8. ARIMA 모형 (ARIMA Procedure) 8.1 ARMA(AutoRegressive Moving-Average) 모형 ARIMA 모형의기본형태 계절형 ARIMA 모형 8.2 ARIMA modeling 과정 데이터 모형의식별 (identification) 모
|
|
- 다빈 임
- 5 years ago
- Views:
Transcription
1 8. ARIMA 모형 (ARIMA Procedure) 8.1 ARMA(AutoRegressive Moving-Average) 모형 ARIMA 모형의기본형태 계절형 ARIMA 모형 8.2 ARIMA modeling 과정 데이터 모형의식별 (identification) 모형의추정 (estimation) 모형의진단 (diagnostic checking) 예 아니오 최종모형선택 1 모형의식별 ⅰ) 정상시계열과비정상시계열의특징 뚜렷한추세가없다. 정상시계열 진폭이시간의흐름에따라일정하다. 비정상시계열평균수준이시간대에따라다르다. 추세를가진다. 계절성을가진다. 분산이변한다. ⅱ) 비정상시계열의정상화ㄱ. 분산이일정하지않은경우 : 분산안정화변환 ( 로그변환, 제곱근변환, Box-Cox 변환을시도 ) ㄴ. 추세를가지는경우결정적추세 -> 분해법또는추세항모형에포함확률적추세 (Dickey-Fuller의단위근검정 ) -> 차분ㄷ. 계절성을가지는경우결정적계절추세 -> 계절추세항모형에포함확률적계절추세 ( 계절형단위근검정 ) -> 계절차분
2 ⅲ) ARMA(p,q) 과정의 ACF 와 PACF 의이론적인특성 확률과정 ACF PACF AR(p) 지수적으로감소하거나소멸하는싸인함수형태시차 p 이후에는 0 으로의절단형태 MA(q) 시차 q이후에는 0으로의절단형태지수적으로감소하거나소멸하는싸인함수형태시차 (q-p) 이후에는지수적으로감소하거나소멸시차 (p-q) 이후에는지수적으로감소하거나소멸 ARMA(p,q) 하는사인함수형태하는싸인함수형태 => 시계열그림과 identity 문에의한결과로나오는 ACF, PACF의형태를보고차분의필요여부및차수를 d를결정하고 AR차수와 MA차수를결정하면된다. 2 모형의추정및진단모형의식별단계에서선택한분석방법에대한모수를추정해낸다. 추정방법으로는최대가능도법, 비조건부최소제곱법, 조건부최소제곱법등이있다. 모형의진단단계에서는모형의추정단계에서나온추정식을이용하여나온잔차의시계열그림이나독립성들을알아보는통계량을검토해평균이 0이고독립성을만족하는지확인한다. 잔차가이런성격을가지지않는경우모형의식별단계부터다시시작하며잔차가좋은성격을가지는경우이모형을최종모형으로선택한다. 3 예측 모형의적합단계에서선택된모형을이용하여 시차이후의예측값과예측구간등을구한다. 비정 상시계열의경우는예측구간이발산하여별의미가없다. 8.3 단위근검정 (unit root test) 확률적추세가존재하는경우차분에의해시계열자료를정상화한후분석을하여야하며결정적추세의경우는추세항을모형에포함시킨다. 따라서추세가확률적인지결정적인지여부를미리판단하여야한다. 시계열그림만으로는어떤추세인지알기어려우므로 Dickey and Fuller 에의한단위근검정을시행하여확인한다. 즉, AR 연산자 가 항을포함하고있을때 인지여부를판단하는문제를단위근검정이라고한다. 따라서단위근검정은 를검정하는문제이며검정통계량은확률변수의적분을필요로하므로기존에는 SAS 매크로를이용하였으나현버전에서는 ARIMA procedure에서검정이가능하다. 시계열자료의평균수준이 0인지또는결정적추세를가지는지여부에따라다른검정통계량을사용하므로시계열자료의특성을잘알고단위근검정결과를이용하여야한다. 8.4 ARIMA 절차 PROC ARIMA options ; IDENTIFY VAR = variable options; ESTIMATE options; FORECAST options; 1 PROC ARIMA 문 options DATA = SAS dsn : 분석에사용될데이터자료명을지정한다. OUT = SAS dsn : 예측값을기억시킬자료명을지정
3 2 IDENTIFY 문 ACF, PACF의형태를보고차분의차수 d, AR 차수 p와 MA 차수 q를결정 options VAR = variable( ) : 분석에사용될변수를지정해주며 d는차분을의미예 ) variable(1,12) => 라는차분연산자를사용하여차분하라. variable(1,1) => variable(2) => CLEAR : 과거에적합되었던모형들을모두취소 NLAG= number : ACF, PACF를구할 lag의수를지정. 디폴트 24 NOPRINT : IDENTIFY문에의한분석결과를출력하지않는다. CENTER : 분석에사용될시계열에서표본평균을뺀후분석하라는명령. 를분석에이용 STATIONARITY = (ADF=AR orders DLAG=s) : augmented Dickey-Fuller test = (PP = AR orders) : Phillips-Perron test 단위근검정을시행한다. trend=0 : ( 절편도 0이고선형추세도없는경우 ) trend=1 : ( 절편만존재하고선형추세도없는경우 ) trend=2 : ( 절편과선형추세가동시에존재하는경우 ) 3 ESTIMATE 문 모수를추정하고, 유의성여부와잔차분석을통한 diagnostic statistic 출력 : AIC, SBC 및적합성검정통계량 (goodness-of-fit test statistics) options PLOT : 잔차의 ACF, PACF, IACF를그려준다. METHOD : 모수의추정방법을지정. 