KISEP Information Korean J Otolaryngol 2006;49:248-56 후각신경상피세포의분화와재생 김정훈 Differentiation and Regeneration of Olfactory Neuroepithelial Cells Jeong-Whun Kim, MD Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, Bundang Hospital, Seongnam, Korea - 248
김정훈 Stem cell Mash1 + Progenitor INP Ngn1 + ORN NCAM + NC OE GBC HBC LP OEC Fig. 1. Scheme of the neuronal differentiation pathway and histological arrangement of cells in mature olfactory neuroepithelium. Neuronal stem cells red give rise to transit amplifying progenitors that express Mash1 blue, followed by immediate neuronal precursors INPspurple, which express Neurogenin1 Ngn1. The INP divides and daughter cells differentiate into ORNs green, which are distinguished by NCAM expression. SUSSustentacular cells, adjacent to the nasal cavity, ORN olfactory receptor neuron layers, GBCglobose basal cell layer, containing stem cells and committed neuronal progenitors Mash1+progenitors and Ngn1+INPsHBChorizontal basal cell layer, LPlamina propria, OEColfactory enshe-athing cells, ONolfactory nerve axons of ORNsAdapted from Exp Cell Res 2005306309-16. - ON SUS ORN Stem/ Progenitor Cells BL - - - - - 249
후각신경상피의재생 Table 1. Identification of cell types in the olfactory neuroepithelium Antibody/Antigen Target Dilution Used GBC-1 rat OE GBCs 1300 Schwob Source GBC-2 rat OE GBCs 130 Schwob MASH1 GBCs bbs-1 carbohydrate HBCs, some glands 150 Vector Cytokeratin 5, 14 HBCs 150 Boehringer mannheim Nestin, monclonal Embryonic stem cells 150 Chemicon Olfactory marker protein OMP Mature neurons 15,000 Margolis et al. ß-tubulin isotype Neurons/progenitor 1100 Sigma NCAM, Monoclonal Neuronsall stages 150 Chemicon Vimentin Neurons 1100 Boehringer mannheim FGF2 Mature neurons; sustentacular cells 1100 UBI NGF receptor P75 Neurons and glia 150 Sigma GFAP, polyclonal Ensheathment progenitor 15 INCSTAR GAP-43 Immature neurons 130 TuJ-1 Neurotubulin Immature neurons 1100 Carter SUS-4 rat OE Sustentacular cells 110 Schwob Cytokeratin 18 Sustentacular cells 150 Serotec GLA-13 Bowman s glands and ducts 110 GFAP, monoclonal Ensheathment progenitorastrocytesolfactory glia 140 Boehringer mannheim A2B5, monoclonal Glia/some neurons 1100 Boehringer mannheim PCNA Mitotically active cells 15,000 Sigma BrdU Mitotically active cells 150 Becton-dickinson - 250 Korean J Otolaryngol 2006;49:248-56
김정훈 - - - A B C E D F Fig. 2. Expression of proliferating cell nuclear antigen PCNA after exposure to SO 2. The mice were exposed to 40 ppm SO 2 for 2 hours. PCNApositive cells could be rarely found and localized mainly in the basal cell layer of the olfactory neuroepithelium of control mice A. The immunoreactivity of PCNA markedly increased 5 days after SO 2 exposure B, and this finding was also observed 7 days C, 10 days D, and 14 days E after SO 2 exposure. The PCNA-positive cells were found mainly in the superficial layer 5 days after SO 2 exposure. The number of PCNA-positive cells increased in the basal cell layer between 7 and 14 days after SO 2 exposure. The number of PCNApositive cells decreased 21 days F after SO 2 exposure 100. 251
후각신경상피의재생 - - - 252 - - - Korean J Otolaryngol 2006;49:248-56
