033~50 ¿ŁÃ³¸® ¹×

Similar documents
063~078 인삼

Lumbar spine

139~144 ¿À°ø¾àħ

43(2)-10(단보)023(p ).fm

γ

hwp

012임수진

한약재품질표준화연구사업단 금은화 ( 金銀花 ) Lonicerae Flos 생약연구과

한약재품질표준화연구사업단 작약 ( 芍藥 ) Paeoniae Radix 생약연구과

Statistical Data of Dementia.

한약재품질표준화연구사업단 고삼 ( 苦參 ) Sophorae Radix 생약연구과

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

한약재품질표준화연구사업단 강활 ( 羌活 ) Osterici seu Notopterygii Radix et Rhizoma 생약연구과

DBPIA-NURIMEDIA

???춍??숏

untitled

03-서연옥.hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

000~004_6월차례

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

04조남훈

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

DBPIA-NURIMEDIA

제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

?

DBPIA-NURIMEDIA

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

03-2ƯÁý -14š

歯1.PDF

- 2 -

환경중잔류의약물질대사체분석방법확립에 관한연구 (Ⅱ) - 테트라사이클린계항생제 - 환경건강연구부화학물질연구과,,,,,, Ⅱ 2010

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

03이경미(237~248)ok

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

03-ÀÌÁ¦Çö

???? 1

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

개최요강

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

DBPIA-NURIMEDIA

10(3)-09.fm

歯kjmh2004v13n1.PDF

10(3)-10.fm

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ


Can032.hwp

-, BSF BSF. - BSF BSF ( ),,. BSF -,,,. - BSF, BSF -, rrna, BSF.

433대지05박창용

< C6AFC1FD28B1C7C7F5C1DF292E687770>

Æ÷Àå82š

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

13장문현(541~556)ok

16_이주용_155~163.hwp

untitled

이 발명을 지원한 국가연구개발사업 과제고유번호 KGM 부처명 교육과학기술부 연구관리전문기관 연구사업명 전북분원운영사업 연구과제명 저탄소 녹생성장을 위한 바이오매스/에너지 개발 주관기관 한국생명공학연구원 연구기간 2009년 01월 01일 ~ 2009년 12월

???? 1

세계 비지니스 정보

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

- 1 -

12.077~081(A12_이종국).fm

44-4대지.07이영희532~

<313920C0CCB1E2BFF82E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

82-01.fm

04 김영규.hwp

( )Kju269.hwp

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: : * Research Subject


( ) ) ( )3) ( ) ( ) ( ) 4) 1915 ( ) ( ) ) 3) 4) 285

이 발명을 지원한 국가연구개발사업 과제고유번호 G 부처명 한국환경산업기술원 연구사업명 토양지하수오염방지기술개발사업 연구과제명 시데로포아(Siderophore)의 대량생산을 통한 토양 및 지하수의 친환경 중금속 제거기술 개 발

패션 전문가 293명 대상 앙케트+전문기자단 선정 Fashionbiz CEO Managing Director Creative Director Independent Designer

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

04_이근원_21~27.hwp

인문사회과학기술융합학회

?덉씠?꾩썐 1

?덉씠?꾩썐 1

?덉씠?꾩썐 1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

09권오설_ok.hwp

KAERI/RR-2245/2001 : 원전 주기적 안전성 평가기술 개발 : 방사선 안전성능 및 환경방사선 감시기술 개발


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

06(17-094)p fm

목 차 회사현황 1. 회사개요 2. 회사연혁 3. 회사업무영역/업무현황 4. 등록면허보유현황 5. 상훈현황 6. 기술자보유현황 7. 시스템보유현황 주요기술자별 약력 1. 대표이사 2. 임원짂 조직 및 용도별 수행실적 1. 조직 2. 용도별 수행실적

10(3)-12.fm

<313120B9DABFB5B1B82E687770>

109~120 õÃʾàħ Ä¡·á

09-감마선(dh)

14.531~539(08-037).fm

2009;21(1): (1777) 49 (1800 ),.,,.,, ( ) ( ) 1782., ( ). ( ) 1,... 2,3,4,5.,,, ( ), ( ),. 6,,, ( ), ( ),....,.. (, ) (, )

