, PC, TV 100, LG 50%. (CRT) 2000 (LCD) (PDP) LCD PDP LCD 70%. LCD (TFT), 3. 2010 (OLED) LCD. 8, TFT. TFT 0.5 cm 2 /Vs,. 1990. (low temperature poly silicon, LTPS) 80 cm 2 /Vs IC. LPTS /, TFT. 2004 InGaZnO TFT, TFT. 1) LTPS, /. (unintentional) n-. 20 15
Fig. 1. Frame rate TFT. 10 cm 2 /Vs,.,, 4,000 x 2,000 240 Hz frame rate 70. (Fig. 1). TFT. TFT LCD, LCD. 2004 Fortunato 20cm 2 /Vs ZnO. 2) ZnO, TFT. InSnO InZnO, In DC,. InGaZnO 2004 Nature. s. (disordering) s 1/10 10 cm 2 /Vs (Fig. 2). InGaZnO. In 2O 3, ZnO, Ga 2O 3, 2.1. ZnO, In 2O 3, InZnO, ZnSnO, InGaZnO, ZnGaSnO. ZnO, UV, LED, SAW, TFT Fig. 2. InGaZnO. 16
. 3) InGaZnO In TFT In-O Zn-O, Ga-O., OFF. In : Ga, OFF Trade-off (Fig. 3). 4) LG,, AUO IGZO, TFT LCD (Fig. 4,5). 5-7) In Ga In, Ga. 8,9) ZnO, SnO 2 ZnSnO. 10,11) Sn,, ZnSnO InGaZnO TFT. InZnSnO (IZTO) TFT. Fig. 4. 2010 FPD IGZO TFT 70 UD 3D LCD. Fig. 5. BOE 2013 IGZO TFT UHD 65 LCD. IZTO TFT In 2O 3 component In In IGZO. ETRI In:Zn:Sn = 20:40:40 24.6 cm 2 /Vs, V th -0.4V, I on/off ratio >10 9, SS 0.12 V/decade IGZO Fig. 3. IGZO In TFT. Fig. 6. Zn:In:Sn (40:20:40) IZTO TFT. 17
(Fig. 6). 12), bias. 2.2. LCD TFT TFT (bottom gate), (back channel etch, BCE) (etch stop, ES). BCE. TFT. Fig. 7 BCE. / IGZO, TFT (Transfer Characteristics). In-O, 3nm In segregation Fig. 7. (a) BCE (b) ES. Fig. 8. BCE S/D TFT. (Fig. 8). 13), N 2O. / ES,,. ES /, S/D. 14,15) ES ES PECVD ES,. TFT. TFT OFF... TFT., (Fig. 9). (Shallow Donor)., ZnO 18
Fig. 9. IGZO TFT. (Deep State). NBIS. (Fig. 10). 16) Turn-off.. LCD CCFL, LED Back Light Unit., 5%,. Blue Light TFT 2009. 17) TFT. 1 frame Turn-on FHD1/2000. OFF NMOS (Fig. 11). Duration Negative Gate Bias Stress (NBS)Negative Gate Bias Illumination Stress (NBIS). Fig. 10. IGZO TFT. 3.1. Negative bias illumination stress (NBIS) 19
Fig. 11. (a), (b) (c) timing diagram. TFT NBIS. Positive Bias Illumination Stress (PBIS) TFT (Fig. 12). PBS MIS NBS (Fig. 13). PBIS screening. -., PBIS.. NBIS Fig. 13., /.. Fig. 12. ZnO TFT (b) PBIS (d) NBIS. Fig. 13. PBIS NBIS. NBIS. (Trapping). Fig. 14 SiN x SiO 2 20
Fig. 15. (a) (b) vacancy. Fig. 14. (a) SiNx (b)sio2 IGZO TFT NBISIV. NBIS. 18) SiN x NBIS SiO 2. SiO 2 8.0 ev GI/. SiO 2 IGZO NBIS. SiNx SiNx,. NBIS, Deep State V O 2+ (Fig. 15). 19) 2+ V O relaxation NBIS V O Fig. 16. (a) Unpassivated (b) Passivated. (c) photo-desorption (d).. ZnO Persistent Photo-conductivity (PPC), IGZO. 20), NBIS. 21) Fig. 16 NBIS 21
NBIS (Fig. 16). 3.2. NBIS NBIS SiO 2 Al 2O 3.... IGZO Ga NBIS. ZTO Zr. 22). Percolation Conduction.. 23) NBIS. 24,25) 30 cm 2 /Vs In 50%IZO. 26), 8. 3.3. NBIS TFT NBIS Trade-off.,.. IZO ITO. (10 cm 2 /Vs) IGZO IZO IGZO/IZO (Fig. 17). 50 cm 2 /Vs 0V Bias (Fig. 18). 27) 5nm. NBIS. Fig. 17.. 22
5nm Sn, Sn Sn Sn-free. Snfree NBIS. Fig. 18. TFT (a) PBTS (b) NBTS. Sn (Fig. 19). 28) LCD TFT,. IGZO, C-axis aligned IGZO, IT. IGZO 10~20 cm 2 /Vs. IZTO. TFT TV PMOS 80 cm 2 /Vs. LG. Fig. 19. Sn. 1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Room-temperature Fabrication of Transparent Flexible Thin-film Transistors Using Amorphous Oxide Semiconductors, Nature, 432 488 (2004). 23
