역에서활용하기 ) 인브레인우철웅
2 강사소개 경력 [ 현 ] 인브레인 BI 사업부기술이사 다우데이터강사 이천일아울렛전산실 주요영역 : DW/BI Modeling & Architecture 저서 ADO & MTS 공저 SQL Server 2000 Programming 실무를고려한 SQL Server 프로그래머그들만의이야기공저 취미 : 목공
3 Session Overview Lesson1 OLTP vs. OLAP Lesson2 Case Study Lesson3 Large Volume Key Point Lesson4 Write-back method Demo Write-back Summary
4 Lesson 1 OLTP vs OLAP OLAP, Cubes and Multidimensional Analysis OLTP vs. OLAP Why using OLAP at OLTP
5 OLAP, Cubes & Multidimensional Analysis OLTP vs. OLAP Basically OLAP is an awful name, author of the OLAP report calls the same thing FASMI. Fast - 90% of queries back in under 10 secs and no query takes longer than 30 secs. Analysis - Drill down, multiple aggregation techniques, sophisticated graphics, trends all form part of this Shareable - good security at the back end and available to a wide community of users. also multi currency, multi lingual to cope with the global economy. Multi-Dimensional - Excel pivot tables but more so. The ability to have any multiple dimensions of information on each axis of a cross-tab with other dimensions being used to further filter the results returned. Information - Real world KPI's rather than raw numbers. Fast Analysis of Shared Multidimensional Information (FASMI) is an alternative term for OLAP. The term was coined by Nigel Pendse of The OLAP Report (now known as The BI Verdict), because...
6 OLTP vs. OLAP OLTP vs. OLAP OLTP Online Transaction Processing (Operational System) OLAP Online Analytical Processing (Data Warehouse) Source of data Operational data Consolidation data Purpose of data To control business tasks source: To help with decision support, problem solving, planning What the data Ongoing business processes Multi-dimensional views Inserts & Updates Short & fast inserts/updates Periodic long-running batch Queries Simple queries, few records Complex queries, aggregations Processing Speed Very fast Many hours Space Requirements Small if historical data is archived Larger Database Design Normalized, many tables De-normalized, fewer tables, Star or snowflake schemas
7 Why using OLAP at OLTP OLTP vs. OLAP 대량데이터조회성능 Matrix Mass data inquiry Multi relation measure group Multi dimension cross 간단하게대량데이터일괄 Write-back Intermediate Level에서 Write-back 가능 Update Cube ~ 구문으로하위모든 Leaf Cell 갱신 4개의 Disaggregation Method 제공 배분구성비에대해참조 measure 선택가능
8 Why using OLAP at OLTP OLTP vs. OLAP 대량데이터조회성능 Matrix Mass data inquiry Multi relation measure group 실매출, 재고, 생산 / 출고 /Shipping/ 입고계획, 다양한매출목표등 Multi Dimension cross Account(5,000) * Product(10,000) * 24 Week * 5 Measures 60 억 Cell Account(5) * Product(1,000) * 24 Week * 5 Measures 60 만 Cell RDB 에서어려움 Big Table vs Big Table Join Performance Index Key 큼 : PlanWeekID(int), AccountID(int), ProductID(varchar 30), WeekID(int) 42 Byte Index create & update & join Resource 많이듬 Matrix Format DB 작업가능하나어려움, Middle 이나 Front 에서수행시비용많이듬
9 Why using OLAP at OLTP OLTP vs. OLAP 간단하게대량데이터일괄 Write-back Intermediate Level 에서 Write-back 가능 Intermediate Level Product * Week Product * Month Account * Product Group * Month Leaf Level Allocation Method 및할당비율설정 Account * Product * Week UPDATE [CUBE] <Cube_Name> SET <tuple>.value = <value> [,<tuple>.value = <value>...] [ USE_EQUAL_ALLOCATION USE_EQUAL_INCREMENT USE_WEIGHTED_ALLOCATION [BY <weight value_expression>] USE_WEIGHTED_INCREMENT [BY <weight value_expression>] ] UPDATE CUBE [SalePlans] SET ([Measures].[SalesPlanQty], [Date].[Month].&[ ], [Product].[Product Family].[Product Family].&[Drink]) = 2560, ~~ = 4300, USE_WEIGHTED_ALLOCATION BY [Measures].[Sales3MonthAvg_Ratio]
10 Lesson 2 Case Study Project Overview Customer Requirement System Architecture Issue & Solution Optimize Result Interactive Simulation User friendly UI
11 Project Overview Case Study Biz 컨설팅 6 개월, 개발과 Roll-out 21 개월 User 60 여법인 5,000 Account 5,000 User 10,000 Product Item Time line Biz 설계컨설팅 : 6 개월 1 차 Roll-out 시작 : 7 개월 2 차 Roll-out & upgrade : 7 개월 3 차 Roll-out & upgrade : 3 개월 CPFR : 6 개월 : Overlap 4 개월 Resource System Resource 컨설팅 : 3 명 Roll-out : 12~15 명 개발 : 15~25 명 DB Server : 2 Ea Cube Server : 7 Ea Web Server : 4 Ea Storage : 6Tera byte
12 Customer Requirement Case Study Requirement Description Simulation Rule based Data Aggregation & Disaggregation Formula Simulation data can be saved Performance Data query : less than 10 sec. (30 sec.) Mass data : over 3 백만 cell Average 20 만 Cell Data simulation : real time Data save : less than 1 min. (3 min.) Convenience User friendly Operation Function Display Optimization
13 System Architecture Case Study Hardware 구성도 OLAP Server Partition Public 망 Internet Intranet 거래선사용자 [YY DMZ] L4 스위치 L4 스위치 L2 스위치 내부사용자 MSCS MSCS MSCS MSCS MSCS ABCD WEB #1 ABCD WEB #2 ABCD OLAP#1 ABCD OLAP#2 WEB #1 WEB #2 OLAP #1 OLAP #2 OLAP #3 OLAP #4 OLAP #5 ODS DW SAN Switch OLAP#1 (300GB) OLAP#2 (300GB) 스토리지 (USP#2) ODS (2TB) DW (4TB) OLAP#1 OLAP#2 (372GB) (310GB) OLAP#3 OLAP#4 (557GB) (310GB) 스토리지 (USP#6) OLAP#5 (420GB)