디폴트 CLS METHOD = ML (Maximum Likelihood Estimation : 최우추정법 ) ULS (Unconditional Least Squares Estimation : 최소제곱법 ) CLS (Conditional Least Squares Estimation : 조건부최소제곱법 ) p = (lag, lag,..., lag) : 모형의 AR 부분의차수를지정예 ) p = (1,2,5) ==> : subset model p = ==> : saturated model q = (lag, lag,..., lag) : 모형의 MA 부분의차수를지정 NOPRINT : ESTIMATE 문에의한결과를출력하지말것을명령한다. NOINT : 변수들이차분되거나 CENTER 옵션이사용된경우주로사용되며절편을추정하지않음. 4 FORECAST 문최종선택된모형으로예측값과예측구간을구한다. options LEAD = n : 구하고자하는예측값의개수를지정. 디폴트 24 OUT = SAS dsn : 예측결과를출력하고자하는자료명지정 ID = variable : 시계열자료의관측주기를나타내는시간변수의변수명을적어준다. INTERVAL : 분석에사용될시계열자료의관측주기형태를지정
4 8.5 예제 프로그램 data female; input date=intnx('month', '1dec82'd, _n_); format date monyy.; cards; ; run; 프로그램 /* 모형식별단계 : 시계열그림및시계열의정상성검정 */ proc gplot data=female; symbol i=join v=none; plot female*date; run; proc arima data=female; identify var=female nlag=15 stationarity=(adf=3 dlag=1); run; /* 모형의추정및진단 */ identify var=female(1) nlag=24; estimate plot; run; /* 예측 */ forecast lead=12 interval=month id=date out=female2; run; Augmented Dickey-Fuller Unit Root Tests Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F Zero Mean Single Mean Trend [ 참고 ] 단위근검정결과를보면여러가지 Type에따른검정결과들이나오는데이중에서시계열자료가평균을가진다고판단되면 type이 Single Mean의결과를이용하고, 선형추세를가진다고판단되면 type이 Trend의결과를이용하면된다. 3가지경우모두단위근이존재함을보여주고있다. F검정은 type에따라다른데 type이 Trend인경우는귀무가설 의검정결과이다. 유의확률이커서귀무가설을기각하지못하므로이자료의추세는확률적추세라고판단한다. 프로그램 symbol1 i=join v=star; symbol3 i=none v=circle; proc gplot data=female2; plot female*date=1 forecast*date=3/legend overlay; run; plot residual*date=1 /vref=0; run;
5 8.6 Time Series Forecasting System 이용방법 (1) 시계열예측시스템실행하기 4.1 절참고 : 솔루션 -> 분석 -> 시계열예측시스템을선택한다. : 분석에이용할 Data Set 셋선택하기 Time Series Forecasting 창이나오면 Data Set : 옆에 Browse... 를클릭하여분석할데이터셋 을선택한다. 분석할 Data set 이둘어있는 Library 와 Data Set 을선택한다. 이전의예제의데이터를이용하기위해 time 라이브러리안의 Female Data Set 을선택하고 OK 를클릭한다. Data Set 에 TIME.FEMALE 이선택된것을볼수있으며 Date 변수가있으면자동으로 Time ID 에 지정된것을볼수있다. Date 변수가 Data Set 에포함되어있지않으면 create... 을클릭하여생성해 주면된다.
6 : ARIMA 모형적합하기. ARIMA 모형을분석하기위해 Develop Models 를클릭한다. Female Data Set 에서분석할변수 Female 을선택한뒤 OK 를클릭한다 Develop Models 대화상자가나타나고여기서모형을적합할수있다. 1 모형식별위의창에서 Time Series Viewer 를실행하여다음과같이시계열의형태와 ACF, PACF 및단위근검정을통해적당한차수의 ARMA모형을선택한다.
7 < 원자료의시계열그림 > < 원자료의 ACF 와 PACF 및 IACF> < 원자료에대한백색잡음검정과단위근검정및계절형단위근검정 > 백색잡음검정의유의확률은매우작고단위근검정의유의확률은 1 에가까우므로단위근이존재하여 차분이필요함을알수있다.
8 <1 차차분한자료에대한시계열그림 > <1 차차분한자료에대한 ACF, PACF, IACF> <1 차차분한자료의백색잡음검정과단위근검정및계절형단위근검정 > 1 차차분한자료의 ACF 와 PACF 는모든시차에서유의하지않으며백색잡음검정의유의확률은 0.05 보다커서 1 차차분후에는모형이잘적합된것으로판단된다.. 2 모형적합 ARMA 모형을적합시키기위해마우스의단추를클릭하면의모형적합을할수있는대화상자가나 타나고여기서 Fit ARIMA Model... 을선택한다.
