Journal of Radiation Industry 7 (2~3) : 115~119 (213) Review Paper 몬테칼로전산모사를이용한감마선투과계측증류탑진단기술의타당성연구 문진호 김종범 박장근 정성희 * 한국원자력연구원동위원소이용기술개발부 Feasibility Study of Gamma Ray Transmission Technique in Distillation Column Using Monte Carlo Simulation Jinho Moon, Jongbum Kim, Jang Guen Park and Sung-Hee Jung* Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon 35-353, Korea Abstract - The density profile measurement technology by gamma transmission has been widely used to diagnose processes in the field of refinery and petrochemical industry. This technology can reveal a clue and position of abnormal phenomenon of industrial processes during their operation. In this paper, the feasibility of the gamma transmission technology for detecting changes in the amount of fluid in a distillation column was evaluated by using Monte Carlo simulations. The simulations assumed that 6 Co (1.17, 1.33 MeV) sources and NaI (Tl) detectors (Φ5 5 cm) are located in opposite sides of a column and it concurrently moves in vertical direction. To determine the dependency of a spatial resolution on aperture size of a collimator, the simulation model for a tray in a column were simulated with the aperture sizes of 1 and 2 cm. The thickness of the high density area including a tray and fluid was 7.6 cm in the simulation. The spatial resolution of the tray was 8.2 and 8.5 cm, respectively. As a result, it was revealed that the conventional density profile measurement technique is not able to show the deviation of liquid level on a tray in a column. Key words : Monte Carlo simulation, Gamma-ray transmission measurement, Density profile measurement, Distillation column 서 196년대이후, 방사선및방사성동위원소를이용한산업공정진단기술이연구되어왔으며, 라디오그래피 (radiography) 로대표되는비파괴검사뿐만아니라, 감마선흡수에의한계측기술등이산업현장에적용되기시작하였다 (Johnson et al. 1963). 특히, 방사선응용기술은 론 * Corresponding author: Sung-Hee Jung, Tel. +82-42-868-857, Fax. +82-42-862-698, E-mail. shjung3@kaeri.re.kr 정유및석유화학산업분야의대표적공정구조물인증류탑을대상으로한가동중진단등의문제해결을위해널리적용되고있다. 방사성동위원소를이용한산업응용계측기술은크게밀봉선원이용기술과개봉선원이용기술로구분된다. 밀봉선원을이용한방사선계측기술로는감마선투과계측에의한밀도분포측정기술과특정단면에서시간평균의밀도분포를측정하는감마선단층촬영기술등이있다 ( 정등22; Kim et al. 212). 또한개봉선원을이용한방사선계측기술로는방사성추적자를진단대상공정에투입후공정의체재시간분포를측 115
116 문진호 김종범 박장근 정성희 정하여공정의가동효율및내부유체의혼합특성등을측정하는기술과특정단면에서시간에따른유체의유동분포변화를탐지할수있는산업용단일광자방출촬영 (single photon emission computed tomography, SPECT) 등이있다 (Legoupil et al. 1996; Kim et al. 25). 이중에서감마선투과계측에의한밀도분포측정기술은기술적용의용이성과저비용등의장점으로인해관련산업분야에광범위하게사용되고있다. 감마선투과계측에의한밀도분포측정기술이가장빈번하게적용되고있는증류탑의경우가동목적에따라구조, 규모, 재질, 내부유체의상등이매우다양하고, 장시간가동에따른내부이상현상의발생가능성이상존한다. 감마선투과계측에의한밀도분포측정기술은증류탑의이상현상에대한문제를직접적으로해결하는기술은아니지만예상되는문제의원인에대한증거와정확한위치를제시하고, 사전에문제해결을위한대안을제시함으로써공정의가동중지기간을단축시킬수있는장점이있다. 