14 System Architecture Cube 구성도 Measure Group Partition DW / DM Cube UI Table_1_D Table for Measure Group 1 Delta 4) Save Table_1 Table for Measure Group 1 Data Partition 1) Data Partition for Delta 2) Measure Group 1_2011 Measure Group 1 Delta A B C Table_10 A B C OLAP 1 Measure Group 1_2012 Measure Group 10_2012 Write-back Partition 3) Measure Group 10 Write-back UI Server Partition Dimension Members A ~ H D E F OLAP 2 OLAP 3 G H 1) Data Partition is - used for basic unit with OLAP process and possible to reduce conflicts through simultaneous access - Partitioned by Period(Year) and Subsidiary 2) Data Partition for Delta is - ROLAP Delta Partition for UI Disaggregation and increment data insert 3) Write-back Partition is - Possible to write-back for Cube Disaggregation 4) Tables for Measure Group Delta - match up with data partition for Dalta 2) with cubes included other OLAP servers D E F G H
15 System Architecture Case Study Software 구성도 Smart client Smart client Client Smart Client : All user operation (data querying, inputting, saving) be executed in smart client environment based on.net 2Tier 3Tier Cellsets Tag 축소압축 Connection pooling Web Web Server : Optimize Data Cellsets Tag, zip and Connection pooling for lower network and oversea user SSAS s Cube OLAP Server OLAP Server : Load balance by separate SSAS Cube considering of system performance Legacy ODS Server DW Server DW, ODS Server : SQL Server Enterprise System SSIS MS-SQL SSIS MS-SQL Data I/F (ETL) : SQL Integration Services
16 Issue & Solution Case Study Issue Inquiry Performance Save 시단수차이발생 Simulation 시 Leaf Level 재계산필요 Cube Lock Solution DB : SQL Server Analysis Service 사용 Server Partition, Cube Partition Cube Model 최적화, MDX Generate 최적화 UI : Data CellSet XML Tag 축약, 통신압축 / 풀기 Grid Binding 시 Lazy Biding 처리 Calculation Engine 탑재 거시적 Planning : Cube Write-back 사용 ex) Statistical Forecast Adj, Marketing Plan, Top-down 등 미시적 Planning : Table Write-back 사용 (UI 구현 ) ex) Bottom-up, Weekly Consensus 등 Table Write-back 사용 (UI 구현 : Calculation Engine 사용 ) ex) 총금액수정 : 하위금액배분 단가로수량계산 단위금액재계산 총금액재계산 동시사용자가많은경우, Write-back partition 에대해 ROLAP Zero base Aggregation 설정
17 Optimize Result Case Study Data Loading Time Key Features Average data loading time ( 20,000 ~250,000 cell) SQL Server Multi DB Engine 사용 해외사용자를위한다양한접속방식지원 Matrix 조회에대해 RDB 대비 5~20 배빠름 대량데이터에대해 Partition 을통해최적화 실시간처리위한 ROLAP 이용 Hybrid 방식으로적용 2 Tier : 네트웍이좋은국내사용자 3 Tier : 네트웍이열악한해외국가사용자최적화를위한압축 / 풀기방식적용 Mass Option : 컴퓨터사양이낮은경우메모리풀기가아닌하드디스크에서풀기방식적용 Old System New System Data CellSets 의불필요 Attribute 제거와 Tag 최적화 Client 에서사용치않는불필요 Entity, Attribute 제거 XML 의 Tag 최소화로 Size 최소화, 30% 이하로줄임 Sec New Old 대량데이터 Grid Loading 최적화를위한 Lazy Binding 적용 Data Set 과 Grid Viewer Set 분리 Override 기법을이용하여보이는부분에한해먼저 Binding 과 Event 재적용 계산로직향상을위한 Calculation Engine 사용 2~3 단배분이참조값배분을위한최적화알고리즘적용 Finding 이나 Filtering 최적화를위한 Data Indexing Data Size (No of Sell)
18 Interactive simulation Case Study 다양한 Dis/Aggregation Key Features Grid 1 Rule1 : Forecast Rule2 : Sales Jan-11 Feb-11 Mar-11 Apr-11 May-11 Multi Level 배분 / 집계 Summary 와 Detail Grid 간배분 / 집계처리 Grid 내의 All 값에서배분 / 집계처리 Summary Forecast Sales 200 Aggregation Disaggregation Grid 2 Jan-11 Feb-11 Mar-11 Apr-11 May-11 Item G1 Forecast 60 Sales 30 Item G2 Forecast 40 Sales 20 Aggregation Disaggregation Grid 3 Jan-11 Feb-11 Mar-11 Apr-11 May-11 Item1 Forecast 30 Sales 20 Item2 Forecast 30 Sales 20 배분참조 Measure 선택 Qty & Amt 자동전환단수처리최적화각종배분 Ratio 관리 수정한 Measure 기준으로배분 선택한참조 Measure 기준배분가능 Qty 수정시 Price 참조하여 Amt 자동계산 Amt 수정시 Price 참조하여 Qty 자동계산 수량단수나금액단수처리최적화지원 사사오입후총량맞추는것값큰단위 Item부터가감처리 Background 배분필요 Ratio 관리적용 UI 배분필요 Ratio 관리적용
19 User friendly UI Case Study 다양한 UI Function Key Features Menu & My Menu Docking 패널로넓은사용가능 잦은수행에대한빠른수행도구모음지원 All Group Qty Price Amt 통화전환처리 Local 통화입력후 USD, KWD 로전환가능 Measure 선택 Filter & Find 조회하고싶은 Measure 에대해사용자가직접선택하여사용가능 조회된데이터안에서관심있는항목에대해 Find 하거나 Filter 기능제공 Item Grouping Level 입력화면에서 Grouping Level 선택으로 Grouping 된항목기준으로 FCST 입력기능 3 Summary Tab Collapse & Expand Cell Coloring & Blocking Excel Down & Upload Chart/Graph 세부데이터 Pop-up 조회 사용자선택적 Summary Grouping 제공 Row 와 Col 에대해 +,- 버튼을통해 Collapse & Expand 가능 Blocking 종류별로인지가능한컬러링 NPI/EOL, Un Assigned Item, Frozen Period 등의 Blocking Excel Down 시산식그대로적용 Upload 로 DB 저장지원 기본적인 Chart 와 Graph 지원 OLAP 에서사용자선택에따른지원 Link 활성화를통해세부데이터조회지원
20 Lesson 3 Large Volume Key Point Cube Design Hierarchies & Relationship RelationshipType은 'Rigid' 로 Measure Group Merge Measure dimension 사용 Write-back과 Locking
21 Cube Design Large Volume Key Point 계층구성시가능한특성관계를정의하자. 대량멤버 1) 차원의경우에 Numeric key 컬럼을사용하자. 특히 Distinct Count 에서 Character 와 Numeric 은많은성능차이발생. RelationType 은가능한 Rigid 옵션을설정하자. 동일차원과세분성 (Granularity) 를가진측정값그룹들의통합을고려하자. 큰행을가진측정값그룹에대해 Cube 파티션을만들자. 파티션당 200 만행이하또는 50Mb 이하가될수있도록 큰행 2) 을가진다대다차원관계또는측정값간에다대다관계를피하자. 제공되는참조수치는서버환경이나 Cube 설계, 데이터내용에따라다를수있음 1) 50 만이상 2) 100 만행