9 모형의식별단계에서선택한 AR 차수 p=0, MA 차수 q=0, 차분횟수 d=1 을선택한후확인버튼을 클릭한다. 적합된모형이 Develop Models 창에 Root Mean Square Error 와함께나타난다. [ 참고 ] 동일 Data Set 에여러개의 ARIMA 모형을적합하여보려면동일한모형적합방법을각모형 별로반복해서실행하면, Develop Models 에실행시킨각각의모형이표시되며여러가지진단조 건들을통해최적의모형을선택하면된다. 3 추정된모형의결과물확인 현재적합시킨모형의결과를보기위해서는 합결과물들을확인할수있다. 를선택하고, vertical bar 버튼을하나씩눌러절
10 < 원자료와적합된모형의시계열그림 > 잔차그래프를보려면를선택한다. < 잔차그래프 > < 잔차의 ACF, PACF, IACF>
11 < 잔차의백색잡음검정및단위근검정 > < 적합한모형의모수의추정값 > < 여러가지진단통계량 > 적합된모형 :,
12 < 예측값에대한시계열그림 > < 예측값 >
Microsoft Word - skku_TS2.docx
Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 (
More information제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint
제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악
More information5. 평활법 (FORECAST procedure) 일변량시계열자료의예측값과예측구간을구할때사용한다. 주로시간과자기자신의과거의관측값의함수를이용하여구하며, 다른시계열예측방법에비해빠르고쉬우며자동적이라는장점이있으나, 시계열의특성을고려하지못한다는단점도있다. 결과물은 output창
5. 평활법 (FORECAST procedure) 일변량시계열자료의예측값과예측구간을구할때사용한다. 주로시간과자기자신의과거의관측값의함수를이용하여구하며, 다른시계열예측방법에비해빠르고쉬우며자동적이라는장점이있으나, 시계열의특성을고려하지못한다는단점도있다. 결과물은 output창에출력되는것이아니라하나의 dataset에저장된다. 5.1 예측방법 1 STEPAR(STEPwise
More informationuntitled
통계청 통계분석연구 제 3 권제 1 호 (98. 봄 ) 91-104 장기예측방법의비교 - 전도시소비자물가지수를중심으로 - 서두성 *, 최종후 ** 본논문의목적은소비자물가지수와같이시간의흐름에따라변동의폭이크지않은시계열자료의장기예측에있어서쉽고, 정확한예측모형을찾고자하는데에있다. 이를위하여네가지의장기예측방법 - 1회귀적방법 2Autoregressive error 방법
More information시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자
시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자료들은이산적임 ). 전통적계량접근법 (econometric approach) 종속변수와독립변수간의이론적관계를토대로모형을구성함.
More information동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석
동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 목차 I. 서론 II. 동아시아각국의무역수지, 실질실효환율및 GDP간의관계 III. 패널데이터를이용한 Granger인과관계분석 IV. 개별국실증분석모형및 TYDL을이용한 Granger 인과관계분석 V. 결론 참고문헌 I. 서론 - 1 - - 2 - - 3 - - 4
More information아시아연구 16(1), 2013 pp. 105-130 중국의경제성장과보험업발전간의 장기균형관계 Ⅰ. 서론 Ⅲ. 실증분석 1. 분석방법 < 그림 1> 중국의보험밀도와국민 1 인당명목 GNI 성장추이 보험밀도 국민 1 인당명목 GNI < 그림 2> 중국의주요거시경제지표변화추이 총저축액 금리, 물가, 실업률 < 표 1> 변수정의 변수명 정의 자료출처 LTP
More information에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -
에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>
More informationSAS/ETS 사용법 1. Time Series 의 date 변수다루기 1.1 SAS 환경에서의 Date 변수 sas 에서의 date 변수는 numeric 이며기준점 (1960 년 1 월 1 일 ) 이후의 day 의수로인식한다. 1.2 DATA step에서사용되는 in
SAS/ETS 사용법 1. Time Series 의 date 변수다루기 1.1 SAS 환경에서의 Date 변수 sas 에서의 date 변수는 numeric 이며기준점 (1960 년 1 월 1 일 ) 이후의 day 의수로인식한다. 1.2 DATA step에서사용되는 informat 문과 format 문 TYPE FORMAT EXAMPLE INPUT/OUTPUT
More information( ) ( e- ) ( ) ( ) ( ) , IMF., 1000.,..,. SAS ARIMA OLS, SUR, 3SLS. 2004-2006 1999 1-2003 12 5. 2004-2006 9.31%, 5.37% 8.08% 40%.. < > 2004-2006 2004 2005 2006 131,752,662 138,832,342 150,060,656 65,500,904
More informationMicrosoft PowerPoint - IPYYUIHNPGFU
분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준
More informationcat_data3.PDF
( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary)
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
More information생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포
생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................
More information에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 35~55 학술 전력시장가격에대한역사적요인분해 * 35
에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 35~55 학술 전력시장가격에대한역사적요인분해 * 35 36 37 38 39 40 41 < 표 1> 표본자료의기초통계량 42 [ 그림 1] 표본시계열자료의추이 43 < 표 2> 수준및로그차분변수에대한단위근검정결과
More informationCommunications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는
Communications of the Korean Statistical Society Vol 5, No 4, 2008, pp 53 542 국소적 강력 단위근 검정 최보승), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 추세를 제거하기 위하여 결 정적 추세인 경우 회귀모형을 이용하고, 확률적 추세인 경우 차분하는 방법을
More informationÆí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š
솔루션 2006 454 2006 455 2006 456 2006 457 2006 458 2006 459 2006 460 솔루션 2006 462 2006 463 2006 464 2006 465 2006 466 솔루션 2006 468 2006 469 2006 470 2006 471 2006 472 2006 473 2006 474 2006 475 2006 476
More informationMicrosoft PowerPoint - chap_11_rep.ppt [호환 모드]
제 11 강 111 자기상관 Autocorrelation 자기상관의본질 11 유효성 (efficiency, accurate estimation/prediction) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Autocorrelation) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임
More information에너지경제연구 제12권 제2호
에너지경제연구 Korean Energy Economic Review Volume 12, Number 2, September 2013 : pp. 33~58 지구온난화가가정부문에너지소비량에미치는 영향분석 : 전력수요를중심으로 33 ~ ~ ~ ~ ~ ~ ~ 34 ~ 35 ~ 36 ~ 37 < 표 1> 변수들의기초통계량 ~ ~ ~ ~ 38 [ 그림 1] 로그변수들의시간에대한추세
More information13. 다차원척도법 (MultiDimensional Scaling) 13.1 개념및목적 다차원척도법 (mds) 는다차원관측값또는개체들간의거리 (distance) 또는비유사성 (dissimilarity) 을이용하여개체들을원래의차원보다낮은차원 ( 보통 2차원 ) 의공간상에
13. 다차원척도법 (MultiDimensional Scaling) 13.1 개념및목적 다차원척도법 (mds) 는다차원관측값또는개체들간의거리 (distance) 또는비유사성 (dissimilarity) 을이용하여개체들을원래의차원보다낮은차원 ( 보통 2차원 ) 의공간상에위치시켜 (spatial configuration) 개체들사이의구조또는관계를쉽게파악하고자하는데목적이있다.