2. E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, R. F. P. Martins, and L. M. N. Pereira, Wide-bandgap High-mobility ZnO Thin-film Transistors Produced at Room Temperature, Appl. Phys. Letts., 85 2541 (2004). 3. H. Hosono, Ionic Amorphous Oxide Semiconductors: Material Design, Carrier Transport, and Device Application, J. Non-Cryst. Solids, 352 851 (2006). 4. J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, High Performance Thin Film Transistors with Cosputtered Amorphous Indium Gallium Zinc Oxide Channel, Appl. Phys. Letts., 91 113505 (2007). 5. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, High-mobility Thin-film Transistor with Amorphous InGaZnO 4 Channel Fabricated by Room Temperature Rfmagnetron Sputtering, Appl. Phys. Letts., 89 112123 (2006). 6. M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, High Mobility Bottom Gate InGaZnO Thin Film Transistors with SiO x Etch Stopper, Appl. Phys. Letts., 90 212114 (2007). 7. J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, High Performance Thin Film Transistors with Cosputtered Amorphous Indium Gallium Zinc Oxide Channel, Appl. Phys. Letts., 91 113505 (2007). 8. E. M. C. Fortunato, L. M. N. Pereira, P. M. C. Barquinha, A. M. B. Rego, G. Gonçalves, A. Vilá, J. R. Morante, and R. F. P. Martins, High Mobility Indium Free Amorphous Oxide Thin Film Transistors, Appl. Phys. Letts., 91 222103 (2008). 9. A. Chipman, The Flat-screen Television Boom Has Materials Scientists Scrambling to Replace the Valuable Metal Oxide that Coats the Screens,Nature (London), 449 131 (2007). 10. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, High Mobility Transparent Thinfilm Transistors with Amorphous Zinc Tin Oxide Channel Layer," Appl. Phys. Letts., 86 013503 (2005). 11. W. B. Jackson, R. L. Hoffman, and G. S. Herman, High-performance Flexible Zinc Tin Oxide Fieldeffect Transistors, Appl. Phys. Letts., 87 193503 (2005). 12. M. K. Ryu, S. H. Yang, S. H. K. Park, C. S. Hwang, and J. K. Jeong, High Performance Thin Film Transistor with Cosputtered Amorphous Zn-In-Sn-O Channel: Combinatorial Approach, Appl. Phys. Letts., 95 072104 (2009). 13. J. C. Park, S. W. Kim, C. J. Kim, S. I. Kim, I. H. Song, H. Yin, K. K. Kim, S. H. Lee, K. H. Hong, J. C. Lee, J. K. Jung, E. H. Lee, K. W. Kwon, and Y. S. Park, High-performance Amorphous Gallium Indium Zinc Oxide Thin-film Transistors through N 2O Plasma Passivation, Appl. Phys. Letts., 93 053505 (2008). 14. M. K. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, High Mobility Bottom Gate InGaZnO Thin Film Transistors with SiO x Etch Stopper, Appl. Phys. Letts., 90 212114 (2007). 15. J. H. Jeong, H. W. Yang, T. K. Ahn, M. K. Kim, K. S. Kim, B. S. Gu, H. J. Chung, J. S. Park, Y. G. Mo, H. D. Kim, H. K. Chung, and J. K. Jeong, 12.1-in. WXGA AMOLED Display Driven by InGaZnO Thin-film Transistors, J. Soc. Inf. Disp., 17 95 (2009). 