Weed Turf. Sci. 3(1):41~49 http://dx.doi.org/10.5660/wts.2014.3.1.41 Print ISSN 2287-7924, Online ISSN 2288-3312 Research Article Weed & Turfgrass Science Weed & Turfgrass Science was renamed from formerly both Korean Journal of Weed Science from Volume 32(3), 2012, Korean Journal of Turfgrass Science from Volume 25(1), 2011 and Asian Journal of Turfgrass Science from Volume 26(2), 2012 which were launched by The Korean Society of Weed Science and The Turfgrass Society of Korea found in 1981 and 1987, respectively. 잔디비료제형의엽면살포가가을철한지형잔디의생장증대 구준학 1 허혁재 1 김양선 1 윤정호 1 장석원 1 이승준 2 장태현 2 * 1 ( 주 ) 한울, 2 경북대학교생태환경대학식물자원환경전공 Increase of Growth on Cool Season Turfgrass by Foliar Application of Preparations of Turfgrass Fertilizer during Fall Season Jun Hwak Koo 1, Hyug Jae Heo 1, Yang Sun Kim 1, Jeong Ho Yun 1, Seog Won Chang 1, Seong Jun Lee 2, and Taehyun Chang 2 * 1 Hanul Co., Ltd, Habcheon, Gyeongnam, 712-714, Korea 2 Plant Resources and Environment Major, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Gyeongbuk 741-711, Korea ABSTRACT. Four preparations of liquid turfgrass fertilizers were tested cool season turfgrasses during fall season. The preparations of PS-A, PS-B, PH-C and PH-D for commercial products were contained with essential nutrient elements, seaweed extract, amino acids, and humus substance. Growth and quality of creeping bentgrass (Agrostis palustris Huds cv. Penn-A1) and Kentucky bluegrass (Poa pratensis L.) mixture (Midnight 33%, Moonlight 33%, Prosperity 33%) were evaluated by normalized difference vegetation index (NDVI), root length and fresh weight, shoot density, turf color, and chlorophyll content. Three foliar sprays of 4 preparations with an interval of 7 days were made in the fall of 2013 in the sod production field at Hapchun, Korea. No significant difference among 3 preparations was found in NDVI of creeping bentgrass. However, PS-A was significantly increased NDVI of Kentucky bluegrass. Two to three applications of PS-A significantly increased chlorophyll content and turf color. Three foliar sprays of PS-A and PS-B were significantly increased the shoot density of Kentucky bluegrass on 20 days after final application. These results may indicate that the use of some preparation is beneficial in producing higher quality turfgrass sod with better color and chlorophyll content during fall season. Key words: Chlorophyll contents, Commercial products, Fertilizers, Preparations, Turf color Received on Feb. 28, 2014; Revised on Mar. 21, 2014; Accepted on Mar. 24, 2014 *Corresponding author: Phone) +82-54-530-1204, Fax) +82-54-530-1209; E-mail) thchang@knu.ac.kr These authors contributed equally to this work. 2014 The Korean Society of Weed Science and The Turfgrass Society of Korea This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License & #160; (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted noncommercial use, distribution, & #160; and reproduction in any medium, provided the original work is properly cited. 서론 한지형잔디는우리나라여름철기후에서생육에부적합하지만대부분골프장의그린과그린주변및티박스에식재되어있다. 그린에식재된잔디는 Agrostis 속에 creeping bentgrass 종이며, 그린주변과티박스에식재된잔디는 Poa 속에 Kentucky bluegrass 종이대부분이다 (Chang et al., 2009). 이들한지형잔디는상대적으로기온이이높 은지역에서생육하는난지형잔디인한국잔디 (Zoysia spp.) 에비하여년중녹색기간이길고, 품질이우수하며, 답압등의피해로부터회복력이빠른장점등을갖추고있어골프장에서사용이증가하고있다 (Chang et al., 2010). 그러나이들한지형잔디는한국잔디가잘자라는 7월과 8월의고온과다습으로탄소동화작용의효율이떨어지고, 휴면과고온에의한하고현상이심하게나타나는등의원인으로, 품질이떨어질뿐만아니라내장객의과도한답 41
