인터스텔라 영화속의 시공간과 중력파 부산대학교 물리학과 이창환 1
2017 Nobel Prize in Physics
KIP THORNE Caltech - (1997) LIGO (1992) (2009~) 2017 3
KIP THORNE EXECUTIVE DIRECTOR OF INTERESTELLAR 2005 / 2006, (14 ) 2010 / 2012 2014 / 2 2015.3.19 4
영화는 영화다 - THIS IS NOT POSSIBLE. - NO, IT IS NECESSARY. 비유는 비유다 - 내용은 정확한가 - 제대로 전달되고 있는가 주요 참고문헌 The Science of Interstellar (Kip Thorne, 2014) Black Holes & Time Warps (Kip Thorne, 1994) 블랙홀전쟁 (서스킨드/이종필, 2011) Figures from Interstellar, Wikipedia, NASA/ESA, 5
4 GARGANTUA / A 5 / / 6
7 4
http://web.mit.edu/persci/gaz/gaz-teaching 8
9
- - ` ` 10
10 23 cm 10 9 cm 10 2 cm Image by kip Thorne 10-33 cm 10-13 cm 11
Image by kip Thorne 12
/ 1915 ( ) 13
NASA/ESA / 14
/ ( -133 ) 3, 15
GPS ( ) 16
17 GARGANTUA
GARGANTUA The Life of Gargantua and Pantagruel Pentalogy written by Francois Rabelais, 16th century Pantagruel ( ) : son of Gargantua 18
블랙홀 발견 XTEJ1118+480 Centaurus A 은하중심 거대 블랙홀 블랙홀 쌍성 / 강한 엑스선방출 2002 노벨물리학상 19 M87
GARGANTUA 1 / 1-7 : The Science of Interstellar 20
GARGANTUA 21
22
+ = / 10-33 cm (10-43 ) ( : 10-13 cm) 3 / : 23
Preskill, Thorne, Hawking 1983. /, /, 1998. 2007.! 24
10-33 cm (10-43 ) ( : 10-13 cm) : < 10-33 cm : < 10-43 : 25
: 10-33 cm : < 10-33 cm : < 10-43 26
27 A
28
/ M R 2 / 1 M M GARGANTUA R 29
The Science of Interstellar 1915. 1916. / singularity ( ) 1963. (GARGANTUA) 1971. BKL singularity ( ) 1991. Infalling singularity 2012. Outflying singularity TARS 30
BKL singularity Tesseract Tesseract / 4 The Science of Interstellar 31
TESSERACT - Tesseract / 4 = 8 3 The Science of Interstellar 32
중력을 통한 쿠퍼와 머피의 만남 머피의 방 력 중 3차원 공간 빛 / 3차원 진공 요동 The Science of Interstellar 33
34 5
2? 3? 2 3 ( ) 35
2 3. ( ) 4 5. ( ) 36
TARS 5 1AU ( 8 ) 1.5cm Gargantua 3 10 9 GARGANTUA? 37
~0 km 4 km? 38
39
- / - 1916. (Ludwig Flamm) 1930. - 1975. (Gannon & Lee) 1985. Kip Thorne Black Holes and Time Warps 40
Casimir : 41
10-33 cm (10-43 ) ( : 10-13 cm) 42
43
- 2015 100 44
- / 1997. 2009. (KGWG) 45
2019.!!! / 40 The Science of Interstellar 46
.. We will find a way. we always have. 47
ESA: Virgo Virgo-aVirgo-ET US: LIGO iligo-eligo-aligo Japan TAMA300-CLIO-KAGRA LIGO-India NSF (LIGO CLone) LIGO- India (Approved) Image credit: ( ) 48
Nd:YAG 1064nm ( ) 40kg (SiO2) ( 1ppm ) 49
GW propagating in z-direction line element ds 2 = dt 2 +(1+h + )dx 2 +(1 h + )dy 2 + dz 2 +2h dxdy Z p lengths in x- & y-directions (plus polarization) L x = Z x2 x 1 p 1+h+ dx (1 + 1 2 h +)L x0 ; Z y p L y = Z y2 y 1 p 1 h+ dy (1 1 2 h +)L y0 plus polarisation h+ hx cross polarisation 50
What is interacting with GW, laser light or test mass? TT gauge - mirrors & beam splitters remain at rest - GW (h) interact with interferometer s light local Lorentz (LL) frame - in the proper reference frame of beam splitter - beam splitter is freely falling with GW - mirrors are moving - tiny correction due to GW & light interaction Kip Thorne physical observables should be independent of coord choice 51
4km 1000 1 (1 1/10 ) (20 W 700 W 100 kw) 280 4km ( : 200 W 750 kw) : 10 / 30 52
LIGO GW Detectors LIGO sensitivity h with 4km arms L L 10 22 L 10 22 10 4 m 10 18 m How to measure 10 18 m using laser with l 10 6 m? L l 10 12 53
Sensitivity of Interferometers If the length resolution is λlaser, detectable strain is h l l = laser l = 10 6 m 10 3 m = 10 9 Fabry-Perot cavity (~ 250 bounces) : GW 1000 km for 300 Hz h l l eff laser GW 10 6 m 10 6 m = 10 12 Due to quantum nature of the photons, the length resolution could be reduced h 1 p Nphotons laser GW 54
Measuring the phase shift by averaging over some period τ Poisson distribution N = p N N: measured number of photons over period τ E = ~ 2 c N E = ~ 2 c p N l l Uncertainty in the phase measurement : =2 c t l t E ~ 2 1 p N t E = p l 2 c ~2 c ~ N l 2 N 1 2( ) 2 55
Shot noise Collect photons for a time of the order of the period of GW wave 1/f GW N photons = P laser hc/ laser P laser 1 hc/ laser f GW For 1W laser with λlaser=1 µm, fgw=300hz, Nphotons=10 16 h l l eff N 1/2 photons GW laser 10 8 10 6 m 10 6 m = 10 20 By adopting high power laser (20W for O1) and power recycling, we can reach astrophysical sensitivity of ~10-22. 56
Gw150914 57
Credit: NSF/LIGO/SSU/A.Simonnet Oct 16, 2017 GW from Binary NS Mergers GW 170817 GRB 170817A by Fermi-GBM Kilonova/X-ray/Optical Afterglows
Multi-messenger Observation Binary Neutron Star Merger 59
2017-08-17 12:41:04 UTC 라이고및비르고중력파신호포착 +2 초후페르미및인티그랄감마선신호포착 KMTNet( 서울대 / 한국천문연구원 ) + 약 11 시간후칠레천문대망원경들이가시광선신호포착 + 약 21 시간후국내연구진호주이상각망원경으로추적관측시작. 이후약 4 주간추적관측 (KMTNet, BOOTES-5 망원경등 ) + 약 9 일후찬드라우주망원경 X- 선신호포착 + 약 16 일후지상전파망원경전파신호포착 그림출처 : LIGO, NASA, 1M2H/UC Santa Cruz and Carnegie Observatories/Ryan Foley, 서울대 / 한국천문연구원 / 임명신, NSF/Sonoma 주립대 /A. Simonnet, NRAO 서울대학교초기우주천체연구단 ( 임명신 )
61
,,, / 62
Einstein Telescope (ESA) 2030? (designing stage) elisa 2034 10 6 km 10 km LISA pathfinder 2015.12.3 63
LIGO Scientific Collaboration