<31335FB1C7B0E6C7CABFDC2E687770>

Transcription:

ginsenoside 33 DOI : 10.3831/KPI.2010.13.2.033 ginsenoside Received : 10.05.24 Revised : 10.06.07 Accepted : 10.06.15 Key Words: ginsenoside, cultivated ginseng, mountain ginseng, red ginseng, fermentation Component analysis of cultivated ginseng and mountain ginseng to the change of ginsenoside components in the process of heating and fermentation. Bae -Cheon Cha 1), Hye -Chul Yoon 2), Dae-Ho Lee 3), Jae-Seuk Park 2), Ki-Rok Kwon 2) 1) Pharmaceutical Engineering, Health of Science, Sangji Univ. 2) College of Oriental medicine, Sangji Univ. 3) G&V Company. ABSTRACT Objectives: The aim of this experiment is to provide an objective differentiation of cultivated ginseng, mountain ginseng through component analysis, and to know the change of ginsenoside components in the process of heating and fermentation. Methods: Comparative analyses of ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh1 and Rh2 from the cultivated ginseng 4 and 6 years, and mountain cultivated ginseng were conducted using HPLC (High Performance Liquid Chromatography, hereafter HPLC). And the same analyses were conducted in the process of heating and fermentation using mixed Lactobacillus rhamnosus, Lactobacillus plantarum, Bifidobacterium lactis for 7 days. Results: The change of ginsenosides to the process of red ginseng and fermentation, cultivated ginseng and mountain cultivated ginseng were showed another results. Mountain ginseng showed a lot of change compared with cultivated ginsengs. In the 7 days of fermentation, mountain ginseng showed that ginsenoside Rg1, Rb1, Rb2, Rc, and Rd were decreased and increased ginsenoside Re, Rf, Rg3 and Rh1 were increased compared with cultivated ginseng. Conclusions: It seemed that ginsenosides of mountain cultivated ginseng was better resolved than cultivated ginseng because the difference of structure or distribution of ginsenosides in the condition of fermentation. I Panax Ginseng C. A. Meyer Araliaceae 1123 Corresponding author : Ki- Rok Kwon, Dept. of Acupuncture & Moxibustion, College of Korean Medicine, Sangji University 283, Woosan-dong, Wonju-si, Kangwon-do, 220-955, South Korea. Tel: +82-33-741-9257. E-mail: beevenom@paran.com This study was supported by Technology Development Program for Agriculture and Forestry(108069-03-1-CG000), Ministry for Agriculture, Forestry and Fisheries, Republic of korea.

34 Journal of Pharmacopuncture 13 2 2010 6 micelles caramel ginsenoside Rh2, ginsenoside Rg3 acid ginsenoside Rh2, ginsenoside Rg3 ginsenoside HPLC High Performance Liquid Chromatography, HPLC 10 ginsenosides II 1 8-9 36 4 6 36 2 1 Rotary vacuum evaporator Eyela Tokyo Co. HPLC Varian 9012 Solvent Delivery System, Varian Variable Wavelength 9050 UV-VIS detector, Autos-ampler Varian 9300 AcCN, MeOH HPLC 1 2, 4, 7 ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh1 Rh2 10 80 MeOH 100-500 3 3 80 MeOH 80 MeOH n-hexane, EtOAc n-buoh n-buoh n-buoh Fig. 1 1 HPLC HPLC column Capcell Pak C18 150 4.6 5 Shiseido Co. 1 min, column 40 20 UV

ginsenoside 35 203 Table 1. ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh1 Rh2 10 100 MeOH 1 0.45 membrane filter n-buoh 10 MeOH 1 0.45 membrane filter ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh1 Rh2 10 500, 400, 300, 200, 100, 50 ginsenoside X Y ginsenoside R 2 Table 2. 10 HPLC chromatogram chromatogram HPLC ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh1 Rh2 chromatogram ginsenoside 95-100 15 95-100 72 5 cellbiotec ATP Lactobacillus rhamnosus, Lactobacillus plantarum, Bifidobacteri-um lactis 1 37 clean banch 7 1, 2, 4, 7 HPLC 10 ginsenoside 2 ginsenoside Rg1, Re, Rf, HPLC ginsenoside Rc, Rb2, Rd, Rg3 ginsenoside Rh2 III 1 ginsenosides ginsenoside Fig. 3-11 4 ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1 Rh1 Re Rf 2 Rg3 6 ginsenoside Rb1, Rb2, Re, Rg1 Rc, Rd, Rf, Rg3 Rh1 ginsenoside Re, Rf, Rg1, Rg3 Rh1 ginsenoside Rb1, Rb2, Rc ginsenoside Rd 2 ginsenoside Rb1