More informationMicrosoft Word - ch2_smoothing.doc
FORECASTING / 2 장. 지수평활법 14 Chaer 2. 지수평활법 시계열자료는시간에따라관측되며자료의수가많다는특징을갖는다. 시계열자료는시간에따른변화를 (rend, cycle, seasonaliy) 가지고있으므로과거관측치를이용하여미래값을예측할수있을것이다. 이를모형화하는방법이 ARMA 에서살펴보았다. ARMA 모형은시계열데이터의주기 (cycle) 을모형화하는것이다.
More information歯표지_최종H_.PDF
21 5 LG < > / 5 5 Chen, Roll, Ross,, (-) (+) (-), (-) (+) / (-), (+) J, /, (-) IMF, /,,, 5bp 5bp 1 1 3 ( )/ ( ) ( :p) 1 3 6 / 1-23 45 55 1% 2 33 42 1p 296 234 175 1%p -13 147 171 1%p 1 81 7 1% 48 57 54
More informationMicrosoft Word - SAS_Data Manipulate.docx
수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )
More informationMicrosoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt
수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo
More informationPowerPoint Template
JavaScript 회원정보 입력양식만들기 HTML & JavaScript Contents 1. Form 객체 2. 일반적인입력양식 3. 선택입력양식 4. 회원정보입력양식만들기 2 Form 객체 Form 객체 입력양식의틀이되는 태그에접근할수있도록지원 Document 객체의하위에위치 속성들은모두 태그의속성들의정보에관련된것
More informationOrcad Capture 9.x
OrCAD Capture Workbook (Ver 10.xx) 0 Capture 1 2 3 Capture for window 4.opj ( OrCAD Project file) Design file Programe link file..dsn (OrCAD Design file) Design file..olb (OrCAD Library file) file..upd
More information게임 기획서 표준양식 연구보고서
ᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞ ᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞ ᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞ ᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞ ᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞ ᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞ ᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞ
More information4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1
: LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW
More information조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a
조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형
More informationForecast2014_add.indd
I D G D e e p D i v e Forecast 2014 Forecast 2014 1 Forecast 2014 2 Forecast 2014 3 Forecast 2014 4 5 6 Forecast 2014 7 Forecast 2014 8 9 Forecast 2014 10 11 12 13 14 15 16 Forecast 2014 17 18 19 Forecast
More information726 Junmo Song correction model) 의예측력을비교하였다. 시계열모형을이용한그외다른분야에서의수요예측으로는 Ryu와 Kim (2013), Han 등 (2014), 그리고 Shin과 Yoon (2016) 의연구들이있다. 관광산업은테러및 IMF와같은정치
Journal of the Korean Data & Information Science Society 2016, 27(3), 725 732 http://dx.doi.org/10.7465/jkdi.2016.27.3.725 한국데이터정보과학회지 계절형 ARIMA-Intervention 모형을이용한여행목적별 제주관광객수예측에관한연구 송준모 1 1 제주대학교전산통계학과
More informationMicrosoft PowerPoint - TimeSeriesAnalysis_Part_1.pptx
이기천 ( 한양대학교산업공학과조교수 ) 2013. 10. 31 ( 목 ) 국민대학교비즈니스 IT 전문대학원 지능데이터시스템연구실 이기천소개 연구분야 Research area Data Mining, Text Mining, Machine Learning, Pattern Recognition Process Mining, Social Network Analysis,
More information공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은
2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영
More information중소기업경기지수및경영환경지수 개발에관한연구 - 제조업중심으로 - A Study on Development of the Business Indicators in SMEs focused on manufacturing 요약 1) 125 IPISA 124 ISISA 120 120 115 110 105 100 95 116 112 108 104
More information에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1
에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1 2 3 4 5 6 ln ln 7 8 9 [ 그림 1] 해상풍력단지건설로드맵 10 11 12 13 < 표 1> 회귀분석결과 14 < 표 2> 미래현금흐름추정결과
More information에너지경제연구 제12권 제2호
에너지경제연구 Korean Energy Economic Review Volume 12, Number 2, September 2013 : pp. 59~83 부문별에너지소비와경제성장의 인과관계분석 59 60 61 < 표 1> 주요경제및에너지지표변화, 1990 년 2011 년 ~ [ 그림 1] 우리나라의경제및에너지관련주요지표변화, 1990 년 ~2011 년 62
More information공휴일 전력 수요에 관한 산업별 분석
에너지경제연구 Korean Energy Economic Review Volume 15, Number 1, March 2016 : pp. 99 ~ 137 공휴일전력수요에관한산업별분석 1) 99 100 ~ 101 102 103 max m ax 104 [ 그림 1] 제조업및서비스업대표업종전력사용량추이 105 106 [ 그림 2] 2014 년일별전자및전자기기업종 AMR
More information슬라이드 1
빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들
More informationstatistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
More informationMVVM 패턴의 이해
Seo Hero 요약 joshua227.tistory. 2014 년 5 월 13 일 이문서는 WPF 어플리케이션개발에필요한 MVVM 패턴에대한내용을담고있다. 1. Model-View-ViewModel 1.1 기본개념 MVVM 모델은 MVC(Model-View-Contorl) 패턴에서출발했다. MVC 패턴은전체 project 를 model, view 로나누어
More information01-07-0.hwp
선거와 시장경제Ⅱ - 2000 국회의원 선거시장을 중심으로 - 발간사 차 례 표 차례 그림 차례 제1부 시장 메커니즘과 선거시장 Ⅰ. 서 론 Ⅱ. 선거시장의 원리와 운영방식 정당시장 지역구시장 문의사항은 Q&A를 참고하세요 정당시장 한나라당 사기 종목주가그래프 c 2000 중앙일보 Cyber중앙 All rights reserved. Terms
More informationASETAOOOCRKG.hwp
청년층 희망 일자리와 실제 취업 일자리 격차 분석 - 고학력 청년 실업 원인에 대한 일고찰 - 홍 성 민 * ** 박 진 희 세계적인 경기침체가 본격화되는 2009년에는 실업문제가 가장 큰 사회경제적 이슈로 등장할 가 능성이 높으며, 특히 청년층의 고실업 문제와 더불어 일자리 기피 인해 나타날 가능성이 있는 NEET 화 현상에 대한 우려가 커질 것으로 예상된다.