42 구준학 허혁재 김양선 윤정호 장석원 이승준 장태현 압은품질을저하시킨다. 그러므로좋은잔디를유지하기위하여병해충방제는물론여러종류의비료를사용하지만관리에어려움이따르고있다 (Beard, 1973, Chang et al., 2010). 한지형잔디의생육과품질유지는기후와토양환경이외도, 병충해관리와시비관리에따라서도큰차이를보이지만, 대부분의관리자들은경험에의해비료의종류를선택하여사용하고있다. 그종류로는농작물재배용화학비료를비롯하여잔디전용화학비료및아미노산비료등다양하게사용되고있으나 (Chang et al., 2010), 많은종류의비료들이미국에서수입되는완효성비료와액상비료가주종을이루고있다. 이들비료의사용량도 2002년월드컵을기점으로골프장수의증가로인하여뗏장잔디를생산하는기업과농가의증가로크게늘어나고있다. 국내에서잔디전용으로개발된비료는많지않음으로골프장잔디관리와뗏장생산농가를위해서전용비료의개발이시급하다. 잔디전용비료의개발을위해서는환경을고려하여속효성입상비료나완효성입상비료외에액상비료등다양한종류의제형을개발하는것이필요하다. 액상비료는사용이편리하고환경오염을줄일수있으며, 사용효과가빠른장점이있으나 (Chang et al., 2010), 국내잔디재배농가는관행적으로잔디의생육과품질관리를위하여농업용입상화학비료에의존하고있는실정이다 (Chang et al., 2010). 그러나화학비료이외에도잔디의생육을증진시키는여러물질이알려져있다. 동물의모발이나가축부산물에서추출한아미노산이나대서양과북극해에서자생하는갈색해초 (Ascophyllum nodosum) 를추출한해초추출물 (Alina, 2005; Norrie et al., 2002), 고형과액상으로사용되는휴믹산도있다 (Chen, and Aviad, 1990). 해초추출액의효과는식물생장증진, 작물수확량증대, 토양으로부터무기성분의흡수증진, 서리나스트레스조건에서식물에저항성증진, 곰팡이병의발생감소와해충침입을감소시키고, 과실의저장손실을줄이고, 종자발아를증진및작물의품질을향상시킨다 (Alina, 2005; Berlyn and Russo, 1990; Norrie et al., 2002). 원예재배에서생육을증진시키는유기생물자극제로서사용하고있으며 (Verkleij, 1992), 또다른해초인 Ecklonia maxima Osbeck에서추출한액을캐놀라에유묘기에엽면살포하면수확량을증진되고 (Ferrera and Lourens, 2002), 잔디에엽면살포하면생육증진, 엽색및엽록소함량증진에효과가있다 (Chang and Yoon, 2012). 아미노산은단백질을분해하여얻은질소원으로잔디에사용시봄철에그린업을빠르게하는등생육을증진효과가있고 (Chang et al., 2009), 합성아미노산인 DL-phenylalanine, L-proline, L-histidine 및 DLmethionine은 토마토생장을증진시키고, 뿌리발육을촉진시켜생체중을증가시키는효과도있다 (Amdadul Hoque et al., 2013). 특히아미노산은종류나함량과사용하는량에따라서토양에서질산태질소의흡수를증대시키고, 질소동화작용을증가시켜식물의생장에직접적인영향을미친다 (Barneix and Causin, 1996). 휴믹산도작물의생육에증진과뿌리발육촉진효과가있으며 (Chen, and Aviad, 1990), 목초액은목탄을제조할때발생하는연기를포집하여냉각응축된액체로만든것으로페놀을비롯한많은종류의유기화합물이함유하고있어작물의생육촉진과병저항성증대등의효과가있는것으로알려져있다 (Chang, 2009). 본연구는잔디전용비료를개발하기위하여식물생장에필수적인영양원소를기본으로하여잔디의생육을증진시키는아미노산, 해초추출물, 휴믹산및목초액등을이용하여, 여러조합의액상제형을개발하여가을철잔디의생장, 잔디색, 엽록소함량및뿌리발육에대한효과를조사하고자수행되었으며, 그기초자료를바탕으로가장우수한제형을선발하여상업용제품으로등록하고자한다. 재료및방법 제형개발및사용잔디에생육에필수적인수용성인영양소와해초추출물, 아미노산및휴믹산을이용하여 4종류의제형을개발하여사용하였다. 4종류의제형중 2종류의제형은해초추출물을이용하였고, 다른 2종은제형은아미노산과휴믹산을이용하였다. 개발제형의명칭은 PS-A, PS-B, PH-C 및 PH-D로사용하였다. 이들제형에는쌀겨에서추출한천연물과필수영양원소인 Co(NH 2 ) 2, H 3 PO 4, KCl, Na 2 B 8 O 13.4H 2 O, ZnSO 4. 7H 2 O, EDTA-Fe, (NH 4 ) 6 Mo 7 O 24.4H 2 O, MnSO 4. H 2 O, MgSO 4.7H 2 O, CuSO 4.5H 2 O을사용하여조성되었다. 개발제형은비료관리법에맞게주성분을함유함하고있으며, 영양원소의흡수를증가시키는보조물질을첨가하였고, 사용의편리성을고려하여액상으로제형화하였다. 주요성분은비료관리법표시기준에준하여유효성분함유량은 PS-A는 T-N: 1.8%, P 2 O 3 : 8.8%, K 2 O: 7.1%, B 2 O 3 : 0.2%, Mo: 0.05%, Zn: 0.05%, Fe: 0.1%, Cu: 0.05%, MnO: 0.1%, MgO: 0.1% 이고, PS- B는 T-N: 1.5%, P 2 O 3 : 7%, K 2 O: 8.1%, B 2 O 3 : 0.4%, Mo: 0.05%, Zn: 0.07%, Fe: 0.1%, Cu: 0.05%, MnO: 0.1%, MgO: 0.4% 이다. PH-C는 T-N: 2%, P 2 O 3 : 8.4%, K 2 O: 6.2%, B 2 O 3 : 0.3%, Mo: 0.1%, Zn: 0.5%, Fe: 0.1%, Cu: 0.1%, MnO: 0.1%, MgO: 0.3% 이고, PH- D는 T-N: 2%, P 2 O 3 : 7%, K 2 O: 5%, B 2 O 3 : 0.2%, Mo: 0.1%, Zn: 0.4%, Fe: 0.1%, Cu: 0.05%, MnO: 0.1%, MgO: 0.4% 이다.