36 Journal of Pharmacopuncture 13 2 2010 6 ginsenoside Rb1 4 6.86 1 5.64 2 6.54 4 5.78 7 5.44 6 5.15 1 5.04 2 4.27 4 3.27 7 2.69 2.85 1 1.69 2.31 4 2.09 7 0.35 7 Fig. 3 3 ginsenoside Rb2 ginsenoside Rb2 4 4.86 1 4.17 2 4.71 4 4.34 7 4.27 6 2.93 1 2.96 2 2.93 4 2.89 2.31 7 2.27 1 1.40 2 1.79 4 1.69 7 0.40 7 Fig. 4 4 ginsenoside Rc ginsenoside Rc 4.42 1 3.82 2 4.30 4.00 7 3.72 6 2.61 1 2.87 2 2.49 4 2.00 7 1.63 1.78 1 1.14 2 1.54 4 1.35 7 0.22 7 Fig. 5 5 ginsenoside Rd ginsenoside Rd 4 1.79 1 1.69 2 1.77 4 1.69 7 1.55 6 0.96 1 1.11 2 1.01 4 1.06 7 0.77 7 0.73 1 0.71 2 0.90 4 0.86 0.36 7 Fig. 6 6 ginsenoside Re ginsenoside Re 4 2.06 1 1.38 2 1.67 4 1.14 7 0.88 6 1.19 1 0.93 2 0.67 4 0.53 7 0.42 0.66 1 0.27 2 0.48 4 0.41 7 0.59

ginsenoside 37 Fig. 7 7 ginsenoside Rf ginsenoside Rf 4 0.48 1 0.87 2 0.79 4 7 0.72 6 0.64 1 0.64 2 0.61 4 0.52 7 0.47 0.37 1 0.37 2 0.45 4 0.34 7 0.48 Fig. 8 8 ginsenoside Rg1 ginsenoside Rg1 4 1.78 1 1.20 2 1.37 4 0.93 7 0.73 6 1.29 1 0.86 2 0.64 4 0.47 7 0.41 0.38 1 0.17 2 0.26 4 0.25 7 0.00 7 Fig. 9 0.13 2 0.15 4 0.18 7 0.19 6 0.16 1 0.12 2 0.09 4 0.11 7 0.16 0.12 1 0.16 2 0.18 4 0.16 7 0.31 7 Fig. 10 10 ginsenoside Rh1 ginsenoside Rh1 4 0.18 1 0.12 2 0.14 4 0.15 7 0.16 6 0.11 1 0.10 2 0.12 4 0.09 7 0.12 0.11 1 0.11 2 0.14 4 0.15 7 0.15 Fig. 11 11 ginsenoside Rh2 ginsenoside Rh2 9 ginsenoside Rg3 ginsenoside Rg3 4 0.17 1 IV Panax

38 Journal of Pharmacopuncture 13 2 2010 6 1957 Brekhman Shibata ginsenoside 30 ginsenoside phenol polysaccharide triterpenoid steroid oleanane Shibata Tanaka oleanane dammarane triterpenoid ginsenoside triterpenoid dammarane glucose, arabinose, xylose, rhamnose ginsenoside oleanane ginsenoside Ro 1 protopanaxadiol ginsenoside Ra1, Ra2, Ra3, Rb1, Rb2, Rb3, Rc, Rd, Rg3, Rh2 10 protopanaxatriol ginsenoside Re, Rf, 20-gluco-Rf, Rg1, Rg2 Rh1 ginsenoside ginsenoside ginsenoside Rb1 ginsenoside Rb2 ginsenoside Rc ginsenoside Rd ginsenoside-rg3 ginsenoside-rh2 caramel ginsenoside 2 ginsenoside Rg3 3,000 Lactobacilli Bifidobacterium ginsenoside Fig. 12 ginsenoside Lactobacillus rhamnosus, Lactobacillus plantarum, Bifidobacterium lactis ginsenoside-rg3 ginsenoside-rh2 1, 2, 4, 7 HPLC