22 Hierarchies & Relationship Large Volume Key Point 계층구성시특성관계연결 종속관계가명확한경우에반드시특성관계연결 Case1 : 올바른특성관계연결 Case2 : 미흡한특성관계연결 미흡한특성관계연결시성능이떨어지는이유 집계과정에서불필요한단위집계생성 대신주요한집계가대상에서제외 Inquiry 시많은성능차이발생 조회튜플집계존재에따라 조회튜플근접한하위튜플레벨집계존재에따라 자식멤버리스트조회 자식멤버들의그룹핑 부모멤버참조해야하는경우 Fact Products Count Group1 10 5배수 Group2 50 Product 20배수 1,000
23 Hierarchies & Relationship Large Volume Key Point 계층구성시특성관계에따른차이. Case1 : Natural hierarchy ( 계층에따른특성관계설정 ) Case2 : Unnatural hierarchy ( 특성관계무시나미설정 ) 단위 millisec 구분 1 구분 2 Cell 수 Case1 Case2 Case2/1 비율 Duration CPUTime Duration CPUTime Duration CPUTime 최상위 Select 특정 PL2 모든 Product % 194% 1개 Cell 최상위 3, % - Update 특정 PL2 UPDATE % - 1개 Cell % 100% 결과 조회튜플이나하위튜플의집계존재유무따라많은성능차이발생 가능한 Natural hierarchy가되도록유도필요 주의 : 제공되는수치는 Cube 설계나집계, 수행환경에따라비율차이가있을수있음
24 Numeric key 컬럼 Large Volume Key Point 대량멤버차원에대해 DataID 를위한 internal unique identifier 작업 & Lookup 최소화 Distinct 연산최적화 Data Retrieval Dimension Data Attribute Store Hierarchy Store Dim Data Retrieval Key Hash Table Storage Engine Measure Group Data Aggregations Fact data Storage Engine Cache Attribute lookups Key Hash Name Hash Bitmap Indexes Member name Hash Table : : Ex) Color Bitmap Index DataID Black Blue Red : : Distinct Count 가큰 Att 에는 AttributeHierarchyOptimizedState 를 Not Optimized 로 Bitmap Index 생성않도록설정필요 Data ID Key Store Property Store Relationship Store DataID Key member values DataID, Att Property 들 Translations Data IDs Of Related Attributes DataID Att s relationships Ex) Relation Ship Store DataID Color Size.. : : DataID 567 : Touring BK-T44U-60 Color 2 : Black Size 3 : 46
25 RelationshipType 은 'Rigid' 로 Large Volume Key Point 특성관계가시간에따라변경될지유무에따라설정 특성관계에대한정의기준 Rigid( 고정관계 ) : 멤버간의관계가시간에따라변경되지않는경우 Flexible( 유연한관계 ) : 멤버간의관계가시간에따라변경되는경우 설정않을시기본값은 Flexible 성능적영향 Flexible 로정의하면증분업데이트의일부로서집계가삭제되고다시계산됨 고정된관계로정의할경우차원이증분업데이트되면 Analysis Services 가집계를보유함. 문제의예 1 A 상품 Group2 변경 Group2_H Group2_Q Products Dim Group1 Group2 Products 2010 년 Partition 2011 년 Partition 2012 년 Partition 2 3 Daily Dim Incremental Processing Batch 2010년 Partition Agg1 2010년 Partition Agg2 2011년 Partition Agg1 2011년 Partition Agg2 Group1 Agg Group2 Agg 2012 년 Partition Agg1 Inquiry 2012 년 Partition Agg2 대응가능영역 최근 Partition 만 Full Processing Batch
26 Measure Group Merge Large Volume Key Point 동일차원과세분성의측정값그룹 Merge 유무차이. Case1 : 6개측정값을 1개측정값그룹에포함 Case2 : 6개측정값을 6개측정값그룹각각생성 단위 millisec 구분 1 구분 2 Cell 수 Case1 Case2 Case2/1 비율 Duration CPUTime Duration CPUTime Duration CPUTime 최상위 % 678% Select 특정 PL2 모든 Product % 581% 1 개 Cell % 결과 Duration 약 2 배, CPU 는측정값그룹조합수만큼차이발생 따라서 Write-back 을수행해야하는 Forecast 테이블은분리 Reading 만하는테이블중세분성이같은경우는가능한 View 를통해통합
27 Measure Dimension 사용 Large Volume Key Point Pair Measure 들에대해 MDX Scope 사용 Case1 : 구분자를가지고한컬럼에여러 Measure 저장 Case2 : 각컬럼에저장하고 MDX Scope 구문사용 ex) Measure Dimension 에해당하는 Qty, Price, Amt 구현에대한방법 구분 1 구분 2 Cell 수 Case1 Case2 Case2/1 비율 Duration CPUTime Duration CPUTime Duration CPUTime Select Update 최상위 % 40% 특정 PL2 모든 Product % 34% 1 개 Cell % - 최상위 3, % 71% 특정 PL2 UPDATE % 48% 1 개 Cell % 56% 결과 : 전반적으로각컬럼에저장하고 MDX Scope 사용 50% 저렴 Select 경우 : Duration 30%, CPU 사용도 60% 정도적게사용 Update 경우 : Duration 은비슷하나 CPU 사용도 40% 적게사용함 데이터추출적재작업도 Case2 가더편리함
28 Write-back 과 Locking Large Volume Key Point Write-back Commit 동시수행에대한병목테스트 Case1 : 파티션별순차적으로개별 Write-back Commit 실행 Case2 : 모든파티션을동시 Write-back Commit 실행 구분 1 Account Partition Cell 수 Case1 Case2 Case2/1 비율 Duration CPUTime Duration CPUTime Duration CPUTime A Account 3,128 2,937 3,414 Update B Account 3,128 14,188 9,047 C Account 3,128 13,861 14,687 합계 9,384 30,986 27,148 60,251 32, % 121% 결과 : 순차적 Commit 보다동시 Commit 이시간이더걸림 Update Execute 각세션에서처리되므로병목에관계없으므로 모든 Update Execute 를수행후일괄 Commit 수행으로최소화필요 Commit 에대한 Locking 메커니즘은 RDB 와다르며리소스도많이들어감 다수의동시 Write-back 수행을위해서는 Cube 의분리나 Server 분리를고려할필요있음
29 Lesson 4 Write back method Write-back Architecture Write-back Method Cube Write-back Table Write-back MS Intelligence planning
30 PivotTable Service Write-back Architecture Write-back method Custom add-in Microsoft Management Console(MMC) Update Cube~ Custom application Analysis Add-in Manager 1 Update Cube~ Update Cube~ Disk storage : 1 or more Meta data repository Analysis Manager Enterprise Manager Object model (Analysis Management Object) Cube Write-back 2 Commit Session cache Update Session cache Client Data source Data source Cube Cube Mining model Mining model Analysis Server Cube Server cache 3 PivotTable Service Write-back Partition processing Local cubes Local cubes Local data Local data Mining Mining model model Data source for local cubes Data source Data source for local data mining models Data source Excel 의가상분석 ADOMD.NET Management Studio MDX 창