잔디비료제형의엽면살포가가을철한지형잔디의생장증대 43 공시잔디및포장시험포장시험은한지형뗏장잔디를생산하는경남합천군합천읍 ( 주 ) 한울재배농장에서실시하였다. 시험포장은모래로조성되었다. 시험용잔디의종류는켄터키블루그래스종의혼합품종 (Midnight 33%, Moonlight 33%, Prosperity 33%) 과크리핑벤트그래스 Penn A-1 품종을사용하였다. 켄터키블루그래스품종은 2013년 4월 6일에파종하였으며, 크리핑벤트그래스품종은 4월 20일에파종하였다. 관리는 ( 주 ) 한울의뗏장잔디관리기준에준하여관리하였고, 시험은 100일이상생육한성체식물에서실시하였다. 시험구의크기는반복당 1m 1m 하였고, 완전임의배치법에 3 반복으로수행하였다. 공시비료는개발제형 4종류와대조비료는시판되는해초추출물파우다 1종류, 완효성입상비료 (21-17-17) 1종을사용하였다. 공시비료의사용농도는원액을물에 500배로 (2 ml L -1 ) 희석하여반복당 1L의양을엽면살포하였다. 엽면살포는 2013년 9월 25에 1회살포후 7일간격으로 3회연속살포하였다. 대조비료인해초파우다는공시제제와동일하게살포하였으며, 완효성비료를질소성분을기준으로반복당 2g Vm -2 으로산출하여 1회시비하였다. 지상부생육조사잔디의지상부조사는 Chang et al. (2009) 이실시한방법에준하여실시하였다. 잔디생장량을측정하는생장지수, 잔디품질평가를위한엽색및엽록소함량을조사하였다. 2013년 9월 25일공시제제처리전에생장지수, 엽색및엽록소함량을조사한후, 1차공시제제를동력분무기를이용하여엽면살포하였고, 그이후 7일간격으로 2회와 3회살포하는동안공시제제를살포하기전에 2차와 3차조사를한후에동일한방법으로살포하였다. 3회살포를마친후에는 10일간격으로 11월 25일까지조사를하였다. 잔디의생장지수또는정규식생차지수조사는 Chang et al, (2009) 등의방법에따라서 Field Scout CM1000 NDVI Meter (Spectrum Technologies Inc.) 을이용하여 NDVI (Normalized Difference Vegetation Index) 값으로나타내었다. 생장지수산출은적색영역의가시광선과근적외선에서녹색식물의반사율차이를이용하는원리로식생분포상황조사에이용되며공식은다음과같다. NDVI = (NIR-VIS) / (NIR+VIS) NIR = 근적외선역의관측치 (Landsat 7 ETM+ 의경우에는 band 4를이용 ) VIS = 가시영역의관측치 ( 분광되고있는경우는적색영 역, Landsat 7 ETM+ 의경우에는 band 3를이용 ) NDVI 값은 1과 1사이에분포한다. 잔디색 (GCI) 측정은 Field Scout TCM500 NDVI turf color meter (Spectrum Technologies Inc.) 을이용하여빛이있는날에측정을하다. 660 nm의붉은색파장과 850 nm 의적외선의분광밴드 (spectral bands) 파장을잔디로부터반사되는빛을측정하여지수화한값 (index) 을사용하였다. 엽록소함량은 Field Scout CM1000 Chlorophyll meter을이용하여측정하였다. 엽록소측정원리는잔디잎에엽록소전체함량을측정하는것으로 700 nm-840 nm의빛의파장을감지하여엽록소함량을 0-999까지 index로나타내며, 측정거리가 28.4 cm에서측정시잎에측정직경은 1.10 cm이다. 시험포장지의잔디생장력은조사일에전의평균온도와최적온도를이용하여산출하였다 (Mangiafico and Guillard, 2007). 1 GP = --------------------- e 0.5 t --------- to 2 var GP = 생장력 ( 단위 0 1), e = 2.71828 ( 산술적인상수 ) t = 잔디재배지의평균온도 ( o C), t o = 최적온도 (C 3 형잔디 : 20 o C, C 4 형잔디 : 31 o C) var = 최적온도로부터의온도의변화에대한생장력변화적용 (C 3 형잔디 : 5.5; C 4 형잔디 : 8.5) 지하부생육조사공시액상제제 4종류를엽면시비후지하부생육특성인뿌리길이, 뿌리생중량및잔디개체수를조사하였다. 잔디의뿌리길이는 Mascaro Profile Sampler, MPS1-S (W2 L8 D18 cm, Turf-tech Inc.) 를이용하여샘플을채취한뒤뿌리길이를실측하였다. 뿌리생체중은토양층에서 2cm 밑의뿌리를채취하여수세한후중량을측정하였다. 잔디의개체수 ( 분얼경수 ) 조사는켄터키블루그래스에서는 10 cm 2 에서의개체수를조사하였고, 크리핑벤트그래스는 2cm 2 에서의개체수를조사하였다. 조사는공제제제를 10 일간격 3회살포후 20일에조사하였다. 통계분석통계분석은 SAS (Statistical Analysis System) 프로그램을이용하여처리구에대한잔디잎색, 엽록소함량및생육지수에대하여종간 ( 품종 ) 에 Fit Y by X 모델에서 one way 분석을위하여평균 (means)/anova 분석 /T-test와표준편차및 all pairs, Tukey HSD로통계처리를하였다 (SAS, 1999).