ginsenoside 39 ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg.3, Rh1 Rh2 10 ginsenoside 4 6 ginsenoside Rb1, ginsenoside Rg3 ginsenoside Rh2 Rb2, Rc, Rd, Rg3, Rh1 Re Rg1 ginsenoside Rb1, Rb2 Rc, Rd Re Rf, Rg1 Rg3, Rh1 ginsenoside 4 ginsenoside Re, Rg1 Rb1, Rd, Rg3, Rh1 6 ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1 Rg3 4 6 ginsenoside Rb1, Rb2, Rc, Rd, Rg1 Re, Rf, Rg3 ginsenoside Rg3 7 ginsenoside Rh2 ginsenosides Fig. 12 6 6 ginsenosides ginsenosides ginsenoside-rg3 ginsenoside-rh2 4 6 V ginsenoside Lactobacillus rhamnosus HPLC ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh1 Rh2 1. 4 6 ginsenoside Rb1, Rb2 Rc, Rd Re Rf, Rg1 Rg3, Rh1 2. ginsenoside 4 ginsenoside Re, Rg1 Rb1, Rd, Rg3 Rh1 3. ginsenoside 6 ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1 Rg3 4. ginsenoside ginsenoside Rb1, Rb2, Rc, Rd, Rg1 Re, Rf, Rg3 5. ginsenoside 4 6 6

40 Journal of Pharmacopuncture 13 2 2010 6 VI. References 1. Nam Ki Yeul. The comparative understanding between red ginseng and white ginsengs, processed ginsengs. j. ginseng res. 2005; 29(1): 1-18. 2. Matsuda H. Study on efficacy of processed ginseng, red ginseng. Natural Medicines. 1999; 53: 217-222. 3. Kitagawa L, Yoshikawa M, Yoshihara M, Hayashi T. and Taniyama, T. Chemical studies of crude drugs (1). Constituents of ginseng radix rubra. 1983; 103(6): 612-622. 4. Han BH, Pakr MH, and Han YN. Degradation of ginseng under mild acidic condition. Planta Med. 1982; 44: 146-149. 5. Suzuki Y, Ko SR, Choi KJ, Uchida K, Lee YG and Kim YH. Enzymatic glycosylation and hydrosis of ginseng saponins. Proc. 7th Symp. 1998; 373-374. 6. Hasegawa H, Sung JH, Matsumiya S and Uchiyama M. Main ginseng saponin metabolites formed intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med. 1997; 63(5): 436-440. 7. Kong BM, Park MJ, Min JW, Kim HB, Kim SH, Kim SY and Yang DC. Physico-chemical characteristics of white fermented and red ginseng extracts. J. ginseng Res. 2008; 32(3): 238-243. 8. Wang W, Zhao Y, Rayburn ER, Hill DL, Wang H and Zhang R. In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemoth Pharmacol. 2007; 59: 589-601. 9. LY Wu J. Inhibitory effect of 20(S)-ginsenoside Rg3 on growth and metasis of Lewis pulmonary carcinoma. Zhonggliu Fangzhi Yanjiu. 2006; 33: 311-313. 10. David GP and David DK. Ginsenosides 20(S)- protopanaxadiol and Rh2 reduce cell proliferation and increase sub-g1 cells in two cultured intestinal cell lines, Int-407 and Caco-2. Can. J Physiol. Pharmacol. 2004; 82: 183-190. 11. Park SJ, Kim DH, Paek NS and Kim SS. Preparation and quality characteristics of the fermentation product of ginseng by lactic acid bacteria. J. Ginseng Res. 2006; 30(2): 88-94. 12. Brekhman. II. Panax ginseng, Gosudarst Isdat et Med, Lit. Leningard, 1957; 1-5. 13. Shibata, S., Tanaka, O., Soma, K., lita, Y., Ando, T. and Nakamura, H. Studies on saponins and sapogenins of ginseng. The structure of panaxatriol. Tetrahedron Lett., 1965; 3: 207-213. 14. Nam Ki Yeul. Contemporary Korean Ginseng. Korean Ginseng & Tobacco Research Institute. 1996; 1-54. 15. Park JD. Rescent studies on the chemical constituents of Korean Ginseng. Korean J. Ginseng Sci. 1996: 20(4): 389-415. 16. Jeong CS, Hyun JE and Kim YS. Anti-oxidative effect of ginsenoside Rb1 on the H, ethanol-induced gastric tissue in rats. Kor. J Pharmacogn. 2002; 33(3): 252-256. 17. Choi KJ. The constituent of material ginseng and management of quality. Korean J Ginseng Sci. 1991; 15(3): 247-256. 18. Hideo H, Seong JH, Yasatosi M, Masamori W and Hur JD. Metabolites of ginseng saponin by enterobacteria and anti cancer substance include it's useful constituent. Korea Plant. 1998; No 10-164266-0000. 19. Choi SS, Lee JK, Han KJ, Lee HK, Lee J and Suh HW. Effects of ginsenoside Rd on nitric oxide system induced by lipopolysaccharide plus TNF- in C6 rat glioma cells. Arch Pharm. Res. 2003; 26: 375-382.