More information노동경제논집 38권 3호 (전체).hwp
* ** ***. (18-24 ), (18-22 ), (60 ), (60 ) 4..,,, OLS VAR VEC., VEC (-)., : 2015 7 9, : 2015 9 1, : 2015 9 7 * 2.. ** () (kangsb7077@naver.com) *** (cheolsung@hanyang.ac.kr). 勞動經濟論集第 卷第 號.,. 1980 1990
More information<3135C0FCBBF3B0EF28BCF6C1A4BBE7C7D7BEF8C0BD292E687770>
농업생명과학연구 45(5) pp.115-126 Journal of Agriculture & Life Science 45(5) pp.115-126 ARIMA 모형을이용한한육우사육두수추정 전상곤 1* 박한울 2 1 경상대학교농업경제학과 ( 농업생명과학연구원 ), 2 경상대학교대학원농업경제학과 Estimation of the Number of Korean Cattle
More information슬라이드 1
Pairwise Tool & Pairwise Test NuSRS 200511305 김성규 200511306 김성훈 200614164 김효석 200611124 유성배 200518036 곡진화 2 PICT Pairwise Tool - PICT Microsoft 의 Command-line 기반의 Free Software www.pairwise.org 에서다운로드후설치
More informationuntitled
Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)
More informationR t-..
R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)
More information<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>
부동산학연구 제16집 제1호, 2010. 3, pp. 117~130 Journal of the Korea Real Estate Analysts Association Vol.16, No.1, 2010. 3, pp. 117~130 비선형 Mankiw-Weil 주택수요 모형 - 수도권 지역을 대상으로 - Non-Linear Mankiw-Weil Model on Housing
More information에너지경제연구 Korean Energy Economic Review Volume 17, Number 1, March 2018 : pp. 37~65 가정부문전기수요의결정요인분석 : 동태적패널 FD GMM 기법을중심으로 37
에너지경제연구 Korean Energy Economic Review Volume 17, Number 1, March 2018 : pp. 37~65 가정부문전기수요의결정요인분석 : 동태적패널 FD GMM 기법을중심으로 37 38 39 40 41 ln ln ln ln ln ln ln 42 ln ln ln ln ln ln ln ln ln ln ln ln ln ln
More information2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사
회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,
More information鍮뚮┰硫붾돱??李⑤낯
5 1 2 3 4 5 6 7 8 9 1 2 3 6 7 1 2 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 OK 46 47 OK 48 OK 49 50 51 OK OK 52 53 54 55 56 57 58 59 60 61
More informationR&D : Ⅰ. R&D OECD 3. Ⅱ. R&D
R&D : 2012. 6. Ⅰ. R&D 1. 2. OECD 3. Ⅱ. R&D 1. 2. - 1 - Ⅰ. R&D R&D. R&D (TFP). R&D R&D, GDP R&D (Ha and Howitt, 2007). : (1), R&D. 1. ( )(), 1 ( ), ( ). (2) -, (Penn World Table 7.0) (growth accounting)
More informationMicrosoft Word - src.doc
IPTV 서비스탐색및콘텐츠가이드 RI 시스템운용매뉴얼 목차 1. 서버설정방법... 5 1.1. 서비스탐색서버설정... 5 1.2. 컨텐츠가이드서버설정... 6 2. 서버운용방법... 7 2.1. 서비스탐색서버운용... 7 2.1.1. 서비스가이드서버실행... 7 2.1.2. 서비스가이드정보확인... 8 2.1.3. 서비스가이드정보추가... 9 2.1.4. 서비스가이드정보삭제...