김정훈 in vitro - HBC GBC mpp TGF- OSN m IGF-1 GBC ta FGF2 OSN i BMP 2, 4, 7 GBC inp TGF-s PDGF Fig. 3. Growth factor regulation on the processes of cellular renewal in the olfactory epithelium apparently depends on similar factors playing similar roles as in other systems. The balance between fibroblast growth factor-2 FGF-2 and BMP signals seems to be critical for advancing or retarding neurogenesis. Transforming growth factors- TGF- stimulate neuronal differentiation in cell lines derived from GBCs. Lines ending in circles designate a stimulatory effect; lines ending in a perpendicular line indicate inhibition. IGF-1insulin-like growth factor-1, PDGF platelet-derived growth factor, GBCglobose basal cells, mppmulti-potent precursors, tatransit amplifying, inp immediate neuronal precursors, OSN mmature olfactory sensory neurons, OSN iimmature olfactory sensory neuron, HBC horizontal basal cells, SUSsustentacular cells Adapted from Anat Rec 2002;269:33-49. - SUS 253
후각신경상피의재생 - - - in vitro 254 Korean J Otolaryngol 2006;49:248-56
김정훈 REFERENCES 1) Firestein S. A nobel nose: The 2004 Nobel Prize in Physiology and Medicine. Neuron 2005;45:333-8. 2) Graziadei PP, Monti Graziadei AG. Regeneration in the olfactory system of vertebrates. Am J Otolaryngol 1983;4:228-33.. 3) Min YG, Kim JW, Hong SC, Dhong HJ, Jarin PR, Jin Y. Pathogenetic mechanism of olfactory cell injury after exposure to sulfur dioxide in mice. Laryngoscope 2003;113:2157-62. 4) Moran DT, Rowley JC 3rd, Jafek BW, Lovell MA. The fine structure of the olfactory mucosa in man. J Neurocytol 1982;11:721-46. 5) Lane AP, Gomez G, Dankulich T, Wang H, Bolger WE, Rawson NE. The superior turbinate as a source of functional human olfactory receptor neurons. Laryngoscope 2002;112:1183-9. 6) Wrobel BB, Leopold DA. Olfactory and sensory attributes of the nose. Otolaryngol Clin North Am 2005;38:1163-70. 7) Feron F, Perry C, McGrath JJ, Mackay-Sim A. New techniques for biopsy and culture of human olfactory epithelial neurons. Arch Otolaryngol Head Neck Surg 1998;124:861-6. 8) Leopold DA, Hummel T, Schwob JE, Hong SC, Knecht M, Kobal G. Anterior distribution of human olfactory epithelium. Laryngoscope 2000;110:417-21. 9) Levasseur G, Baly C, Grebert D, Durieux D, Salesse R, Caillol M. Anatomical and functional evidence for a role of arginine-vasopressin (AVP) in rat olfactory epithelium cells. Eur J Neurosci 2004;20: 658-70. 10) Beites CL, Kawauchi S, Crocker CE, Calof AL. Identification and molecular regulation of neural stem cells in the olfactory epithelium. Exp Cell Res 2005;306:309-16. 11) Piras E, Franzen A, Fernandez EL, Bergstrom U, Raffalli-Mathieu F, Lang M, et al. Cell-specific expression of CYP2A5 in the mouse respiratory tract: Effects of olfactory toxicants. J Histochem Cytochem 2003;51:1545-55. 12) Suzuki Y, Takeda M, Farbman AI. Supporting cells as phagocytes in the olfactory epithelium after bulbectomy. J Comp Neurol 1996;376: 509-17. 13) Suzuki Y. Cell death, phagocytosis, and neurogenesis in mouse olfactory epithelium and vomeronasal organ after colchicine treatment. Ann N Y Acad Sci 1998;855:252-4. 14) Kwon BS, Kim MK, Kim WH, Pyo JS, Cheon YH, Cha CI, et al. Age-related changes in microvillar cells of rat olfactory epithelium. Neurosci Lett 2005;378:65-9. 15) Cunningham AM, Manis PB, Reed RR, Ronnett GV. Olfactory receptor neurons exist as distinct subclasses of immature and mature cells in primary culture. Neuroscience 1999;93:1301-12. 16) Rawson NE, Gomez G. Cell and molecular biology of human olfaction. Microsc Res Tech 2002;58:142-51. 