44 구준학 허혁재 김양선 윤정호 장석원 이승준 장태현 결과및고찰 개발제형의특성공시제형으로사용한개발제형의이화학성및안정성은다음과같다. PS-A와 PS-B의물리성은 ph는 5.6이고, 상업용제품으로유통을고려하여 45 o C의고온과 -20 o C 저온에서 7일간보관시색상의변화나침전이발생하지않았다. 유효성분도분석한결과성분함량에도아무런변화가없었다 ( 자료미제시 ). PH-C 와PH-D제형의 ph는 3.5 이며, 45 o C의고온과 -20 o C 저온에서색상의변화, 침전현상및유효성분의변화가없었다. 비료관리법상제4종복합비료란모든원료가수용성이며, 질소, 인산, 가리중 2종류이상이 10% 를함유하고, 미량요소는 2종이상을보증하면된다. 여기서미량요소란, 철, 붕소, 아연, 동, 망간, 몰리브덴이다 (Official Standard of Commercial Fertilizer, 2010). 경시적잔디생장, 잔디색및엽록소함량잔디전용비료로개발된 PS-A제형의살포한구와무처리구간에잔디품질과생장력을비교한결과는 Fig. 1, Fig. 2 및 Fig. 3과같다. 평균온도에의의한잔디생장력은 10월 9일이후로는급격하게약화되는경향을보였다. 하지만, 잔디의종류별잔디생장을생장지수 (NDVI) 로조사한결과 Fig. 1B과같이종간에차이도있었으며, 처리구에서생장이 10일 23 일까지증가하고그이후로낮아지는것을볼수있었다. 잔디의생장은살포구에서 10월 23일부터 11월 4일까지증가하는것이통계적인유의차이가있었다 (Fig. 2). 잔디색은시험시작일부터 10월 30일까지증가하고 11 월 6일부터급격하게감소하는것을볼수있었다 (Fig. 2A). 크리핑벤트그라스는 10월 23일부터 10월 30일까지통계적인유의차이를보였고, 켄터키블루그라스는공시제제 2회살포후조사일인 10월 9일과 3회살포후인 10월 31일조사에서통계적인유의차이를보였다 (Fig. 2B). 엽록소함량은켄터키블루그라스와크리핑벤트그라스에서공시제제를 2회살포후조사부터증가하여통계적인유의차이를보였다 (Fig. 3). 엽록소함량은두종간에큰차이를보였다. 특히켄터키블루그라스는 1회살포후부터 Fig. 1. Growth potential (A) by average temperature of field location and Normalized Difference Vegetation Index (NDVI) (B) on creeping bentgrass (CBG) cultivar Penn-A1 and Kentucky bluegrass (KBG) mixed cultivars (Midnight 33%, Moonlight 33%, and prosperity 33%) by foliar spray with preparation during fall season in the field. CBG (T) and KBG (T): Treatment of PS-A preparation; CBG (C) and KBG (C): Non- treatment. Preparation was applied with 3 times interval 7 days from Sep. 25, 2013. Data collection was made on from Oct. 2 to Nov. 25, 2013. It was significantly different at P =0.05 according to the Fisher s protected least significant difference (LSD) test. Fig. 2. Turf color on creeping bentgrass (A) cultivar Penn-A1 and Kentucky bluegrass (B) mixed cultivars (Midnight 33%, Moonlight 33%, and prosperity 33%) by foliar spray with preparation during fall season in the field. GB: Growth potential by average temperature of field location; CBG (T) and KBG (T): Treatment of PS-A preparation; CBG (C) and KBG (C): Non- treatment. Preparation was applied with 3 times interval 7 days from Sep. 25, 2013. Data collection was made on from Oct. 2 to Nov. 25, 2013. It was significantly different at P = 0.05 according to the Fisher s protected least significant difference (LSD) test.