31 Write-back method Write-back method Cube Write-back Direct Cube Write-back Cube 에 Write-back Partition 설정필요 Table Write-back Table 에 Increment data Insert 해당 Table 에연결된 Cube Partition 필요 구분장점단점 Cube Write-back Table Write-back Intermediate Level Update 가능 관련 Tuple 하위의모든 Members 에대해일괄갱신가능 복잡한 Disaggregation 요구에대응가능 ROLAP Zero Aggregation 인경우 Partition Process 불필요 최종데이터추출은 Query Commit 을통한 Partition Process 필요, 즉 Locking 비용필요 최종데이터추출은 MDX 로해야함 Leaf Tuple 에대해서만 Update 가능 개발적난이도있음 Data Cellsets 에대한이해 Front 에서증분값계산필요 Fact 테이블구조에맞게 Insert 필요 Locking 과정이없으로중복값검증및보정작업필요
32 Update Cube ~ Cube Write-back Write-back method Direct Cube Write-back Cube 에 Write-back Partition 설정필요 최종데이터추출 MDX 사용 Measure Group Fact Table Partition 2011 ADOMD.NET Partition 2012 Management Studio MDX 창 최종데이터추출 Use MDX Database Write-back Partition 3 2 Commit Commit 에의한 Partition Processing 1 Excel 의가상분석
33 Table Write-back Write-back method Table에 Increment data Insert 해당 Table에연결된 Cube Partition 필요 ROLAP Zero Aggregation 인경우 Partition Process 불필요 Front에서 Increment Value 계산필요 최종데이터추출 Query 사용 Fact Table Measure Group S-Phone I Sales 80 3 월 4 월 5 월 Partition 2011 Forecast S-Phone II Sales 105 Forecast 최종데이터추출 Use Query Fact Table -5 Partition 2012 General Partition For Write-back Database Insert ~ Values(S-Phone II, 4 월, Forecast, -5)
34 Cube Write-back vs. Table Write-back method Cube Write-back 과 Table Inert & Processing 비교 Case1 : Cube Write-back Partition에 Write-back 수행 Case2 : Table에 Insert 후파티션 Processing (Forecast UI에서증감분계산후 Insert 하는경우 ) Case 1 Case 2 Case2/Case1 비율 비고 Duration 4, % CPUTime 9,243 1,489 16% 결과 Forecast UI 에서증감분을만들어 Insert 하는 Table Write-back 이 5 배정도리소스와시간을적게사용함을알수있음 따라서동시 Write-back 이많은시스템에대한병목을해결할수있으나, Locking 과정이없으므로중복값검증및보정작업필요
35 Locking 과중복값보정 Write-back method Cube Write-back 일반적인 Locking 메커니즘과동일 1 Session 1 : Read 60 2 Session 2 : Read Session 1 : Write 66 Locking Interval Session 2 : Write Table Write-back Write 대상 Partition Table 에직접저장, 즉 Delta Table Cube Lock 을사용치않기때문에별도보정작업필요 Tuple Read Write Delta 값 값 A null A A A Latest 값으로보정
36 Allocation Method Write-back method 4 개의 Allocation Method 를제공하며주로 USE_WEIGHTED_ALLOCATION 와 USE_WEIGHTED_INCREMENT 를사용함 Allocation method USE_EQUAL_ALLOCATION Description 해당 Tuple 의모든리프셀에대해 Count 로신규값을균등배분하여갱신 <leaf cell value> = <New Value> / Count(leaf cells that are contained in <tuple>) USE_EQUAL_INCREMENT USE_WEIGHTED_ALLOCATION USE_WEIGHTED_INCREMENT 신규값과기존값의차이분에대해 Count 로나누어균등배분 <leaf cell value> = <leaf cell value> + (<New Value > - <existing value>) / Count(leaf cells contained in <tuple>) 신규값을 Weight Expression 에비율로배분 Ex) A 제품군 Forecast 입력값에대해과거 3 개월평균매출로비율 <leaf cell value> = < New Value> * Weight_Expression 신규값과기존값의차이분에대해 Weight Expression 에비율로배분 Ex) 기존입력값들을부분존중하여증감분에대해서만 Weight Expression 에비율로배분 <leaf cell value> = <leaf cell value> + (<New Value> - <existing value>) * Weight_Expression 주의 : 정수가포함된측정값에서사용되는경우, 가중치적용한 USE_WEIGHTED_ALLOCATION 메서드는증분적인반올림변화로인한일부부정확한결과를반환할수있음. -. Weight_Expression 는 0 과 1 사이의값에해당하는값이나산식이여야함 -. Allocation method 지정않은경우 Weight_Expression = <leaf cell value> / <existing value> 으로처리됨
37 Allocation Method Write-back method 정수 Measure 에가중치를사용한경우데이터정합성 Case1 : USE_WEIGHTED_ALLOCATION로가중치지정한경우 Case2 : 그외 (USE_EQUAL_ALLOCATION, USE_EQUAL_INCREMENT USE_WEIGHTED_INCREMENT) 구분 Case 1 Case 2 입력값유지입력값의근사값처리됨 처리방법 0 또는 NULL 값 각멤버에해당하는가중치로적용하고각값을반올림하여적용함 Initial 이 NULL 이나 0 이더라도별도가중치가주어진경우값이할당됨 입력값유지됨 Method 에따라몇가지방법으로보정함 기존값이 0 이거나 NULL 인경우 0 이됨첫번째멤버일경우 0 이아닐수도있음 결과 유사값처리가허용되는경우가아니라면가중치설정한 USE_WEIGHTED_ALLOCATION 외의 Method 사용고려 Leaf Level 의값이작거나정확해야한다면가중치적용한 USE_WEIGHTED_ALLOCATION 외의 method 사용고려
38 Allocation Method 가중치사용치않고 Allocation : Step1. 입력멤버에대한총증가배수를계산 : 54/25 = 2.16 Step2. 하위멤버에반올림한증가배수곱한수반올림 Step3. 전체합계와의차이를차이큰멤버부터순차적으로가감반영 기존값 신규값 증감비값 반올림값 차이분 차이분가감 최종값 Group Member Member Member Member Member Member 가중치사용 Allocation : Step1. 신규값을 Weight Expression 에비율로배분 Step2. 배분값을반올림처리 Current Weight Measure Weight Ratio 증감비값반올림값 Group Member Member Member Member Member5 (null)
39 MS Intelligence planning Centralized data model with Analysis Services. Dimensional data modeling with PowerPivot for Excel. Form and report authoring through Excel 2010 PivotTables. Data entry and What-If analysis through Excel PivotTables. Online document storage and collaboration with security and workflow for forms and reports through SharePoint Server. (solutions and scenarios) OLTP vs. OLAP
40 Excel 가상분석 (What-if) 사용 Write-back 활성화 Write-back 수행 Allocation Method 설정 선택조합 Allocation method USE_EQUAL_ALLOCATION USE_EQUAL_INCREMENT USE_WEIGHTED_ALLOCATION USE_WEIGHTED_INCREMENT
41 Demo Cube Write-back
42 Summary 다차원 DB 인 Analysis Services 활용 RDB 상에서속도가느리거나사용에불편함이있는경우에 Background 변경검토 Forecast 와같은 Matrix 형태의데이터조회는 Analysis Services 를사용하는것이효과적 특히 DW 의데이터용량이크거나화면표현데이터량이많은경우필수적이라할수있음. Write-back 선택 Forecast 요건이복잡하지않은경우라면간단하게 Excel 의가상분석 (Whit-if) 를사용하여구현. 복잡한배분이필요한 Biz 요건이있다면별도구현고려할수있음
43 r
Intra_DW_Ch4.PDF
The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology
More informationDW 개요.PDF
Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.