16. J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and C. J. Kim, Control of Threshold Voltage in ZnO- Based Oxide Thin Film Transistors, Appl. Phys. Letts., 93 033513 (2008). 17. J. H. Shin, J. S. Lee, C. S. Hwang, S. H. K. Park, W. S. Cheong, M. K. Ryu, C. W. Byun, J. I. Lee, and H. Y. Chu, Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors, ETRI J. 31 62 (2009). 18. K. H. Ji, J. I. Kim, Y. G. Mo, J. H. Jeong, S. H. Yang, C. S. Hwang, S. H. K. Park, M. K. Ryu, S. Y. Lee, and J. K. Jeong, Comparative Study on Light-Induced Bias Stress Instability of IGZO Transistors With SiNx and SiO2 Gate Dielectrics, IEEE Electron Device Lett., 31 1404 (2010). 19. A. Janotti and C. G. V. Walle, Native Point Defects in ZnO, Phys. Rev. B, 76 165202 (2007). 20. B. K. Ryu, H. K. Noh, E. A. Choi, and K. J. Chang, O-vacancy as the Origin of Negative Bias Illumination Stress Instability in Amorphous In-Ga-Zn-O Thin Film Transistors, Appl. Phys. Letts., 97 022108 (2010). 21. S. H. Yang, D. H. Cho, M. K. Ryu, S. H. K. Park, C S. Hwang, J. Jang, and J. K. Jeong, Improvement in the Photon-induced Bias Stability of Al-Sn-Zn-In-O Thin Film Transistors by Adopting AlOx Passivation Layer, Appl. Phys. Letts., 96 213511 (2010). 24
22. B. S. Yang, M. S. Huh, S. H. Oh, U. S. Lee, Y. J. Kim, M. S. Oh, J. K. Jeong, C. S. Hwang, and H. J. Kim, Role of ZrO 2 Incorporation in the Suppression of Negative Bias Illumination-induced Instability in Zn-Sn-O Thin Film Transistors, Appl. Phys. Letts., 98 122110 (2011). 23. S. H. Yang, K. H. Ji, U. K. Kim, C. S. Hwang, S. H. K. Park, C. S. Hwang, J. Jang, and J. K. Jeong, Suppression in the Negative Bias Illumination Instability of Zn-Sn-O Transistor Using Oxygen Plasma Treatment, Appl. Phys. Letts., 99 102103 (2011). 24. K. H. Ji, J. I. Kim, H. Y. Jung, S. Y. Park, R. Choi, U. K. Kim, C. S. Hwang, D. S. Lee, H. S. Hwang, and J. K. Jeong, Effect of High-pressure Oxygen Annealing on Negative Bias Illumination Stressinduced Instability of InGaZnO Thin Film Transistors, Appl. Phys. Letts., 98 103509 (2011). 25. B. S. Yang, S. H. Park, S. H. Oh, Y. J. Kim, J. K. Jeong, C. S. Hwang, and H. J. Kim, Improvement of the Photo-bias Stability of the Zn-Sn-O Field Effect Transistors by an Ozone Treatment, J. Mater. Chem., 22 10994 (2012). 26. S. Y. Park, J. H. Song, C. K. Lee, B. G. Son, C. K. Lee, H. J. Kim, R. Choi, Y. J. Choi, U. K. Kim, C. S. Hwang, H. J. Kim, and J. K. Jeong, Improvement in Photo-Bias Stability of High-Mobility Indium Zinc Oxide Thin-Film Transistors by Oxygen High-Pressure Annealing, IEEE Electron Device Lett., 34 894 (2013). 27. S. I. Kim, C. J. Kim, J. C. Park, I. H. Song, S. W. Kim, H. Yin, E. H. Lee, J. C. Lee, and Y. S. Park, High Performance Oxide Thin Film Transistors with Double Active Layers, IEDM Tech. Dig., 73 1 (2008). 28. H. Y. Jung, Y. H. Kang, A. Y. Hwang, C. K. Lee, S. W. Han, D. H. Kim, J. U. Bae, W. S. Shin, and J. K. Jeong, Origin of the Improved Mobility and Photo- Bias Stability in a Double-channel Metal Oxide Transistor, Scientific Rep., 4 3765 (2014). 25