잔디비료제형의엽면살포가가을철한지형잔디의생장증대 45 엽록소함량이증가하기시작하여 11월 14일까지유지되는경향을보였으나, 크리핑벤트그라스는 10월 23일까지만증가하였다. 잔디의생육에미치는평균온도를이용하여잔디생장력을산출하여경시적인잔디생장력과포장시험에서조사한생장지수, 잔디색및엽록소함량을비교하여조사한결과큰차이를보였다. 경시적으로평균온도가낮아지는후반기로갈수록평균온도로산출한한지형잔디의생장력은 10월 9일이후부터크게둔하되는반면에실제포장에서조사한생장지수, 잔디색및엽록소함량은상대적으로서서히감소하는것을볼수있었다. 특히켄터키블루그라스종은크리핑벤트그라스종에비하여생장지수와엽록소함량이크게높았으며, 잔디색은큰차이를보이지않았다. 이결과로보아한지형잔디는기온이낮아질수록생장의크게감소하지만, 잔디의품질을나타내는잔디색과녹색을유지하는엽록소함량은 11월 6일까지증가하다가그이후로점차감소하는것을볼수있었다. 생장지수 (NDVI), 잔디색및엽록소함량개발제형살포에의한생장지수, 잔디색및엽록소함량에미치는영향에대한분산분석을한결과, 잔디의종류, 처리구및공시제제에서유의차이가있었다 (Table 1). 잔디생장지수는개발제형을 2회살포후조사에서대조구대비 P =0.05에서유의차이를보였고, 3회살포후인 10월16일, 23일, 31일조사에서는 P =0.1에서유의차이를보였다. 개발제형인 PS-A가가장효과적으로생장 Fig. 3. Contents of Chlorophyllon creeping bentgrass (A) cultivar Penn-A1 and Kentucky bluegrass (B) mixed cultivars (Midnight 33%, Moonlight 33%, and prosperity 33%) by foliar spray with preparation during fall season in the field. GB: Growth potential by average temperature of field location; CBG (T) and KBG (T): Treatment of PS-A preparation; CBG (C) and KBG (C): Non-treatment.Preparation was applied with 3 times interval 7 days from Sep. 25, 2013. Data collection was made on from Oct. 2 to Nov. 25, 2013. It was significantly different at P = 0.05 according to the Fisher s protected least significant difference (LSD) test. Fig. 4. Difference of Normalized Difference Vegetation Index (NDVI) on Kentucky bluegrass mixed cultivars (Midnight 33%, Moonlight 33%, and prosperity 33%) by foliar spray with preparation during fall season in the field. PS-A: preparation A; PS-B: preparation B; PH-C: preparation C; PH-D: preparation D; C-A: slow release fertilizer; C-B: seaweed extract (100%); Con: control. Preparation was applied with 3 times interval 7 days from Sep. 25, 2013. Bars represent standard error. Values in column followed by the same letter are not significantly different at P = 0.05 according to the Fisher s protected least significant difference (LSD) test. 을증가시킴으로, 그외 3종의개발제형과는차이를보였다. 크리핑벤트그라스잔디는공시제제간에유의차이를보이지않았다. 하지만, 개발제형 PS-A와 PS-B는대조구와무처리구보다높은경향을보였다 ( 자료미제시 ). 잔디색은켄터키블루그라스종과크리핑벤트그라스종에엽색에미치는영향을조사한결과, Fig. 5와같다. 켄터키블루그래스혼합품종은개발제형 2회살포후 10월 9 일, 3회살포후 10월 16일및 23일조사에서통계적인유의차이를보였다. PS-A와완효성비료처리구에서가장우수한효과를보였다. 크리핑벤트그래스품종 PennA-1 은개발제형을 3회살포후인 10월 23일조사에처리구간의통계적으로는유의성차이는보였다. 엽록소함량은켄터키블루그라스잔디에서 2회살포후부터 10월 31일통계적인유의차이를보였다 (Fig. 6A). 개발제형인 PS-A에서가장우수한효과가있었다. 크리핑벤트그라스잔디의엽록소함량은 2회엽면살포후 10 월 9일, 16일및 23일에서통게적인유의차이를보였으며 (Fig. 6B), 개발제형인 PS-A의효과가가장우수하였다. 잔디의지하부생육효과잔디의지하부의생장에미치는영향을조사한결과분얼에의한잔디개체수밀도에서크리핑벤트그라스에서통계적인유의성의차이를보였으나 (Fig. 7), 켄터키블루그라스에서는유의차이가없었다. 해초추출물을원료로한개
46 구준학 허혁재 김양선 윤정호 장석원 이승준 장태현 Table 1. Analysis of variance of NDVI, turf color and chlorophyll of Kentucky bluegrass and creeping bentgrass by foliar application with 4 preparations for development of commercial products during fall season in field experiments. Source df NDVI Turf color Chlorophyll F value P Value F value P Value F value P Value Turfgrass species (TS) 1 3013.8470 0 1365.623 <.0001 1606.3250 <.0001 Treatments (T) 6 4.2000 0.0003 26.812 <.0001 37.6035 <.0001 Replication (R) 2 16.7411 <.0001 29.074 <.0001 24.6591 <.0001 Days of data collection (DDC) 7 42.0327 <.0001 134.315 <.0001 298.6497 <.0001 TS T 6 15.6867 <.0001 37.129 <.0001 16.4424 <.0001 T R 12 15.4252 <.0001 12.111 <.0001 8.6120 <.0001 TS DDC 7 7.6201 <.0001 50.240 <.0001 57.3236 <.0001 TS DDC R 14 0.9716 0.48 7.433 <.0001 1.2230 0.2505 TS T DDC 42 0.4983 0.9972 0.648 0.9615 2.0405 <.0001 Error 2884 Application was applied with foliar spray 3 times interval 7 days from