More informationecorp-프로젝트제안서작성실무(양식3)
(BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing
More informationPowerPoint 프레젠테이션
Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING
More informationETL_project_best_practice1.ppt
ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication
More information歯목차45호.PDF
CRM CRM (CRM : Customer Relationship Management ). CRM,,.,,.. IMF.,.,. (CRM: Customer Relationship Management, CRM )., CRM,.,., 57 45 (2001 )., CRM...,, CRM, CRM.. CRM 1., CRM,. CRM,.,.,. (Volume),,,,,,,,,,
More informationMS-SQL SERVER 대비 기능
Business! ORACLE MS - SQL ORACLE MS - SQL Clustering A-Z A-F G-L M-R S-Z T-Z Microsoft EE : Works for benchmarks only CREATE VIEW Customers AS SELECT * FROM Server1.TableOwner.Customers_33 UNION ALL SELECT
More information슬라이드 1
[ CRM Fair 2004 ] CRM 1. CRM Trend 2. Customer Single View 3. Marketing Automation 4. ROI Management 5. Conclusion 1. CRM Trend 1. CRM Trend Operational CRM Analytical CRM Sales Mgt. &Prcs. Legacy System
More information歯CRM개괄_허순영.PDF
CRM 2000. 8. KAIST CRM CRM CRM CRM :,, KAIST : 50%-60%, 20% 60%-80%. AMR Research 10.. CRM. 5. Harvard Business review 60%, 13%. Michaelson & Associates KAIST CRM? ( ),,, -,,, CRM needs,,, dynamically
More information김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More informationOracle Apps Day_SEM
Senior Consultant Application Sales Consulting Oracle Korea - 1. S = (P + R) x E S= P= R= E= Source : Strategy Execution, By Daniel M. Beall 2001 1. Strategy Formulation Sound Flawed Missed Opportunity
More informationFMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2
FMX FMX 20062 () wwwexellencom sales@exellencom () 1 FMX 1 11 5M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX D E (one
More information1217 WebTrafMon II
(1/28) (2/28) (10 Mbps ) Video, Audio. (3/28) 10 ~ 15 ( : telnet, ftp ),, (4/28) UDP/TCP (5/28) centralized environment packet header information analysis network traffic data, capture presentation network
More informationuntitled
(shared) (integrated) (stored) (operational) (data) : (DBMS) :, (database) :DBMS File & Database - : - : ( : ) - : - : - :, - DB - - -DBMScatalog meta-data -DBMS -DBMS - -DBMS concurrency control E-R,
More informationPortal_9iAS.ppt [읽기 전용]
Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Oracle9i Application Server e-business Portal Client Database Server e-business Portals B2C, B2B, B2E, WebsiteX B2Me GUI ID B2C
More informationNoSQL
MongoDB Daum Communications NoSQL Using Java Java VM, GC Low Scalability Using C Write speed Auto Sharding High Scalability Using Erlang Read/Update MapReduce R/U MR Cassandra Good Very Good MongoDB Good
More informationCRM Fair 2004
easycrm Workbench ( ) 2004.04.02 I. CRM 1. CRM 2. CRM 3. II. easybi(business Intelligence) Framework 1. 2. - easydataflow Workbench - easycampaign Workbench - easypivot Reporter. 1. CRM 1.?! 1.. a. & b.
More informationManufacturing6
σ6 Six Sigma, it makes Better & Competitive - - 200138 : KOREA SiGMA MANAGEMENT C G Page 2 Function Method Measurement ( / Input Input : Man / Machine Man Machine Machine Man / Measurement Man Measurement
More informationuntitled
PowerBuilder 連 Microsoft SQL Server database PB10.0 PB9.0 若 Microsoft SQL Server 料 database Profile MSS 料 (Microsoft SQL Server database interface) 行了 PB10.0 了 Sybase 不 Microsoft 料 了 SQL Server 料 PB10.0
More informationAPOGEE Insight_KR_Base_3P11
Technical Specification Sheet Document No. 149-332P25 September, 2010 Insight 3.11 Base Workstation 그림 1. Insight Base 메인메뉴 Insight Base Insight Insight Base, Insight Base Insight Base Insight Windows
More informationOracle Database 10g: Self-Managing Database DB TSC
Oracle Database 10g: Self-Managing Database DB TSC Agenda Overview System Resource Application & SQL Storage Space Backup & Recovery ½ Cost ? 6% 12 % 6% 6% 55% : IOUG 2001 DBA Survey ? 6% & 12 % 6% 6%
More informationPowerPoint 프레젠테이션
SSAS Tabular Mode 와활용 인브레인조현재수석 발표자소개 조현재 인브레인 BI사업부 (http://www.inbrein.com) 주요영역 : DW/DM, MS BI SQL Fast Track DW 2.0 BMT, 3.0 국내최초구축 다수의 MS BI 프로젝트수행 MS BI CIE 강의진행 취미 : 등산 목차 BISM 이란무엇인가? BISM Architecture
More informationMicrosoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM
中 규모 기업의 실용주의CRM 전략 (CRM for SMB) 공영DBM 솔루션컨설팅 사업부 본부장 최동욱 2007. 10. 25 Agenda I. 중소기업의 고객관리, CRM의 중요성 1. 국내외 CRM 동향 2. 고객관리, CRM의 중요성 3. CRM 도입의 기대효과 II. CRM정의 및 우리회사 적합성 1. 중소기업에 유용한 CRM의 정의 2. LTV(Life
More informationThe Self-Managing Database : Automatic Health Monitoring and Alerting
The Self-Managing Database : Automatic Health Monitoring and Alerting Agenda Oracle 10g Enterpirse Manager Oracle 10g 3 rd Party PL/SQL API Summary (Self-Managing Database) ? 6% 6% 12% 55% 6% Source: IOUG
More informationORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O
Orange for ORACLE V4.0 Installation Guide ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE...1 1....2 1.1...2 1.2...2 1.2.1...2 1.2.2 (Online Upgrade)...11 1.3 ORANGE CONFIGURATION ADMIN...12 1.3.1 Orange Configuration
More information13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3
13 Lightweight BPM Engine SW 13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3 BPM? 13 13 Vendor BPM?? EA??? http://en.wikipedia.org/wiki/business_process_management,
More informationOrcad Capture 9.x
OrCAD Capture Workbook (Ver 10.xx) 0 Capture 1 2 3 Capture for window 4.opj ( OrCAD Project file) Design file Programe link file..dsn (OrCAD Design file) Design file..olb (OrCAD Library file) file..upd
More information<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>
327 Journal of The Korea Institute of Information Security & Cryptology ISSN 1598-3986(Print) VOL.24, NO.2, Apr. 2014 ISSN 2288-2715(Online) http://dx.doi.org/10.13089/jkiisc.2014.24.2.327 개인정보 DB 암호화
More informationModel Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based
e- Business Web Site 2002. 04.26 Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based Approach High E-Business Functionality Web Web --based based KMS/BIS
More informationsolution map_....
SOLUTION BROCHURE RELIABLE STORAGE SOLUTIONS ETERNUS FOR RELIABILITY AND AVAILABILITY PROTECT YOUR DATA AND SUPPORT BUSINESS FLEXIBILITY WITH FUJITSU STORAGE SOLUTIONS kr.fujitsu.com INDEX 1. Storage System
More informationPCServerMgmt7
Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network
More informationOracle9i Real Application Clusters
Senior Sales Consultant Oracle Corporation Oracle9i Real Application Clusters Agenda? ? (interconnect) (clusterware) Oracle9i Real Application Clusters computing is a breakthrough technology. The ability
More informationBackup Exec
(sjin.kim@veritas.com) www.veritas veritas.co..co.kr ? 24 X 7 X 365 Global Data Access.. 100% Storage Used Terabytes 9 8 7 6 5 4 3 2 1 0 2000 2001 2002 2003 IDC (TB) 93%. 199693,000 TB 2000831,000 TB.