17) Iwema CL, Schwob JE. Odorant receptor expression as a function of neuronal maturity in the adult rodent olfactory system. J Comp Neurol 2003;459:209-22. 18) Schwartz Levey M, Chikaraishi DM, Kauer JS. Characterization of potential precursor populations in the mouse olfactory epithelium using immunocytochemistry and autoradiography. J Neurosci 1991; 11:3556-64 19) Hahn CG, Han LY, Rawson NE, Mirza N, Borgmann-Winter K, Lenox RH, et al. In vivo and in vitro neurogenesis in human olfactory epithelium. J Comp Neurol 2005;483:154-63. 20) Chen X, Fang H, Schwob JE. Multipotency of purified, transplanted globose basal cells in olfactory epithelium. J Comp Neurol 2004;469: 457-74. 21) Carter LA, MacDonald JL, Roskams AJ. Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. J Neurosci 2004;24:5670-83. 22) Manglapus GL, Youngentob SL, Schwob JE. Expression patterns of basic helix-loop-helix transcription factors define subsets of olfactory progenitor cells. J Comp Neurol 2004;479:216-33. 23) Whitby-Logan GK, Weech M, Walters E. Zonal expression and activity of glutathione S-transferase enzymes in the mouse olfactory mucosa. Brain Res 2004;995:151-7. 24) Buck L, Axel R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 1991;65:175-87. 25) Strotmann J, Levai O, Fleischer J, Schwarzenbacher K, Breer H. Olfactory receptor proteins in axonal processes of chemosensory neurons. J Neurosci 2004;24:7754-61. 26) Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, et al. Visualizing an olfactory sensory map. Cell 1996;87:675-86. 27) Boyd JG, Doucette R, Kawaja MD. Defining the role of olfactory 255
후각신경상피의재생 ensheathing cells in facilitating axon remyelination following damage to the spinal cord. FASEB J 2005;19:694-703. 28) Au E, Roskams AJ. Olfactory ensheathing cells of the lamina propria in vivo and in vitro. Glia 2003;41:224-36. 29) Wrobel BB, Leopold DA. Clinical assessment of patients with smell and taste disorders. Otolaryngol Clin North Am 2004;37:1127-42. 30) McBride K, Slotnick B, Margolis FL. Does intranasal application of zinc sulfate produce anosmia in the mouse? An olfactometric and anatomical study. Chem Senses 2003;28:659-70. 31) Jang W, Youngentob SL, Schwob JE. Globose basal cells are required for reconstitution of olfactory epithelium after methyl bromide lesion. J Comp Neurol 2003;460:123-40. 32) Min YG, Rhee CS, Choo MJ, Song HK, Hong SC. Histopathologic changes in the olfactory epithelium in mice after exposure to sulfur dioxide. Acta Otolaryngol 1994;114:447-52. 33) Biffo S, Pognetto MS, Di Cantogno LV, Perroteau I, Fasolo A. Bulbectomy Enhances Neurogenesis and Cell Turnover of Primary Olfactory Neurons But Does Not Abolish Carnosine Expression. Eur J Neurosci 1992;4:1398-406. 34) Mathonnet M, Lalloue F, Petit B, Comte I, Leboutet MJ, Ayer-Le Lievre C. Differential responses of olfactory neurons to axotomy at embryonic and postnatal stages. Neuroscience 2002;109:207-17. 35) Schwob JE. Neural regeneration and the peripheral olfactory system. Anat Rec 2002;269:33-49. 36) Menco BP, Jackson JE. A banded topography in the developing rat's olfactory epithelial surface. J Comp Neurol 1997;388:293-306. 37) Bergstrom U, Giovanetti A, Piras E, Brittebo EB. Methimazole-induced damage in the olfactory mucosa: Effects on ultrastructure and glutathione levels. Toxicol Pathol 2003;31:379-87. 