Sep. 25, 2013. Data collection was on form Oct. 2 to Nov. 25. Fig. 5. Difference of turf color on Kentucky bluegrass mixed cultivars (Midnight 33%, Moonlight 33%, and prosperity 33%) (A) and creeping bentgrass cultivar Penn-A1 (B) by foliar spray with preparation during fall season in the field. PS-A: preparation A; PS-B: preparation B; PH-C: preparation C; PH- D: preparation D; C-A: slow release fertilizer; C-B: seaweed extract (100%); Con: control. Preparation was applied with 3 times interval 7 days from Sep. 25, 2013. Data collection was made on Oct. 9 to Oct.31, 2013 after 2 time applications. Bars represent standard error.values in column followed by the same letter are not significantly different at P = 0.05 according to the Fisher s protected least significant difference (LSD) test. Fig. 6. Contents of chlorophyll on Kentucky bluegrass mixed cultivars (Midnight 33%, Moonlight 33%, and prosperity 33%) (A) and creeping bentgrass cultivar Penn-A1 (B) by foliar spray with preparation during fall season in the field. PS-A: preparation A; PS-B: preparation B; PH-C: preparation C; PH- D: preparation D; C-A: slow release fertilizer; C-B: seaweed extract (100%); Con: control. Preparation was applied with 3 times interval 7 days from Sep. 25, 2013. Bars represent standard error. Values in column followed by the same letter are not significantly different at P = 0.05 according to the Fisher s protected least significant difference (LSD) test. 발제형 PS-A와 PS-B가휴믹산과아미노산을원료로한액상PH-C와 PH-D 살포구보다우수하였다. 본시험을통해서개발제형은서로다른원료의함량을조성하여개발하여가을철생장이완성한 10월에조사한
잔디비료제형의엽면살포가가을철한지형잔디의생장증대 47 Fig. 7. Shoot density on Kentucky bluegrass mixed cultivars (Midnight 33%, Moonlight 33%, and prosperity 33%) (KBG) and creeping bentgrass cultivar Penn-A1 (CBG)by foliar spray with preparation during fall season in the field. PS-A: preparation A; PS-B: preparation B; PH-C: preparation C; PH- D: preparation D; C-A: slow release fertilizer; C-B: seaweed extract (100%); Con: control. Preparation was applied with 3 times interval 7 days from Sep. 25, 2013. Data collection was on Oct. 29 after 3 time applications. Bars represent standard deviations.values in column followed by the same letter are not significantly different at P = 0.1 according to the Fisher s protected least significant difference (LSD) test. 결과, 개발제형의종류에따라서큰차이가나타나는것을볼수있었다. 이는개발제형의종류에따른원료의함량조성에따라서효과가다르게나타난다는것을볼수있었다. 조사항목중개발제형간에가장뚜렷한차이를보이는것은엽록소함량에서볼수있었다. 엽록소함량은잔디종간에도뚜렷한차이를보였지만, 개발제형의살포효과가가장높게나타난것을볼수있었는데, PS-A가가장효과가높게나타난것을볼수있었다. 개발제형의종류는 PS-A와 PS-B의제형은해조추출물의원료를기반으로만들어진것이지만, 원료의함량의차이에의해효과가다르게나타난것을알수있었다. 이와같이지상부생육, 잔디색및엽록소함량에는있는해조추출물제형이효과가있었지만, 지하부생육에서는휴믹산을원료로한 PH-D가효과가있는것을볼수있었다. 하지만휴믹산을이용하여개발한제형들이효과가미미한것은잔디시험포장은 USGA기준에맞게모래를깔고파종을함으로서잔디가자라는땅은흙이함유되지않은순수한모래임으로휴믹산의효과인, 비효증진, 물리성개선, 양원소의유효도증진, 토양미생물밀도증진등의효과가나타나지않아효과가잘나타나지않은것으로평가된다. 하지만 10년이상된골프장의경우는또다른효과가있을것으로생각된다. 개발제형 PS-A와 PS-B에사용한해초추출물은케나다 North American Kelp사나유럽에서제조되어, 국내외적으로농업에사용하고있는해초추출물의유효성분은알긴산 을비롯한많은종류의아미노산, 다당류, 비타민류, 핵산, 천연호르몬 ( 싸이토키닌, 옥신, 지베렐린 ), 베타인, 만니톨및각종미네랄이함유되어있다 (Chang and Yoon, 2012; Miller, 1996). 특히베타인은다른해초류에비해 5-13배 ( 일반식물의 1,000배 ) 나많이함유되어있는데, 엽면세포를자극하여영양분흡수를 4시간이내로유도하며이자극으로인하여뿌리의영양흡수능력도향상될뿐만아니라건조, 과습, 염류장해, 온도장해, 이식장해등에저항력을높여주는항스트레스작용과각종병해에대한저항력을높여준다 (Alina, 2005; Norrie et al., 2002). 많은연구자들에의하면, 해초추출액은영양원소결핍조건과스트레스조건에서식물에무기영양소흡수를증대시키는역할을하지만 (Heckman, 1994; Crouch and Van Staden, 1994), 최적의조건에서도이온을흡수하는데기여한다고한다 (Crouch et al., 1990). Kotze and Joubert (1980) 에의하면해초 (Ecklonia maxima) 추출액을십자화과 (Brassica oleraceae) 에엽면살포하면칼슘의흡수를증진시킨다. Turan and Kose (2004) 에의하면해초추출액 3종류를포도나무에엽면살포한결과, N, P, K, Ca, Fe, Mg, Mn 및 Zn 흡수에효과적이었으며, 살포농도가높을수록무기영양소의흡수율이증가된다고하였다. 