More informationDocsPin_Korean.pages
Unity Localize Script Service, Page 1 Unity Localize Script Service Introduction Application Game. Unity. Google Drive Unity.. Application Game. -? ( ) -? -?.. 준비사항 Google Drive. Google Drive.,.. - Google
More informationPowerPoint 프레젠테이션
2003 CRM (Table of Contents). CRM. 2003. 2003 CRM. CRM . CRM CRM,,, Modeling Revenue Legacy System C. V. C. C V.. = V Calling Behavior. Behavior al Value Profitability Customer Value Function Churn scoring
More information03.Agile.key
CSE4006 Software Engineering Agile Development Scott Uk-Jin Lee Division of Computer Science, College of Computing Hanyang University ERICA Campus 1 st Semester 2018 Background of Agile SW Development
More information비식별화 기술 활용 안내서-최종수정.indd
빅데이터 활용을 위한 빅데이터 담당자들이 실무에 활용 할 수 있도록 비식별화 기술과 활용방법, 실무 사례 및 예제, 분야별 참고 법령 및 활용 Q&A 등 안내 개인정보 비식별화 기술 활용 안내서 Ver 1.0 작성 및 문의 미래창조과학부 : 양현철 사무관 / 김자영 주무관 한국정보화진흥원 : 김진철 수석 / 김배현 수석 / 신신애 부장 문의 : cckim@nia.or.kr
More information초보자를 위한 분산 캐시 활용 전략
초보자를위한분산캐시활용전략 강대명 charsyam@naver.com 우리가꿈꾸는서비스 우리가꿈꾸는서비스 우리가꿈꾸는서비스 우리가꿈꾸는서비스 그러나현실은? 서비스에필요한것은? 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 적절한기능 서비스안정성 트위터에매일고래만보이면? 트위터에매일고래만보이면?
More information초보자를 위한 ADO 21일 완성
ADO 21, 21 Sams Teach Yourself ADO 2.5 in 21 Days., 21., 2 1 ADO., ADO.? ADO 21 (VB, VBA, VB ), ADO. 3 (Week). 1, 2, COM+ 3.. HTML,. 3 (week), ADO. 24 1 - ADO OLE DB SQL, UDA(Universal Data Access) ADO.,,
More information02이승민선생_오라클.PDF
Oracle Internet Procurement Agenda 1 2 3 4 5 Introduction Oracle Solution Overview Oracle Internet Procurement Value Proposition Reference Conclusion e-procurement, E- Commerce Internet Automated Transactions
More informationU.Tu System Application DW Service AGENDA 1. 개요 4. 솔루션 모음 1.1. 제안의 배경 및 목적 4.1. 고객정의 DW구축에 필요한 메타정보 생성 1.2. 제품 개요 4.2. 사전 변경 관리 1.3. 제품 특장점 4.3. 부품화형
AGENDA 1. 개요 4. 솔루션 모음 1.1. 제안의 배경 및 목적 4.1. 고객정의 DW구축에 필요한 메타정보 생성 1.2. 제품 개요 4.2. 사전 변경 관리 1.3. 제품 특장점 4.3. 부품화형 언어 변환 1.4. 기대 효과 4.4. 프로그램 Restructuring 4.5. 소스 모듈 관리 2. SeeMAGMA 적용 전략 2.1. SeeMAGMA
More information목 차
Oracle 9i Admim 1. Oracle RDBMS 1.1 (System Global Area:SGA) 1.1.1 (Shared Pool) 1.1.2 (Database Buffer Cache) 1.1.3 (Redo Log Buffer) 1.1.4 Java Pool Large Pool 1.2 Program Global Area (PGA) 1.3 Oracle
More information소프트웨어개발방법론
사용사례 (Use Case) Objectives 2 소개? (story) vs. 3 UC 와 UP 산출물과의관계 Sample UP Artifact Relationships Domain Model Business Modeling date... Sale 1 1..* Sales... LineItem... quantity Use-Case Model objects,
More informationLCD Display
LCD Display SyncMaster 460DRn, 460DR VCR DVD DTV HDMI DVI to HDMI LAN USB (MDC: Multiple Display Control) PC. PC RS-232C. PC (Serial port) (Serial port) RS-232C.. > > Multiple Display
More informationDBMS & SQL Server Installation Database Laboratory
DBMS & 조교 _ 최윤영 } 데이터베이스연구실 (1314 호 ) } 문의사항은 cyy@hallym.ac.kr } 과제제출은 dbcyy1@gmail.com } 수업공지사항및자료는모두홈페이지에서확인 } dblab.hallym.ac.kr } 홈페이지 ID: 학번 } 홈페이지 PW:s123 2 차례 } } 설치전점검사항 } 설치단계별설명 3 Hallym Univ.
More informationPowerPoint 프레젠테이션
CRM Data Quality Management 2003 2003. 11. 11 (SK ) hskim226@skcorp.com Why Quality Management? Prologue,,. Water Source Management 2 Low Quality Water 1) : High Quality Water 2) : ( ) Water Quality Management
More information목차 BUG 문법에맞지않는질의문수행시, 에러메시지에질의문의일부만보여주는문제를수정합니다... 3 BUG ROUND, TRUNC 함수에서 DATE 포맷 IW 를추가지원합니다... 5 BUG ROLLUP/CUBE 절을포함하는질의는 SUBQUE
ALTIBASE HDB 6.3.1.10.1 Patch Notes 목차 BUG-45710 문법에맞지않는질의문수행시, 에러메시지에질의문의일부만보여주는문제를수정합니다... 3 BUG-45730 ROUND, TRUNC 함수에서 DATE 포맷 IW 를추가지원합니다... 5 BUG-45760 ROLLUP/CUBE 절을포함하는질의는 SUBQUERY REMOVAL 변환을수행하지않도록수정합니다....