More information용역보고서
여러고장모드를갖는자료분석방법 2009. 1. ( 주 ) 한국신뢰성기술서비스 목차 여러고장모드를갖는자료분석방법...3 1. 개요...3 2. 분석방법및예제...4 2.1 CFM(Competing Failure Mode) 분석...4 2.2 Mixed Weibull 분석...4 2.3 Mixed Weibull 예제...5 3. 요약정리...9 ii http://www.korts.co.kr
More informationMicrosoft Word - ntasFrameBuilderInstallGuide2.5.doc
NTAS and FRAME BUILDER Install Guide NTAS and FRAME BUILDER Version 2.5 Copyright 2003 Ari System, Inc. All Rights reserved. NTAS and FRAME BUILDER are trademarks or registered trademarks of Ari System,
More information시계열분석의개요 (the nature of time series analysis) 시계열자료 (time series data) 연도별 (annual), 분기별 (quarterly), 월별 (monthly), 일별 (daily) 또는시간별 (hourly) 등시간의경과 (
시계열분석의개요 (the nature of time series analysis) 시계열자료 (time series data) 연도별 (annual), 분기별 (quarterly), 월별 (monthly), 일별 (daily) 또는시간별 (hourly) 등시간의경과 ( 흐름 ) 에따라순서대로 (ordered in time) 관측되는자료를시계열자료 (time
More informationKDI정책포럼제221호 ( ) ( ) 내용문의 : 이재준 ( ) 구독문의 : 발간자료담당자 ( ) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다. 우리나라경
KDI정책포럼제221호 (2010-01) (2010. 2. 10) 내용문의 : 이재준 (02-958-4079) 구독문의 : 발간자료담당자 (02-958-4312) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다. http://www.kdi.re.kr 우리나라경기변동성에대한요인분석및시사점 이재준 (KDI 부연구위원 ) * 요 약,,, 1970. * (,
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More informationPRO1_09E [읽기 전용]
Siemens AG 1999 All rights reserved File: PRO1_09E1 Information and - ( ) 2 3 4 5 Monitor/Modify Variables" 6 7 8 9 10 11 CPU 12 Stop 13 (Forcing) 14 (1) 15 (2) 16 : 17 : Stop 18 : 19 : (Forcing) 20 :
More informationVector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표
Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function
More information22 장정규성검정과정규화변환 22.1 시각적방법 Q-Q 플롯과정규확률그림 Q-Q 플롯( 분위수- 분위수플롯, Quantile-Quantile plot) 은하나의자료셋이특정분포( 정규분 포나와이블분포등) 를따르는지또는두개의자료셋이같은모집단분포로부터나왔는지를
22 장정규성검정과정규화변환 22.1 시각적방법 22.1.1 Q-Q 플롯과정규확률그림 Q-Q 플롯( 분위수- 분위수플롯, Quantile-Quantile plot) 은하나의자료셋이특정분포( 정규분 포나와이블분포등) 를따르는지또는두개의자료셋이같은모집단분포로부터나왔는지를 판단하는시각적분석방법이다. Q-Q 플롯은자료의분위수와특정( 이론적) 분포의분위수를구하여산점도로나타내거나,
More information[INPUT] 뒤에는변수와관련된정보를표기한다. [CARDS;] 뒤에는각각의변수가가지는관측값들을표기한다. >> 위의프로그램에서데이터셋명은 wghtclub 이고, 변수는 idno, name, team, strtwght, endwght 이다. 이중 name 과 team 은
SAS 의기본형식 1. INPUT 문 DATA wghtclub; INPUT idno 1-4 name $ 6-24 team $ strtwght endwght; loss=strtwght -endwght; CARDS; 1023 David Shaw red 189 165 1049 Amelia Serrno yellow 145 124 1219 Alan Nance red
More information제 4 장회귀분석
회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical
More information(b) 미분기 (c) 적분기 그림 6.1. 연산증폭기연산응용회로
Lab. 1. I-V Characteristics of a Diode Lab. 6. 연산증폭기가산기, 미분기, 적분기회로 1. 실험목표 연산증폭기를이용한가산기, 미분기및적분기회로를구성, 측정및 평가해서연산증폭기연산응용회로를이해 2. 실험회로 A. 연산증폭기연산응용회로 (a) 가산기 (b) 미분기 (c) 적분기 그림 6.1. 연산증폭기연산응용회로 3. 실험장비및부품리스트
More informationDBPIA-NURIMEDIA
The e-business Studies Volume 17, Number 4, August, 30, 2016:319~332 Received: 2016/07/28, Accepted: 2016/08/28 Revised: 2016/08/27, Published: 2016/08/30 [ABSTRACT] This paper examined what determina
More informationMicrosoft Word - Forecast_lecture.docx
예측방법 목차 I. 개요 1 II. TIME PLOT 3 III. MOVING AVERAGE 이동평균법 5 IV. 지수평활법개요 7 V. ARMA 개요 0 VI. 계량경제회귀모형 40 시계열데이터분석 014 I. 개요 1. Hisory 17 세기에태양의흑점자료나밀가격지수변동을나타내는함수로 Sine, Cosine 곡선을이용하였다. Yule(196) 은 ARMA에대한개념을제시하였고
More information<4F E20C7C1B7CEB1D7B7A5C0BB20C0CCBFEBC7D120B5A5C0CCC5CD20BAD0BCAE20B9D720B1D7B7A1C7C120B1D7B8AEB1E F416E616C F616E645F47726
Origin 프로그램을이용한데이터분석및그래프그리기 "2-4 단일코일에의해형성되는자기장의특성측정 " 실험을예로하여 Origin 프로그램을이용한데이터분석및그래프그리기에대해설명드리겠습니다. 먼저 www.originlab.com 사이트를방문하여회원가입후 Origin 프로그램데모버전을다운로드받아서설치합니다. 설치에필요한액세스코드는회원가입시입력한 e-mail로발송됩니다.
More informationSAS를 이용한 통계자료분석
MACRO 5 강 SAS 매크로개요 매크로 - SAS 시스템에서는 SAS 의활용도를높이고일상적인프로그램작성작업의효율성을높이기위해서매크로기능 (MACRO FACILITY) 을제공하고있다. 매크로기능 - 매크로기능은사용자가작성해야하는프로그램의양을줄이고 SAS 언어의활용도를높여주는강력한프로그램작성도구라고할수있는데프로그램의양이많든적든간에한번에실행하고싶은내용을간단히하나의단위로만들어필요할때마다프로그램내에서호출하여사용할수있다.