특히식물생장에필요한무기영양수준이최적조건인배지에서자라는포도나무에해초추출액을 1000배액을살포하니포도잎에 Ca와 N 함량이가장높게증가하였고, 무기영양수준이높은조건에서는포도잎에 Mg, P 및 K 함량이가장높았다. 하지만, 무기영양이부족한조건에서는대량요소의흡수에영향을미치지는않았지만 Cu 흡수율은크게증가하였다고한다. 휴믹산은토양에존재하는대부분의금속이온을킬레이트화를할수있어식물에무기성분인금속이온의이용성을증대시킬수있다 (Stevenson, 1994). 휴믹산은식물의뿌리와뿌리털의생장에효과적이며 (Pinton et al., 1999), 뿌리가발달함에의하여 K, P, Fe와같은영양소를흡수를증가시킨다 (Cesco et al., 2002; Marschner, 1995). 지금까지여러연구자들에의하면휴믹물질중에풀빅산은휴믹산보다뿌리의발달을더크게증가시킨다고한다 (Rauthan and Schnitzer, 1981). 아미노산도식물에무기영양소흡수에중요한역할을한다 (Marschner, 1991). 철결핍이된토마토에휴믹산과아미노산을혼합하여사용할경우수확량감소와품질저하없이토마토의잎에철의흡수가증가와더불어인산의수준도증가함으로서잎에 Na수준을감소시켰다고하였다. 휴믹산제형인 PS-C와 PS-D는휴믹산과아미노산을사용에사용하였으며, 황색에서흑색을띠는고분자량의물질을산으로추출하여액상으로만들어진물질로 fulvic
48 구준학 허혁재 김양선 윤정호 장석원 이승준 장태현 acids도함유하고있는데, 휴믹산은주로 humic acid, fulvic acid 및 humin으로나눌수있다 (Chen, and Aviad, 1990). 농업에이용되는 humic acids는제품화과정에서중성 ph 를갖는염기화합물을처리해야하므로중성 ph에가까운염기성을띠게되며, humic acids의이러한염기성용액을 humate라고한다. 고추에뿌리발육을촉진시키고, 딸기의과일수를증가시킨다 (Norman et al., 2006). 또한이들제품에사용한목초액은 80-90% 는수분이고, 나머지 10-20% 가유기화합물이다. 유기화합물은초산이주종을이루며 (3-7%) 기타개미산, 포름알데하이드, 페놀및타르성분을함유하여 ph 3정도로산성인수용액이다. 목초액에함유된주요산으로서는초산, 프로피온산, 부틸산등 6 종, 알코올류는메타놀, 아세토인등 10종, 페놀류로서는크레졸, 에틸페놀등 12종및아세톤이나에스텔류와같은중성물질로구성되었으며, 전체적으로는 200여종의성분이포함된것으로알려지고있으나이들각각의성분은사용하는나무종류에따라함량은변화가크다. 목초액의품질을결정하는요인으로서는 ph, 비중, 유기산, 타르, 색, 냄새, 투명도등이며이러한성질은원료의종류, 함수율및탄화법에따라달라진다 (Chang, 2009). 현미식초는 oxalic, tartaric, malic, citric, lactic, acetic(3.33~4.55%), succinic acid 등의유기산을함유하고있으며 0.0089-0.29% 의유리아미노산을함유하며그외 Cu, Fe, K, Na등과같은미량요소들을다량함유하고있다. 비휘발성유기산이총산도의 5-10% 나존재하며 lycine, lactic acid는다른종류의식초에비하여많이함유되어있다. 과실에유기산처리시농색화효과가있었으며저장기간중변색이되지않았고저장기장의경과에따라안정화되는것으로보고되어있다 (Chang and Yoon, 2012). 아미노산은유기태질소화합물로모든농작물에기본적으로사용하며토양관주및식물에엽면살포에널리사용되고있다. 아미노산은인, 축모발에서추출한아미노산, 가축의장기및케라친단백질을산가수분해로만든아미노산으로그종류는보통 17종에해당된다. 아미노산의함량은원료물질에따라서차이가나지만, 식물에사용시흡수가빠르고용의하여생장을증대시키며, 일조부족및저온에강한저항력을가지며피해로부터조기회복을촉진하고, 토양관주시뿌리발근촉진을증대시키는것으로알려져있다 (Barneix and Causin, 1996; Chang et al., 2010). 본시험을통해원료물질의종류와함량에따라서생장과잔디에반응이다르다는것을알수있었으며, 얻어진성적을바탕으로최종상업용제품을개발하는데기초자료로활용할수있을것으로생각된다. 요약 액상잔디비료의 4종류의제형을가을철한지형잔디에서시험하였다. 상업용제품개발을위한 PS-A, PS-B, PH- C 및 PH-D은필수영양원소와해추출액, 아미노산및휴믹물질함유하고있다. 켄터키블루그라스혼합품종 (Midnight 33%, Moonlight 33%, Prosperity 33%) 과크리핑벤트그라스 Penn-A1 품종에대한생장과품질은잔디색, 엽록소함량및뿌리길이, 뿌리생체중및개체수 ( 분얼수 ) 밀도로평가하였다. 4종류의제형을 2013년가을철에합천뗏장농장에서 7일간간격으로 3회엽면살포를하였다. 잔디생장은크리핑벤트그라스에서는 4종류모드에서처리간에통계적으로유의적인차이는없었으나, 켄터키블루그라스에서는 PS-A에서잔디생장이증가하였다. 엽록소함량과잔디색은 PA-A를 2와 3회살포한크리핑벤트그라스와켄터키블루그라스에서통계적으로유의성있게증가하였다. 잔디개체수밀도는 PA-A 와 PA-B를살포한처리구에서살포후 20일에켄터키블루그라스에서유의차이는보였다. 이결과는개발제형을가을철에뗏장잔디생산과골프장에서사용할경우잔디색과엽록소함량증대에도움이될것으로생각된다. 주요어 : 상업용제품, 비료, 개발제형, 개체수밀도, 잔디색 Acknowledgement This research was supported by the SMBA (Small and Medium Business Administration), Republic of Korea (No. H0003239). References Alina, P. 2005. The effect of chitosan on the formulation of microorganism communities of the rhizosphere soil of soybean. Acta Sci. Pol., Hortorum Cultus. 4(2):69-77. Amdadul Hoque, A.K.M., Rejwan Bhuiyan, Md., Iqbal Khan, M.A., Mahmud, A. and Uddin Ahmad, M. 2013. Effect of amino acids on root-knot nematode (Meloidogyne javanica) infecting tomato plant. Achive Phytopathology Plant protection 46(20):1-8. Barneix A.J., and Causin, H.F. 1996. The central role of amino acids on nitrogen utilization and plant growth. J. Plant Physiol. 149:358-362. Beard, J.B. 1973. Turfgrass science and culture. Pretice-Hall, Inc., Englewood Cliffs, NJ. USA. pp. 132-147. Beryln, G.P. and Russo, R.O. 1990. The use of organic