More informationService-Oriented Architecture Copyright Tmax Soft 2005
Service-Oriented Architecture Copyright Tmax Soft 2005 Service-Oriented Architecture Copyright Tmax Soft 2005 Monolithic Architecture Reusable Services New Service Service Consumer Wrapped Service Composite
More informationPowerPoint
.. http://www.acs.co.kr -1- .. http://www.acs.co.kr -3- ( Advanced Computer Services Co.,Ltd. ) 345-9 SK B8 ( sh_kim@acs.co.kr ) 116-81-24039 http://www.acs.co.kr, http://www.emanufacturing.co.kr (Fax)
More information04-다시_고속철도61~80p
Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and
More informationuntitled
SAS Korea / Professional Service Division 2 3 Corporate Performance Management Definition ý... is a system that provides organizations with a method of measuring and aligning the organization strategy
More information목차 BUG offline replicator 에서유효하지않은로그를읽을경우비정상종료할수있다... 3 BUG 각 partition 이서로다른 tablespace 를가지고, column type 이 CLOB 이며, 해당 table 을 truncate
ALTIBASE HDB 6.1.1.5.6 Patch Notes 목차 BUG-39240 offline replicator 에서유효하지않은로그를읽을경우비정상종료할수있다... 3 BUG-41443 각 partition 이서로다른 tablespace 를가지고, column type 이 CLOB 이며, 해당 table 을 truncate 한뒤, hash partition
More informationMulti Channel Analysis. Multi Channel Analytics :!! - (Ad network ) Report! -! -!. Valuepotion Multi Channel Analytics! (1) Install! (2) 3 (4 ~ 6 Page
Multi Channel Analysis. Multi Channel Analytics :!! - (Ad network ) Report! -! -!. Valuepotion Multi Channel Analytics! (1) Install! (2) 3 (4 ~ 6 Page ) Install!. (Ad@m, Inmobi, Google..)!. OS(Android
More information#Ȳ¿ë¼®
http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research
More information歯두산3.PDF
ERP Project 20001111 BU 1 1. 2. Project 3. Project 4. Project 5. Project 6. J.D. EdwardsOneWorld 7. Project 8. Project 9. Project 10. System Configuration 11. Project 12. 2 1. 8 BG / 2 / 5 BU (20001031
More informationBSC Discussion 1
Copyright 2006 by Human Consulting Group INC. All Rights Reserved. No Part of This Publication May Be Reproduced, Stored in a Retrieval System, or Transmitted in Any Form or by Any Means Electronic, Mechanical,
More information歯경영혁신 단계별 프로그램 사례.ppt
BMS Infra BMS Location A B C D D A Location Card + Location SET Card : 1 : : Location Card ( ) ( Over ) Location Card Card Location Card ( ) ( ) Location Card LocationCard RACK1 AGE / 7 ( ) SET Location
More informationIntro to Servlet, EJB, JSP, WS
! Introduction to J2EE (2) - EJB, Web Services J2EE iseminar.. 1544-3355 ( ) iseminar Chat. 1 Who Are We? Business Solutions Consultant Oracle Application Server 10g Business Solutions Consultant Oracle10g
More informationthesis
( Design and Implementation of a Generalized Management Information Repository Service for Network and System Management ) ssp@nile nile.postech.ac..ac.kr DPE Lab. 1997 12 16 GMIRS GMIRS GMIRS prototype
More information보건소 의사결정지원을 위한 데이터웨어하우스 구축에 대한 연구
..,.,,,,,,,,,,,... 2002 12 I. 1 1. 1 2. 4 II. 4 1. 4. 4. 7. 7. 9 2. 14. 14. OLTP OLAP 16 3. KMS(Knowledge Management System) 8 1. 18. 19. 21 III. 23 1. 23 2. 24 3. 24. 24. ETT(Extraction, Transformation,
More informationi-movix 특징 l 안정성 l 뛰어난화질 l 차별화된편의성
i-movix 소개 2005 년설립 ( 벨기에, 몽스 ), 방송카메라제작 2005년 Sprintcam Live System 개발 2007년 Sprintcam Live V2 2009년 Sprintcam Live V3 HD 2009년 Sprintcam Vvs HD 2011년 Super Slow Motion X10 2013년 Extreme + Super Slow
More information재영 솔루텍의 Vision 달성을 위하여…
S&OP 2004. 6. 17 ( /, Intellic Inc.) e-mail: daeyoung.chung@intellic.co.kr CONTENTS 1. SCM Trends Global SCM 7 Principles of SCM 2. S&OP? 3. S&OP 4. S&OP 5. Q&A 2 , SCM SCM Initiative SCM? 3 SCM? Moderately
More informationPowerPoint 프레젠테이션
SQL Server Analysis Services Best Practices 한국마이크로소프트 ( 유 ) Senior Premier Field Engineer 이준규 목차 아키텍쳐 유용한도구들 가이드라인 Processing (Dimension, Partition, Memory, Thread) Query (Aggregation, UBO, Storage/Formula
More informationBusiness Agility () Dynamic ebusiness, RTE (Real-Time Enterprise) IT Web Services c c WE-SDS (Web Services Enabled SDS) SDS SDS Service-riented Architecture Web Services ( ) ( ) ( ) / c IT / Service- Service-
More informationPowerPoint 프레젠테이션
CRM Fair 2004 Spring Copyright 2004 DaumSoft All rights reserved. INDEX Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved.
More informationthesis-shk
DPNM Lab, GSIT, POSTECH Email: shk@postech.ac.kr 1 2 (1) Internet World-Wide Web Web traffic Peak periods off-peak periods peak periods off-peak periods 3 (2) off-peak peak Web caching network traffic
More information0125_ 워크샵 발표자료_완성.key
WordPress is a free and open-source content management system (CMS) based on PHP and MySQL. WordPress is installed on a web server, which either is part of an Internet hosting service or is a network host
More information1. 회사소개 및 연혁 - 회사소개 회사소개 회사연혁 대표이사: 한종열 관계사 설립일 : 03. 11. 05 자본금 : 11.5억원 인 원 : 18명 에스오넷 미도리야전기코리 아 미도리야전기(일본) 2008 2007 Cisco Premier Partner 취득 Cisco Physical Security ATP 취득(진행) 서울시 강남구 도심방범CCTV관제센터
More information11¹Ú´ö±Ô
A Review on Promotion of Storytelling Local Cultures - 265 - 2-266 - 3-267 - 4-268 - 5-269 - 6 7-270 - 7-271 - 8-272 - 9-273 - 10-274 - 11-275 - 12-276 - 13-277 - 14-278 - 15-279 - 16 7-280 - 17-281 -
More information목순 차서 v KM의 현황 v Web2.0 의 개념 v Web2.0의 도입 사례 v Web2.0의 KM 적용방안 v 고려사항 1/29
Web2.0의 EKP/KMS 적용 방안 및 사례 2008. 3. OnTheIt Consulting Knowledge Management Strategic Planning & Implementation Methodology 목순 차서 v KM의 현황 v Web2.0 의 개념 v Web2.0의 도입 사례 v Web2.0의 KM 적용방안 v 고려사항 1/29 현재의
More informationOutput file
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 An Application for Calculation and Visualization of Narrative Relevance of Films Using Keyword Tags Choi Jin-Won (KAIST) Film making
More information15_3oracle
Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.
