Journal of the Korean Ceramic Society Vol. 46, No. 1, pp. 30~34, 2009. Optimization of Glass Wafer Dicing Process using Sand Blast Won Seo, Young-mo Koo*, Jae-Woong Ko**, and Gusung Kim Department of Electronic Engineering, Kangnam University, Yongin 446-702, Korea *ESIP Lab., EPworks Co., Ltd., Gyounggi 464-070, Korea **Korea Institute of Materials Science, Changwon 641-010, Korea (Received October 21, 2008; Revised November 25, 2008; Accepted December 3, 2008) Sand Blast w Glass Wafer ƒœ y Á *Áš **Á½ û w l œw *( ) v ESIP ** (2008 10 21 ; 2008 11 25 ; 2008 12 3 ) ABSTRACT A Sand blasting technology has been used to address via and trench processing of glass wafer of optic semiconductor packaging. Manufactured sand blast that is controlled by blast nozzle and servomotor so that 8" wafer processing may be available. 10mm sq test device manufactured by Dry Film Resist (DFR) pattern process on 8" glass wafer of 500 µm's thickness. Based on particle pressure and the wafer transfer speed, etch rate, mask erosion, and vertical trench slope have been analyzed. Perfect 500 um tooling has been performed at 0.3 MPa pressure and 100 rpm wafer speed. It is particle pressure that influence in processing depth and the transfer speed did not influence. Key words : Sand blast, Glass wafer, Etching 1. w t w š. t xy, š y,» yƒ š w w» w ù e w ù qj w j qj» š. ù qj» 1,2) w v f Glass Waferƒ š. q j» ƒ CCM(compact camera module) l e ù e ƒ { s xy y w COB(chip on board), CSP(chip scale package) xk qj» w CCM yw Cover Glass Glass Waferƒ. Fig. 1 CCM Glass Wafer w š. 3) OLED(organic light emitting diode) w v Corresponding author : Gusung Kim E-mail : gkim@kangnam.ac.kr Tel : +82-31-280-3713 Fax : +82-31-789-7888 yw» w ƒœ Glassƒ. qj w 4,5) t Glassƒ y ƒ ww ƒœ v w. Glass y Glass Wafer ƒ œw» w (Dicing) (Sawing). Glass Wafer w w œ w. w w w y l p w w š q w ƒœ š. ƒ x ƒ š w Glass Wafer š j š z g w. y l p ƒœ ü Glass Wafer š ful ƒœw j z ù w w. 30
Sand Blast w Glass Wafer ƒœ y 31 Fig. 2. Sputtering of plasma etching mechanism. Fig. 1. Cover glass in CCM of COB type. w w r e ƒ (chipping) x w ƒœw w e ƒš (crack), qr(debris) w š. 6,7) w ƒœ p w. p š œ» w œ» w z œ» wì n w n ƒ ƒ w w ƒœw. x p ƒœwš w, v ƒ, t ù ƒ ƒw w. w p, ƒœ w w š. w ƒœ ƒœ w. Glass Wafer ƒœ w» w Glass Wafer ƒœw» ww p wš ƒœ w e ³ w z x mw e e w w wš š w. 2. x 2.1. p p p w ew» v w e e ƒ r l w (Physical Bombardment). rl w e ewš w t d v x w ƒ t w w t ù ü Fig. 2 rl w e e. 8,9) Glass Wafer w p w rl w e» š. œ» w ƒ p mw wù ƒ ƒ ƒ Glass Wafer t ý mw e rl mw e w w. v e ƒœ wš w t v x wš ü rl w e t ƒ e. p w e p ƒ t e ƒ w w. Glass Wafer ew» w ƒ p ù Glass Waferƒ w ù ƒ g t ƒœw w. w ƒœ z ƒœ w p Glass Waferƒ w w. w ƒœ t w ƒ w p Glass Wafer ƒ f w» w l w p w Fig. 3 Glass Wafer w» w p ü w š. Fig. 3. Structures of Sand Blast. 46«1y(2009)
32 Á Áš Á½ p xk ƒœt Glass Wafer p w ww ƒ ƒ w š ƒ Ø8 mm j» 2 sww w. mw ƒ ƒ 30 ƒ o w. Glass Wafer» f p l w Glass Wafer š k ƒœ Á, t ³» Glass Wafer š w» w e (jig) w yw v w. w 8" Glass Wafer š w w š œ mw Glass Waferƒ w w š w. w w ù j(dynamic brake) wš 5.9 m/s w l w š PLC mw 2 l ƒ w w. 2.2. x Glass Wafer ƒœ n j»ƒ 400 mesh W. A. Oxide(white aluminum oxide) w. Table 1 p 10) w Glass Wafer ƒœ p ùkü. x w r wù (cell) 10 mm 10 mm j» 180 µm j ƒ j w 500 µm Ì 8" Glass Wafer DFR patterningw w. Table 2 10) ƒœ r Glass Wafer p ùkü. p w Glass Wafer ƒœ x w w e ƒ p Glass Wafer l. x wš w. Table 3 x w ùkü. x w x ww. x ƒ ƒ š ƒ w ƒ ww x z w xw š w z w. ƒ œ Fig. 4 œ 8" Glass Wafer v (Dry Firm) k z ql