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information21세기 미국의 패권과 유엔
126 김지열 국제 지역연구 14 권 2 호 2005 여름 pp. 125 141 I. 서론 중동권경제에서의장기기억에관한연구 : 주식수익률을중심으로 김지열 아시아대학교보건한방학부전임강사 τ τ τ 주제어 : 중동권국가, 주식시장, 수정 R/S분석, 허스트지수, V 통계량 중동권국가 (Middle East country) 는아직까지우리나라에서분쟁의지역이나관광지로만인식되어있을뿐,
More information벡터자기회귀 (Vector Autoregression : VAR) 모형은경제이론없이모형만으로변수들간의관계를설명할수있다는점에서자주이용되는모형임. y t =α 1 y t-1 + +α p y t-p +βx t +ε t 여기서 y t 는내생변수 (endogenous varia
제 12 장 VAR 과 VECM 벡터자기회귀 (Vector Autoregression : VAR) 모형은경제이론없이모형만으로변수들간의관계를설명할수있다는점에서자주이용되는모형임. y t =α 1 y t-1 + +α p y t-p +βx t +ε t 여기서 y t 는내생변수 (endogenous variable) 의 k 벡터이고, x t 는외생변수 (exogenous
More informationeda_ch7.doc
( ) (, ) (X, Y) Y Y = 1 88 + 0 16 X =0601 Y = a + bx + cx X (nonlinea) ( ) X Y X Y b(016) ( ) log Y = log a + b log X = e Y = b ax 71 X (explanatoy va :independent ), Y (dependent : esponse) X, Y Sehyug
More information< FB3F3C3CCC1F6B5B5BFCD20B0B3B9DF D322E687770>
계절아리마모형을이용한관광객예측 - 경북영덕지역을대상으로 - *9) Forecasting of Yeongdeok Tourist by Seasonal ARIMA Model 손은호 ** 10) 박덕병 *** 11) Eun Ho Son Duk Byeong Park Abstract The study uses a seasonal ARIMA model to forecast
More information아래 항목은 최신( ) 이미지를 모두 제대로 설치하였을 때를 가정한다
공유기사용환경에서 MNC-V100 환경설정하기 다음설명은 AnyGate GW-400A (Http://www.anygate.co.kr) 를사용하는네트워크환경에서 MNC-V100 을연결하여사용하는법을설명합니다. 공유기내부네트워크환경설정공유기를사용하는환경에서공유기의설정을아래그림과같이설정하시면 MNC-V100의설정을변경하지않아도모비캠과연결할수있습니다. ( 공유기의환경을변경하기어려운경우에는
More information목차 BUG 문법에맞지않는질의문수행시, 에러메시지에질의문의일부만보여주는문제를수정합니다... 3 BUG ROUND, TRUNC 함수에서 DATE 포맷 IW 를추가지원합니다... 5 BUG ROLLUP/CUBE 절을포함하는질의는 SUBQUE
ALTIBASE HDB 6.3.1.10.1 Patch Notes 목차 BUG-45710 문법에맞지않는질의문수행시, 에러메시지에질의문의일부만보여주는문제를수정합니다... 3 BUG-45730 ROUND, TRUNC 함수에서 DATE 포맷 IW 를추가지원합니다... 5 BUG-45760 ROLLUP/CUBE 절을포함하는질의는 SUBQUERY REMOVAL 변환을수행하지않도록수정합니다....
More information- 1 -
- 1 - External Shocks and the Heterogeneous Autoregressive Model of Realized Volatility Abstract: We examine the information effect of external shocks on the realized volatility based on the HAR-RV (heterogeneous
More information<BACFC7D1B3F3BEF7B5BFC7E22D3133B1C733C8A3504446BFEB2E687770>
북한의 주요 농업 관련 법령 해설 1) 이번 호와 다음 호에서는 북한의 주요 농업 관련 법령을 소개하려 한다. 북한의 협동농장은 농업협동조합기준규약초안 과 농장법 에 잘 규정되어 있다. 북한 사회주의 농업정책은 사회 주의농촌문제 테제 2), 농업법, 산림법 등을 통해 엿볼 수 있다. 국가계획과 농업부문의 관 계, 농산물의 공급에 관해서는 인민경제계획법, 사회주의상업법,
More information1 9 2 0 3 1 1912 1923 1922 1913 1913 192 4 0 00 40 0 00 300 3 0 00 191 20 58 1920 1922 29 1923 222 2 2 68 6 9
(1920~1945 ) 1 9 2 0 3 1 1912 1923 1922 1913 1913 192 4 0 00 40 0 00 300 3 0 00 191 20 58 1920 1922 29 1923 222 2 2 68 6 9 1918 4 1930 1933 1 932 70 8 0 1938 1923 3 1 3 1 1923 3 1920 1926 1930 3 70 71
More information<352E20BAAFBCF6BCB1C5C320B1E2B9FDC0BB20C0CCBFEBC7D120C7D1B1B920C7C1B7CEBEDFB1B8C0C720B5E6C1A1B0FA20BDC7C1A120BCB3B8ED28313531323231292D2DB1E8C7F5C1D62E687770>
통계연구(2015), 제20권 제3호, 71-92 변수선택 기법을 이용한 한국 프로야구의 득점과 실점 설명 1) 김혁주 2) 김예형 3) 요약 한국 프로야구에서 팀들의 득점과 실점에 영향을 미치는 요인들을 규명하기 위한 연구를 하였 다. 2007년부터 2014년까지의 정규리그 전 경기 자료를 대상으로 분석하였다. 전방선택법, 후방 소거법, 단계별 회귀법, 선택법,
More informationuntitled
Push... 2 Push... 4 Push... 5 Push... 13 Push... 15 1 FORCS Co., LTD A Leader of Enterprise e-business Solution Push (Daemon ), Push Push Observer. Push., Observer. Session. Thread Thread. Observer ID.