More informationPowerPoint 프레젠테이션
Post - Internet Marketing Contents. Internet Marketing. Post - Internet Marketing Trend. Post - Internet Marketing. Paradigm. . Internet Marketing Internet Interactive Individual Interesting International
More informationSW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013
SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING
More informationCache_cny.ppt [읽기 전용]
Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Improving Performance and Scalability with Oracle9iAS Cache Oracle9i Application Server Cache... Oracle9i Application Server Web
More information歯sql_tuning2
SQL Tuning (2) SQL SQL SQL Tuning ROW(1) ROW(2) ROW(n) update ROW(2) at time 1 & Uncommitted update ROW(2) at time 2 SQLDBA> @ UTLLOCKT WAITING_SESSION TYPE MODE_REQUESTED MODE_HELD LOCK_ID1
More informationMicrosoft Word - USB복사기.doc
Version: SD/USB 80130 Content Index 1. Introduction 1.1 제품개요------------------------------------------------------------P.02 1.2 모델별 제품사양-------------------------------------------------------P.04 2. Function
More informationChap7.PDF
Chapter 7 The SUN Intranet Data Warehouse: Architecture and Tools All rights reserved 1 Intranet Data Warehouse : Distributed Networking Computing Peer-to-peer Peer-to-peer:,. C/S Microsoft ActiveX DCOM(Distributed
More informationJ2EE & Web Services iSeminar
9iAS :, 2002 8 21 OC4J Oracle J2EE (ECperf) JDeveloper : OLTP : Oracle : SMS (Short Message Service) Collaboration Suite Platform Email Developer Suite Portal Java BI XML Forms Reports Collaboration Suite
More information04_오픈지엘API.key
4. API. API. API..,.. 1 ,, ISO/IEC JTC1/SC24, Working Group ISO " (Architecture) " (API, Application Program Interface) " (Metafile and Interface) " (Language Binding) " (Validation Testing and Registration)"
More informationMicrosoft SQL Server 2005 포켓 컨설턴트 관리자용
Microsoft SQL Server 2005 SQL Server 2005. SQL Server,. SQL Server. SQL Server,,, ( ). 1000 100,,,, SQL Server.? Microsoft SQL Server 2005 SQL Server (Workgroup, Standard, Enterprise, Developer).. SQL
More informationUML
Introduction to UML Team. 5 2014/03/14 원스타 200611494 김성원 200810047 허태경 200811466 - Index - 1. UML이란? - 3 2. UML Diagram - 4 3. UML 표기법 - 17 4. GRAPPLE에 따른 UML 작성 과정 - 21 5. UML Tool Star UML - 32 6. 참조문헌
More informationISO17025.PDF
ISO/IEC 17025 1999-12-15 1 2 3 4 41 42 43 44, 45 / 46 47 48 49 / 410 411 412 413 414 5 51 52 53 54 / 55 56 57 58 / 59 / 510 A( ) ISO/IEC 17025 ISO 9001:1994 ISO 9002:1994 B( ) 1 11 /, / 12 / 1, 2, 3/ (
More informationInteg
HP Integrity HP Chipset Itanium 2(Processor 9100) HP Integrity HP, Itanium. HP Integrity Blade BL860c HP Integrity Blade BL870c HP Integrity rx2660 HP Integrity rx3600 HP Integrity rx6600 2 HP Integrity
More informationMicrosoft PowerPoint - XP Style
Business Strategy for the Internet! David & Danny s Column 유무선 통합 포탈은 없다 David Kim, Danny Park 2002-02-28 It allows users to access personalized contents and customized digital services through different
More informationOPCTalk for Hitachi Ethernet 1 2. Path. DCOMwindow NT/2000 network server. Winsock update win95. . . 3 Excel CSV. Update Background Thread Client Command Queue Size Client Dynamic Scan Block Block
More information정보기술응용학회 발표
, hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management
More informationMicrosoft PowerPoint - 6.CRM_Consulting.ppt
고객DB로 가치를 창출해 내는 CRM 컨설팅 제안? 현장 CRM 컨설팅? 분석 CRM 컨설팅 AGENDA I. I. 공영 DBM 소개 II. II. III. III. IV. 컨설팅 구성 컨설팅 추진 방법론 CRM 컨설팅 사례 V. V. 컨설턴트 소개 -1- I-1 공영DBM 서비스 범위 I. 공영 DBM 소개? 공영DBM은 CRM Portal 전문기업으로써,
More informationVOL.76.2008/2 Technical SmartPlant Materials - Document Management SmartPlant Materials에서 기본적인 Document를 관리하고자 할 때 필요한 세팅, 파일 업로드 방법 그리고 Path Type인 Ph
인터그래프코리아(주)뉴스레터 통권 제76회 비매품 News Letters Information Systems for the plant Lifecycle Proccess Power & Marine Intergraph 2008 Contents Intergraph 2008 SmartPlant Materials Customer Status 인터그래프(주) 파트너사
More informationSchoolNet튜토리얼.PDF
Interoperability :,, Reusability: : Manageability : Accessibility :, LMS Durability : (Specifications), AICC (Aviation Industry CBT Committee) : 1988, /, LMS IMS : 1997EduCom NLII,,,,, ARIADNE (Alliance
More informationMicrosoft PowerPoint - ch03ysk2012.ppt [호환 모드]
전자회로 Ch3 iode Models and Circuits 김영석 충북대학교전자정보대학 2012.3.1 Email: kimys@cbu.ac.kr k Ch3-1 Ch3 iode Models and Circuits 3.1 Ideal iode 3.2 PN Junction as a iode 3.4 Large Signal and Small-Signal Operation
More information歯김한석.PDF
HSN 2001 Workshop Session IX Service Providers and Business Model Future Business Models for Telecom Industry 1. Internet Economy 2. E-business 3. Internet Economy 4.? 1 1. Internet Economy 1.1 Internet
More informationuntitled
3 IBM WebSphere User Conference ESB (e-mail : ljm@kr.ibm.com) Infrastructure Solution, IGS 2005. 9.13 ESB 를통한어플리케이션통합구축 2 IT 40%. IT,,.,, (Real Time Enterprise), End to End Access Processes bounded by
More information2Q SWG Teleweb Business Plan & 1Q Recovery Plan April 2, 2003
WBI Modeler V5.1.1 Rational Rose XDE WSAD-IE IBM on-demand Service Oriented Architecture RUP Full-life cycle Business-driven, Process-based LOB IT Seamless Service Modeling (Service, Component, Process
More informationPowerPoint 프레젠테이션
Trading Partner Portal IBM Business Consulting Services Trading Partner Portals (CPG) Wal Mart (CPG) EDI. EDI G A T E W A Y G A T E W A Y ,,. Trading Partners 3. RFI, RFP, RFQ Life Cycle / RFI, RFP, RFQ
More informationC# Programming Guide - Types
C# Programming Guide - Types 최도경 lifeisforu@wemade.com 이문서는 MSDN 의 Types 를요약하고보충한것입니다. http://msdn.microsoft.com/enus/library/ms173104(v=vs.100).aspx Types, Variables, and Values C# 은 type 에민감한언어이다. 모든
More informationAnalyst Briefing
. Improve your Outlook on Email and File Management iseminar.. 1544(or 6677)-3355 800x600. iseminar Chat... Improve your Outlook on Email and File Management :, 2003 1 29.. Collaboration Suite - Key Messages
More information정진명 남재원 떠오르고 있다. 배달앱서비스는 소비자가 배달 앱서비스를 이용하여 배달음식점을 찾고 음식 을 주문하며, 대금을 결제까지 할 수 있는 서비 스를 말한다. 배달앱서비스는 간편한 음식 주문 과 바로결제 서비스를 바탕으로 전 연령층에서 빠르게 보급되고 있는 반면,
소비자문제연구 제46권 제2호 2015년 8월 http://dx.doi.org/10.15723/jcps.46.2.201508.207 배달앱서비스 이용자보호 방안 정진명 남재원 요 약 최근 음식배달 전문서비스 애플리케이션을 이용한 음식배달이 선풍적인 인기를 끌면서 배달앱서비스가 전자상거래의 새로운 거래유형으로 떠오르고 있다. 배달앱서비스는 소비자가 배달앱서비스를
More informationuntitled
Logistics Strategic Planning pnjlee@cjcci.or.kr Difference between 3PL and SCM Factors Third-Party Logistics Supply Chain Management Goal Demand Management End User Satisfaction Just-in-case Lower
More information