j DFR patterning w z Table 3 w x z ƒ x p w Glass Wafer ƒœw z DFR stripping ww. x Glass Wafer SEM w w z ƒœ ¾ (depth), e(anisotropic Etching), j e (Mask erosion) w d w ƒ Table 1. Properties of Abrasive W. A. Oxide (white aluminum oxide) Basic Mineral Density α- Al 2 O 3 >3.90 Volume 1.75 1.95 Table 2. Properties of Glass Wafer size (mm) Density Young s Modulus (GPa) x e w w. 3. x š Micro hardness (kg/mm 2 ) 2200 2300 Size (mesh) 400 Thermal Expansion of Coefficient (10 6 /K) (0 300 o C) 300 2.37 70.9 3.18 Table 3. Factors and Levels Used in Experiment Factor Level unit pressure 0.1 0.3 MPa moving speed 100 200 rpm Fig. 4. Glass wafer fabrication process flow. p w Glass Wafer ƒœ p mw Glass Wafer ƒ 1z» 30z ƒœw. Fig. 5 (a)~(h) Table 3 x Glass Wafer ƒœw z SEM w d w. Table 4 x Glass Wafer w ¾, ƒ, j e w d ùkü. Fig. 6 ƒœ ¾, e, j e x w w e v ùkü. Fig. 6 (a) ¾ w x e w v š. v mw ƒœ ¾ j w e y w w ƒw ¾ ƒw y w. w wz
Sand Blast를 이용한 Glass Wafer 절단 가공 최적화 Fig. 5. 33 SEM images of glass wafer section (a) side : 0.1 MPa, 200 rpm, (b) front : 0.1 Mpa, 200 rpm, (c) side : 0.1 MPa, 100 rpm, (d) front : 0.1 MPa, 100 rpm, (e) side : 0.2 MPa, 200 rpm, (f) front : 0.2 MPa, 200 rpm, (g) side : 0.2 MPa, 100 rpm, (h) front : 0.2 MPa, 100 rpm Output Characteristics of Experiment pressure (MPa) 0.1 0.3 moving speed (rpm) 100 100 depth (um) 171 500 slope (o) 38 15 mask erosion (um) 103 41 Fig. 6. Table 4. 0.1 200 270 36 134 0.3 200 410 22 90 Output characteristics (a) depth (b) angle (c) mask erosion. 속도는 그 변화에 따라 깊이에 크게 영향을 미치지 못함 을 확인할 수 있다 의 에서는 의가 공에 대한 이방성 에칭에 대한 그래프를 볼 수 있다 두 인자 모두 영향을 미치지만 압력이 크게 작용함을 알 수. Fig. 6 (b) Glass Wafer. 제 46 권 제 1호(2009)
34 Á Áš Á½ ƒ û e ƒà ƒœ. Fig. 6 (c) p w Glass Wafer ƒœw w j e v š. j e j w e. š ƒ û j e ƒ ùkù. j e (scattering) ƒœ» qr(byproduct) w š 41 um ƒ ùkû. mw p w Glass wafer ƒœ p 0.3 MPa, ƒœ w Glass Wafer l ƒ 100 rpm ƒœ ùkû. ¾ 500 um x w ¾ ƒœ w. j e 41 um qr. p œ» w ƒ ƒw t ƒœw wì w œ» ƒ. w œ» mw ù qr w d w ƒ w z {w q. 4. p w Glass Wafer ƒœ w w x ww. v e e rl w Glass Wafer ƒœ t ww ƒ ƒ w p Glass Wafer ƒœ w l w ƒœ ƒ w p w. w DFR patte-ring Ì 500 um 8 Glass Wafer r w p l wš x ww. 1. Glass Wafer ƒœ¾ j w e š j w e w y w. 2. e j e w e ùkûš ƒ û e ƒ š j e ù y w. 3. 0.3 MPa, 100 rpm ƒ œ ¾ 500 um, e 15 o, j e 41 um Glass Wafer ƒœ w w. REFERENCES 1. Rao R. Tummala, Fundamentals of Microsystems Packaging, pp. 24-26, Mc-Graw-Hill, New York,G 2001. 2. Rao R. Tummala, Ceramic and Glass-Ceramic Packaging in the 1990s, J. Am. Ceram. Soc., 74 [5] 895-908 (1991). 3. Thomas J. Watson, CMOS Image Sensors-recent Advances and Device Scal-ing Considerations, IEDM '97. Technical Digest, 201-204 (1997). 4. J.G. Jang, H.W. Kim, Fabrication and Characterization of Yellow OLED using GDI602:Rubrene(10%) Material(in Korean), J. of Microelectronics & Packaging Soc., 13 [4] 71-5 (2006). 5. Stewart, M. Howell, R.S. Pires, L. Hatalis, M.K., Polysilicon TFT Technology for Active Matrix OLED Displays, IEEE Trans. Electron devices, 48 [5] 845-51 (2001). 6. S. M. SZE, VLSI Technology, 2/E, pp. 213-14, McGraw- Hill, New York, 1988. 7. W. Koechner, Solid State Laser Engineering, pp. 549-53, Springer-Verlag, Berlin, 2007. 8. R. Hippler, M. Schmidt, K. H. Schoen-bach, Low Temperature Plasma Physics, pp. 89-98, WILEY-VCH, New York 2001. 9. G. Y. Yeom, Plasma Etching Technology(in Korean), pp. 250-54, MiraeCom, Seoul, 2006. 10. Charles A. Harper, Electronic Packaging And Interconnection Handbook, pp. 1.59, McGraw-Hill, New York, 1991. w wz