ginsenoside 41 20. Yokozawa T and Liu ZW. The role of ginsenoside Rd in cisplatin-induces acute renal failure. Ren. Fail. 2000; 22: 115-127. 21. Goldin BR. Health benefits of probitics. Br. J. Nutr. 1998; 80: 203-207. 22. Fuller R. Probiotics in man and animals. J. Applied Bacteriology. 1989; 66: 365-378. 23. Jeong HS, Lim CS, Cha BC, Choi SH, Kwon KR. Component analysis of cultivated ginseng, cultivated wild ginseng, and wild ginseng and the change of ginsenoside components in the process of red ginseng. J. of KPI. 2010; 13(1). 63-77. Fig. 1 Manufacturing process of crude saponin by extraction and fraction

42 Journal of Pharmacopuncture 13 2 2010 6 (1) (2) (3) (4) Fig. 2 (1) HPLC chromatogram of standard ginsenosides.; 1: ginsenoside Rg1, 2: ginsenoside Re, 3: ginsenoside Rf, 4: ginsenoside Rh1, 5: ginsenoside Rb1, 6: ginsenoside Rc, 7: ginsenoside Rb2, 8: ginsenoside Rd, 9: ginsenoside Rg3, 10: ginsenoside Rh2. HPLC chromatogram of cultivated ginseng 4 years(2), cultivated ginseng 6 years (3) and cultivated wild ginseng (4) of fermented 7 days by lactic acid and bacteria.

ginsenoside 43 1 Fig. 3 Changes of ginsenoside Rb1 contents on various ginsengs in the process of heating and fermentation. 2 Fig. 4 Changes of ginsenoside Rb2 contents on various ginsengs in the process of heating and fermentation.

44 Journal of Pharmacopuncture 13 2 2010 6 Fig. 5 Changes of ginsenoside Rc contents on various ginsengs in the process of heating and fermentation. Fig. 6 Changes of ginsenoside Rd contents on various ginsengs in the process of heating and fermentation.

ginsenoside 45 Fig. 7 Changes of ginsenoside Re contents on various ginsengs in the process of heating and fermentation. Fig. 8 Changes of ginsenoside Rf contents on various ginsengs in the process of heating and fermentation.

46 Journal of Pharmacopuncture 13 2 2010 6 1 Fig. 9 Changes of ginsenoside Rg1 contents on various ginsengs in the process of heating and fermentation. 3 Fig. 10 Changes of ginsenoside Rg3 contents on various ginsengs in the process of heating and fermentation.

ginsenoside 47 1 Fig. 11 Changes of ginsenoside Rh1 contents on various ginsengs in the process of heating and fermentation.

48 Journal of Pharmacopuncture 13 2 2010 6 Fig. 12 Proposed Transformation Pathways of Rb2 by Cell-Extracts from Various Food Microorganisms

ginsenoside 49 Table 1. HPLC condition for analysis of ginsenosides Instrument Pump 9012 Solvent Delivery System, Varian Co. Detector 9050 Variable Wavelength UV-VIS Detector, Varian Co. Autosampler 9300 Autosampler, Varian Co. Column Capcell Pak C18 (150 4.6mm: 5 ), Shiseido Co. Operating condition UV Absorbance Column temp. Injection vol. Mobile phase A Mobile phase B 203 nm 40 20 Water Acetonitrile Gradient profile Time(min) %A %B Flow( /min) 0:00 82 18 1.0 25:00 78 22 1.0 55:00 70 30 1.0 75:00 60 40 1.0 90:00 50 50 1.0 Table 2. Equation and R 2 value of ginsenosides Sample Equation R 2 Ginsenoside Rb1 y = 2211.5x - 848.88 0.9998 Ginsenoside Rb2 y = 1230.2x + 3108.7 0.9996 Ginsenoside Rc y = 2318.7x - 4200.7 0.9996 Ginsenoside Rd y = 2480.0x - 1937.1 0.9996 Ginsenoside Re y = 2233.5x - 3970.4 0.9992 Ginsenoside Rf y = 2800.5x - 3853.2 0.9998 Ginsenoside Rg1 y = 2666.8x - 1945.9 0.9995 Ginsenoside Rg3 y = 2618.3x + 845.58 0.9997 Ginsenoside Rh1 y = 2450.7x - 5594.0 0.9997 Ginsenoside Rh2 y = 1826.9x - 31205 0.9929