38) Etienne LA, Maruniak JA, Walters E. Propylthiouracil alters the expression and activity of glutathione-dependent enzymes in the mouse olfactory mucosa. Brain Res 2003;977:149-56. 39) Kai K, Satoh H, Kajimura T, Kato M, Uchida K, Yamaguchi R, et al. Olfactory epithelial lesions induced by various cancer chemotherapeutic agents in mice. Toxicol Pathol 2004;32:701-9. 40) Hunter DD, Caggiano M, Kauer JS. Lineage analysis of the olfactory epithelium using a replication-incompetent retrovirus. Chem Senses 1994;19:683-93. 41) Krishna NS, Little SS, Getchell TV. Epidermal growth factor receptor mrna and protein are expressed in progenitor cells of the olfactory epithelium. J Comp Neurol 1996;373:297-307. 42) Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 1993;75:463-76. 43) Hsu P, Yu F, Feron F, Pickles JO, Sneesby K, Mackay-Sim A. Basic fibroblast growth factor and fibroblast growth factor receptors in adult olfactory epithelium. Brain Res 2001;896:188-97. 44) Goldstein BJ, Wolozin BL, Schwob JE. FGF2 suppresses neuronogenesis of a cell line derived from rat olfactory epithelium. J Neurobiol 1997;33:411-28. 45) Shou J, Rim PC, Calof AL. BMPs inhibit neurogenesis by a mechanism involving degradation of a transcription factor. Nat Neurosci 1999;2:339-45. 46) Wu HH, Ivkovic S, Murray RC, Jaramillo S, Lyons KM, Johnson JE, Calof AL. Autoregulation of neurogenesis by GDF11. Neuron 2003; 37:197-207. 47) Shou J, Murray RC, Rim PC, Calof AL. Opposing effects of bone morphogenetic proteins on neuron production and survival in the olfactory receptor neuron lineage. Development 2000;127:5403-13. 48) Moon C, Yoo JY, Matarazzo V, Sung YK, Kim EJ, Ronnett GV. Leukemia inhibitory factor inhibits neuronal terminal differentiation through STAT3 activation. Proc Natl Acad Sci U S A 2002;99: 9015-20. 49) Bauer S, Rasika S, Han J, Mauduit C, Raccurt M, Morel G, et al. Leukemia inhibitory factor is a key signal for injury-induced neurogenesis in the adult mouse olfactory epithelium. J Neurosci 2003;23: 1792-803. 50) Getchell ML, Boggess MA, Pruden SJ 2nd, Little SS, Buch S, Getchell TV. Expression of TGF-beta type II receptors in the olfactory epithelium and their regulation in TGF-alpha transgenic mice. Brain Res 2002;945:232-41. 51) Yasuno H, Fukazawa K, Fukuoka T, Kondo E, Sakagami M, Noguchi K. Nerve growth factor applied onto the olfactory epithelium alleviates degenerative changes of the olfactory receptor neurons following axotomy. Brain Res 2000;887:53-62. 52) Nishimura T, Teranishi S, Kawashima A, Ishimaru T, Miwa T, Furukawa M. Glucocorticoid enhances Na(+)/K(+) ATPase mrna expression in rat olfactory mucosa during regeneration: A possible mechanism for recovery from olfactory disturbance. Chem Senses 2002;27:13-21. 53) Doyle KL, Khan M, Cunningham AM. Expression of the intermediate filament protein nestin by sustentacular cells in mature olfactory neuroepithelium. J Comp Neurol 2001;437:186-95. 54) Boyd JG, Jahed A, McDonald TG, Krol KM, Van Eyk JE, Doucette R, et al. Proteomic evaluation reveals that olfactory ensheathing cells but not Schwann cells express calponin. Glia 2006;53: 434-40. 55) Li Y, Field PM, Raisman G. Olfactory ensheathing cells and olfactory nerve fibroblasts maintain continuous open channels for regrowth of olfactory nerve fibres. Glia 2005;52:245-51. 56) Doucette R. PNS-CNS transitional zone of the first cranial nerve. J Comp Neurol 1991;312:451-66. 256 Korean J Otolaryngol 2006;49:248-56