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information(001~006)개념RPM3-2(부속)
www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로
More informationISP and CodeVisionAVR C Compiler.hwp
USBISP V3.0 & P-AVRISP V1.0 with CodeVisionAVR C Compiler http://www.avrmall.com/ November 12, 2007 Copyright (c) 2003-2008 All Rights Reserved. USBISP V3.0 & P-AVRISP V1.0 with CodeVisionAVR C Compiler
More information슬라이드 1
- 1 - 전자정부모바일표준프레임워크실습 LAB 개발환경 실습목차 LAB 1-1 모바일프로젝트생성실습 LAB 1-2 모바일사이트템플릿프로젝트생성실습 LAB 1-3 모바일공통컴포넌트생성및조립도구실습 - 2 - LAB 1-1 모바일프로젝트생성실습 (1/2) Step 1-1-01. 구현도구에서 egovframe>start>new Mobile Project 메뉴를선택한다.
More information제이쿼리 (JQuery) 정의 자바스크립트함수를쉽게사용하기위해만든자바스크립트라이브러리. 웹페이지를즉석에서변경하는기능에특화된자바스크립트라이브러리. 사용법 $( 제이쿼리객체 ) 혹은 $( 엘리먼트 ) 참고 ) $() 이기호를제이쿼리래퍼라고한다. 즉, 제이쿼리를호출하는기호
제이쿼리 () 정의 자바스크립트함수를쉽게사용하기위해만든자바스크립트라이브러리. 웹페이지를즉석에서변경하는기능에특화된자바스크립트라이브러리. 사용법 $( 제이쿼리객체 ) 혹은 $( 엘리먼트 ) 참고 ) $() 이기호를제이쿼리래퍼라고한다. 즉, 제이쿼리를호출하는기호 CSS와마찬가지로, 문서에존재하는여러엘리먼트를접근할수있다. 엘리먼트접근방법 $( 엘리먼트 ) : 일반적인접근방법
More information164
에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 163~190 학술 시변파라미터일반화해밀턴 -plucking 모형을이용한전력소비의선제적경기국면판단활용연구 * 163 164 165 166 ~ 167 ln 168 [ 그림 1] 제조업전력판매량 (a) 로그변환
More information<B0A3C3DFB0E828C0DBBEF7292E687770>
초청연자특강 대구가톨릭의대의학통계학교실 Meta analysis ( 메타분석 ) 예1) The effect of interferon on development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection?? -:> 1998.1 ~2007.12.31 / RCT(2),
More informationÇ¥Áö-¸ñÂ÷
http://www.keis.or.kr Analysis of HRD-Net Statistics Analysis of HRD-Net Statistics HRD-Net 2005 직업훈련동향 http://www.keis.or.kr Analysis of HRD-Net Statistics 2005 HRD-Net 통계분석 Analysis of HRD-Net Statistics
More information중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed
중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed mean), 가중평균 (weighted mean), 기하평균 (geometric mean),
More informationuntitled
통계청 통계연구 제 10 권제 1 호, 2005, pp. 165-188 몬테카를로실험에의한 Augmented Dickey-Fuller 단위근검정법의검정력에관한연구 조성일 * 최종수 ** 1) < 요약 > 이연구에서는몬테카를로실험 (Monte Carlo Experiment) 을통하여 Augmented Dickey-Fuller 단위근검정법의검정력을측정하였다. 컴퓨터시뮬레이션을통한자료생성과정에있어서상수항과시간추세의포함여부에따라세가지형태를가정하였다.
More information<30312E20B9DAC1D8BCBA2E687770>
경기변동과고용구조 ( 박준성 이은수 ) 1 産業關係硏究第 19 卷第 4 號, 2009. 12, pp.1~16 c 韓國勞使關係學會 1)2) 경기변동과고용구조 * 박준성 ** 이은수 *** 본연구의목적은경기변동과고용구조간의인과관계를규명하는것이다. 경기변동과고용구조간의인과관계를규명하기위해실질GDP성장률과경제활동참가율, 고용률, 실업률을사용하였고, 분석결과의일반적추론을보충하기위해미국,
More informationBlue Geometry
Structural Equation Modeling (SEM) 구조방정식모형의적용 2009 년 11 월 27 일 강태훈 ( 성신여대교육학과 ) 과학적탐구의목적 관심대상및현상에대한 설명기술 예측 통제 All models are wrong, but some are useful. (Box, 1979) 구조방정식모형 (SEM) 의개요 SEM 은실험연구나무선적표집 할당등이어려운경우변수간관계에대한추론을가능하게해준다.
More information<31372DB9DABAB4C8A32E687770>
김경환 박병호 충북대학교 도시공학과 (2010. 5. 27. 접수 / 2011. 11. 23. 채택) Developing the Traffic Severity by Type Kyung-Hwan Kim Byung Ho Park Department of Urban Engineering, Chungbuk National University (Received May
More informationObservational Determinism for Concurrent Program Security
웹응용프로그램보안취약성 분석기구현 소프트웨어무결점센터 Workshop 2010. 8. 25 한국항공대학교, 안준선 1 소개 관련연구 Outline Input Validation Vulnerability 연구내용 Abstract Domain for Input Validation Implementation of Vulnerability Analyzer 기존연구
More information고차원에서의 유의성 검정
고차원에서의유의성검정 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 1 / 15 학습내용 FDR(false discovery rate) SAM(significance analysis of microarray) FDR 에대한베이지안해석 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 2 / 15 서론 I 고차원데이터에서변수들에대한유의성검정
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationvar answer = confirm(" 확인이나취소를누르세요."); // 확인창은사용자의의사를묻는데사용합니다. if(answer == true){ document.write(" 확인을눌렀습니다."); else { document.write(" 취소를눌렀습니다.");
자바스크립트 (JavaScript) - HTML 은사용자에게인터페이스 (interface) 를제공하는언어 - 자바스크립트는서버로데이터를전송하지않고서할수있는데이터처리를수행한다. - 자바스크립트는 HTML 나 JSP 에서작성할수있고 ( 내부스크립트 ), 별도의파일로도작성이가능하다 ( 외 부스크립트 ). - 내부스크립트 - 외부스크립트
More information