하지만증류탑내부는고온, 고압의유체들로채워져있으며, 접근성이매우나쁜단점이있다. 또한감마선투과계측에의한밀도분포측정기술적용시수십미터에달하는증류탑의최상단에방사선원과방사선검출기의수직이동을위한도르래가설치되어야하며, 방사선피폭에대한위험도상존하는등극단적인실험조건을갖고있다. 이와같은이유로감마선투과계측에의한밀도분포측정기술을매번적용하는것은현실적으로쉽지않기때문에몬테칼로전산모사를이용하여감마선투과계측기술적용가능성을평가하였다. 몬테칼로기반전산모사코드는방사선의물질내거동을정확하게예측할수있으며, 방사선을이용한실험결과를정밀하게예측하는것을가능하게한다 (Hoang et al. 21). 본연구에서는특정증류탑을대상으로내부유체량의변화감지를위한감마선투과계측기술적용가능성을몬테칼로전산모사를통하여평가하였다. 이를위하여몬테칼로방법을사용하는 MCNPX를이용하여연구대상증류탑의관심영역에대한감마선투과계측치를계산하고, 감마선투과계측시스템의최대해상도를평가하였다. 재료및방법감마선투과계측에의한밀도분포측정기술은계측대상공정의양측에방사선검출기와방사선원을각각설치하고외부벽면을따라움직이면서방사선원에서발생한감마선이대상체에의한감쇠정도를평가하는 Source operator Detector operator Fig. 1. Schematic diagram of the gamma scanning system. 기술이다. 기본원리는식 (1) 로대표되는 Beer-Lambert 법칙에근거를두고있다. I=I e -(μ/ρ)ρt 식 (1) 여기서 I는 I 의세기를가진방사선이두께 t, 밀도 ρ 인매질을통과한후의방사선세기를나타내며, μ/ρ는주어진방사선의에너지와매질에의해결정되는질량감쇠계수이다. Fig. 1은증류탑진단을위하여설치된감마스캔시스템을보여준다 ( 김등28). 지상으로부터동일한높이에설치된방사선원과방사선검출기를일정한간격으로동시에이동시키면서해당높이에서의방사선계측값을평가한다. 증류탑전반에걸쳐외벽과보온재등은동일한구성을전산모사하였으며, 진단실험을통해얻는계측값의변화는증류탑내부에설치된단 (tray) 과같은구조물과내부유체의존재형태에따른밀도차이에기인한다. 또한, 증류탑구조도면과해당시설의운전조건등의자료를고려하여전산모사결과를분석하였으며, 시설의성능및물리적인상태등에예측가능성을확인하였다. MCNPX 코드는기존의해석적방법과달리방사선의축적효과 (build-up effect) 나산란감마선에의한영향등이고려되어실제계측과매우유사한결과를제공할수있다. 정유및석유화학공정에서가동되는증류탑은목적에따라직경이최대약 1 m, 높이는최대 1 m에달하며, 내부에는수십개의단이반복배치되어있는구조로액
감마선투과계측타당성연구 117 체상물질과기체상물질간의물리적접촉을용이하게 만든장치이다. 본연구에서는정유설비에서실제가동되고있는증류탑의설계도를기반으로전산모사를수행하였다. 증류탑모델은스테인레스재질로외경 4 cm, 두께 3.7 cm의원통형이며, 내부에수직으로 6 cm 간격으로두께.6 cm인다섯개의단이위치하도록구성되었고, 각단에는물이 7 cm 높이로채워져있는것으로가정하였다 (Fig. 2). 방사선선원으로는 6 Co (1.17, 1.33 MeV) 을가정하였으며, 방사선검출기는직경 5 cm, 높이 5cm의 NaI (Tl) 섬광검출기로가정하였다. 또한, 산란된방사선으로인한공간해상도저감효과를최소화하기위하여방사선원과검출기에납재질의직경과길이가 1 cm인원통형조준기를설치하였다 (Fig. 3). 대상증류탑의수직밀도분포를얻기위하여계측구간 3 cm의거리를 2.5 cm 간격으로방사선원과검출기를평행하게이동시키면서총 3 cm Radiation source 4 cm Fig. 2. Distillation column model for Monte Carlo simulation. Radiation detector 12개지점에대하여전사모사를수행하였다. LabVIEW 프로그램을기반으로, MCNPX 코드의입력파일을자동으로생성시키는프로그램을개발하였으며, 이를사용해 12개지점에대한전산모사를수행하였다. 본연구에서는 19개의광자를사용하였으며, 총전산모사시간은 16 노드의컴퓨터클러스터 (Xeon 2.66 GHz) 를이용하여약 12시간이소요되었다. 또한, 콜리메이터의직경에따른공간분해능변화를평가하기위하여콜리메이터직경을 1, 2 cm의조건으로전산모사를각각수행하였으며, pulse height tally (F8 tally) 를사용하여방사선검출기에서신호를평가하였다. 결과및논의 MCNPX 전산모사결과는선원에서방출된입자가방사선검출기에서검출될상대적확률로나타나며, 초기광자의수인 1 9 을곱하여계수값을평가하였다. Fig. 4는높이에따른투과계수값과전산모사에사용된증류탑을보여준다. 높은계수값을나타내는곳은밀도가낮은기체상영역으로간주할수있으며, 낮은계수값을나타내는곳은내부단의액체상영역을나타낸다. 또한콜리메이터가작은경우전반적으로계측값이감소하였으며, 콜리메이터의크기와상관없이증류탑내부단에대하여동일한패턴의계측결과가반복적으로나타났다. 한구간을보다상세하게표현한 Fig. 5에는내부단에대한계측신호가계측최저점을기준으로아래부분의계측신호는스테인레스재질의단에의해급격하게계측값이줄어들며, 윗부분은이보다밀도가낮은물에의한계측신호로아래부분보다퍼져있는것을확인하였 Collimator (Pb) Collimator (Pb) 1 cm 5cm 5cm NaI scintillator 1 cm Sealed source ( 6 Co) Fig. 3. Collimator design of source and detector.