잔디비료제형의엽면살포가가을철한지형잔디의생장증대 49 biostimulants in nitrogen fixing trees. Nitrogen Fixing Trees Research Report 81:1-2. Cesco, S., Nikolic, M., R omheld, V., Varanini, Z. and Pinton, R. 2002. Uptake of 59 Fe from soluble 59 Fe-humate complexes by cucumber and barley plants. Plant Soil 241:121-128. Chang, T.H. 2009. Disease control efficacy of chitosan preparations against tomato leaf mold. Res. Plant Dis. 15(3):248-253. (In Korean) Chang1, T.H., Lee, Y.S. and Jeong, B.R. 2009. Quality evaluation for some cultivars in cool season turfgrass. Kor. Turfgrass Sci., 23(2):295-306. (In Korean) Chang, T.H., Park, S.Y., Kang, J.Y., Chang, S.W. and Lee, Y.S. 2010. Application of liquid amino-fertilizer for green up promotion during spring season. Kor.Turfgrass Sci. 24(1):36-44. (In Korean) Chang, T. H. and Yoon, J.H. 2011. Growth response of Kentucky bluegrass and creeping bentgrass by foliar spray with chitosan formulation and seaweed extracts during fall season. Asian J. Turfgrass Sci. 25(2):195-201. (In Korean) Chen, Y. and Aviad, T. 1990. Effects of humic substances on plant growth, in: MacCarthy, P., Clapp, C.E., Malcolm, R.L. and Bloom, P.R. (Eds.), Humic Substances in Soil and Crop Sciences: Selected Readings, ASA and SSSA, Madison, Wisconsin, USA. pp. 161-186. Ferrera, M.I. and Lourens, A.F. 2002. The efficacy of liquid seaweed extract on the yield of canola plants. S. Afr. J. Plant Soil 19(3):159-161 Miller, I.J. 1996. Alginate composition of some New Zealand brown seaweeds. phytochemistry 48:1315-1317. Marschner, H. 1991. Root induced changes in the available micronutrients in the rizonsphere. In: plant roots the hidden half (eds.).waisel, Y., Eshel, A. and Kafkafi, U. Marcel Dekker, Inc. NY, USA. pp. 503-528. Norman, Q., Arancon, N.Q., Edwards, C.A., Lee, S. and Byrne, R. 2006. Effects of humic acids from vermicomposts on plant growth. Eur. J. Soil Biol. 42:S65-S69. Norrie, J., Branson, T. and Keathley, P.E. 2002. Marine plants extract impact on grape yield and quality. Acta Hort. 594:315-319. Mangiafico, S.S. and Guillard, K. 2007. Cool-season turfgrass color and growth calibrated to leaf nitrogen. Crop Sci. 47:1217-1224. Official Standard of Commercial Fertilizer, 2010. www.rda.go.kr (Accessed on Feb. 10, 2014). Park, J.H. and Kim, B.W. 2000. Effect of chitosan and woody charred materials treatment on the growth and yield of garlic and onion. Reserch of Natural Resources 3:1-7. Pinton, R., Cesco, S., Santi, S., Agnolon, F. and Varanini, Z. 1999. Water extractable humic substances enhance iron deficiency responses by Fedeficient cucumber plants. Plant Soil 210:145-157. Rauthan, B.S. and Schnitzer, M. 1981. Effects of a soil fulvic acid on the growth and nutrient content of Cucumber (Cucumis sativus) plants. Plant Soil 63:491-495. Stevenson, F. J. 1994. Humus chemistry: Genesis, composition, reactions. John Wiley and Sons Inc. NY, USA. pp. 134-142. Sánchez, A.S., Juárez, M., Sánchez- Andreu, J., Jordá, J. and Bermúdez, D. 2005. Use of humic substances and amino acids to enhance iron availability for tomato plants from applications of the chelate FeEDDHA. J. Plant Nutrition. 28(11):1877-1886. SAS Institute Inc. 2001. The SAS system release 8.2 for Windows. SAS Inst., Cary, NC, US. USA. Turan, M. and Kose, C. 2004. Seaweed extracts improve copper uptake of grapevine. Acta Agric. Scand., Sect. B, Soil and Plant Sci. 54:213-220. Verkleij, F.N. 1992. Seaweed extracts in agriculture and horticulture: a review. Biological Agriculture and Horticulture 8:309-324.