118 문진호 김종범 박장근 정성희 Fig. 4. Vertical gamma-ray transmittance of the column from MCNPX simulation. 2 (a) aperture 1 cm 2 (b) aperture 2 cm Position (cm) 1 FWHM: 8.2 cm Position (cm) 1 FWHM: 8.5 cm -1 2 Count (A.U.) 4-1 2 4 6 Count (A.U.) 8 1 Fig. 5. Estimation of FWHM by gaussian fitting of vertical gamma-ray transmittance. 다. 이는정상가동중인실제증류탑에대한진단실험과매우유사한결과를보여주고있다 ( 정등22). 콜리메이터크기에따른공간분해능의변화정도를평가하기위하여계측결과를가우시안피팅하여반치폭 (full width at half maximum, FWHM) 을각각구하였다. 실제단의두께는물의두께를합하여 7.6 cm였으나, 구경이 1cm의경우반치폭이 8.2 cm, 2 cm의경우8.5 cm로나 타났다. 결론본연구에서는몬테칼로전산모사방법을사용하여감마선투과계측에의한밀도분포측정기술의공간분해능
감마선투과계측타당성연구 119 에영향을미치는인자를평가하였다. 정유및석유화학산업에서널리쓰이는증류탑을대상으로전산모사를수행한결과, 증류탑내부단의위치가정확히예측되었다. 그리고방사선원과방사선검출기의콜리메이터크기를변경하여내부단에대한공간분해능을비교한결과구멍크기에따른공간분해능의차이는크지않았다. 몬테카를로전산모사기술은방사성동위원소를이용한산업분야에유용하게사용될수있을것으로사료된다. 사 본연구는한국연구재단을통해미래창조과학부의원자력연구개발사업으로부터지원받아수행되었습니다 (No. 212M2A2674). 사 참고문헌 김재호, 정성희, 김종범, 김진섭, 이나영, 이성식, 장석준. 28. Gamma absorption technique 를이용한 trayed column 의가동중내부밀도분포측정에의한유체유동상태진단. 방사선방어학회지 33(1):35-4. 정성희, 김종범, 진준하. 22. 감마선을이용한가동중증류탑진단실험. 공업화학 13:19-24. Hoang S, Yoo SH and Sun KM. 211. Experimental validation of the backscattering gamma-ray spectra with the Monte Carlo code. Nuclear Engineering and Technology 43(1): 13-18. Johnson P, Bullock M and Whiston J. 1963. Some applications of radioisotopes in the chemical industry. Chem. Ind. 19: 75-756. Kim HS, Shin MS, Jang DS, Jung SH and Jin JH. 25. Study of flow characteristics in a secondary clarifier by numerical simulation and radioisotope tracer technique. Appl. Radiat. Isot. 63:519-526. Kim JB, Jung SH, Moon JH, Park JG, Jin JH and Cho GS. 212. Development of transportable gamma-ray tomographic system for industrial application. Nucl. Instrum. Methods Phys. Res. A. 693:23-28. Legoupil S, Pascal G, Chambellan D and Bloyet D. 1996. Determination of the detection process in an experimental tomograph for industrial flow visualization using radioactive tracers. IEEE Trans. Nucl. Sci. 43(2):751-76. Manuscript Received: October 24, 213 Revised: October 28, 213 Revision Accepted: November 2, 213