한국환경농학회지제 29 권제 1 호 (2010) Korean Journal of Environmental Agriculture Vol. 28, No. 4, pp. 3338 연구보문 토양검정에의한논토양유형별질소시비량결정 문영훈 * 권영립 안병구 이진호 1 최동칠 전라북도농업기술원, 1 전북대학교생물환경화학과 (2009 년 9 월 3 일접수, 2010 년 1 월 19 일수리 ) Determination of Nitrogen Fertilizer Recommendation Rates Estimated by SoilTesting for Different Types of Paddy Soils YoungHun Moon *, YoungRip Kwon, ByungKoo Ahn, JinHo Lee 1 and DongChil Choi(Jeollabukdo Agricultural Research and Extension Services, Iksan 570704, Korea 1 Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonbuk 561757, Korea) To improve the existing nitrogen recommendation method based on chemical properties of soils and to establish new recommendation rates of nitrogen fertilizer due to different types of soils, the application rates of nitrogen fertilizer were examined in different soils of 12 experimental rice paddy fields. The application rates of nitrogen fertilizer estimated by soiltesting were higher than the rates of nitrogen standard recommendation that has been used. The application rates for minimum rice productivity ranged from a low of 168 kg/10a in sandy soil to a high of 315 kg/10a in saline soil. Amounts of nitrogen absorption in rice were proportional to the application amounts of nitrogen fertilizer in soils. Nitrogen use efficiency was the highest, 36.7%, in immatured paddy field and it was inversely proportional to the application amounts of nitrogen. the rice tasty value was the highest in the soils without nitrogen application, and also it was the lowest in the saline soils with or without nitrogen application. As comparing with the nitrogen application rates obtained by the existing nitrogen recommendation method, optimal nitrogen application rates estimated by the standardization of nitrogen application efficiency rate, environmental index, and rice quality were 1.0 fold in the well adapted soil and sandy soil fields, 0.92 fold in the immatured soil field, and 0.83 fold in the saline soil field. Key Words: Fertilizer application, Rice, Soil testing, Soil type 서론 과거우리나라농업은농경지의비옥도증진과작물의생산성향상을위하여고투입농법이이루어져왔으나 1990년대에들어서면서환경친화적이고지속가능한농법에관심을가지게되었다 (Choi, 2006). 친환경농업을육성하기위하여시 군농업기술센터종합검정실을통하여토양검정을실시하고그결과에따라필지별토양의양분상태와작물특성에알맞은시비처방을하고있다. 현재작물별시비처방을위해서토양산도, 전기전도도, 유기물함량, 유효인산, 치환성양이온, 유효규산, 양이온치환 * 연락저자 : Tel: +82632906082 Fax: +82632906198 Email: moon0149@korea.kr 용량등토양의화학적특성만고려하여시비처방을하고있으며토성, 배수등급등토양물리성과기후, 지형등작물생육에영향을미치는다른요인들은대부분고려하고있지않는문제점을가지고있다. 농경지토양유형별구분은 1964년부터 1990년까지실시한정밀토양조사결과밝혀진결과를토대로토양특성이약간다르나토양환경과토양관리의유사성이있어동일한토양관리를해도작물생육에큰영향을미치지않는토양을한데묶어서동일한유형으로분류한것이다. 이와같이다양한토양에대하여토양관리의유사성을고려하여논과밭토양각각 6개의토양유형으로구분하였는데, 논토양은보통답, 사질답, 습답, 미숙답, 염해답, 특이산성답으로구분된다 (Jun, 2005). 지금까지쌀의품질기준은외형적인품위위주로등급을분류하였지만, 식미가좋고, 우수한쌀의품질에영향을미치 33
34 문영훈 권영립 안병구 이진호 최동칠 는인자는질소시비량이품종다음으로중요하다고볼수있다 (Eom, 2005; Ahn and Kim, 1996). 질소질비료과다시용은도복과병해충발생을조장하며, 완전미율이낮아지고, 단백질함량이높아져식미를저하시키는요인이된다 (Park et al.,. 2004). 따라서우리나라에서질소시비추천은최소량의질소를투입하여수량을적정수준으로유지하고고품질의쌀을생산하는데목표를두고있다. 현행추천방법은작물특성에맞는유효양분의요구도와토양검정에의한토양중유효양분함량을감안하여시비량을결정하고있다 (NIST. 2006). 현재벼에대한질소시비량결정은토양중유효규산과유기물함량을토대로해서수행하고있는데 (Lee et al., 1988) 기상상태, 지대및토성에따라서보다세분화된질소시비량을추천하기도한다 (Song et al., 2006). 따라서본시험은전라북도논토양유형별특성을고려하여벼재배에적합한질소시비기준을재설정하기위하여전북지역분포면적을고려하여논유형별로면적이많은보통답, 사질답, 미숙답, 염해답을대상으로실시하였다. 재료및방법 본연구는논토양유형별로벼에대한적정질소량을산출하기위해보통답 ( 익산 2, 김제 1), 사질답 ( 완주 3), 미숙답 ( 익산 1, 김제 3), 염해답 ( 부안 3) 등 4지역 12개장소에서수행하였다. 시험품종은남평벼였고, 지역별로 4월중순에파종하여, 5월중순에중묘를기계이앙하였다. 시험전유형별토양화학성의평균함량은 Table 1과같다. ph는적정수준이지만, 유기물은보통답을제외하고적정수준보다낮았고, 유효인산은미숙답에서적정수준보다낮았다. 치환성 K, Ca 및 Mg은사질답에서기준보다낮았고, 유효규산은보통답과사질답에서낮은수준을보였다. 각토양유형별처리내용은질소는무처리, 토양검정시비량의 0.5, 1.0, 1.5배를처리하였으며, 인산과칼리는토양검정시비량을시용하였고, 시험구는난괴법 5반복으로배치하였다. 처리전후에채취한토양은풍건세토로만들어분석용시료 로이용하였고, 분석방법은농촌진흥청토양및식물체분석법 (NIST. 2000) 에준하여실시하였다. 즉, 토양유기물은 Tyurin법으로, 유효인산은 Lancaster법으로분석하였으며, 치환성양이온은 1 M Ammonium acetate로추출하고 ICP(GBC Integra) 로측정하였다. 유효규산은 1 NNaOAc (ph 4.0) 용액을이용하여분석하였다. 식물체는 40 mesh로분쇄한시료 0.5 g에진한 H 2SO 4 1 ml와 50 % 의 HClO 4 10 ml를가하여분해한후여과하여 N, P, K, Ca, Mg, 및 Si 등을조사하였는데, TN 은 Indophenolblue 법, 인산은 Vanadate법, K, Ca, Mg는 ICP로측정하였고, Si는분해잔사물을 600 의전기로에서 6시간동안태워중량법으로규산함량을정량하였다. 기계적식미치는분석시료용쌀 33 g 을취반용셀에넣은후 80 의수조에서 10분간취반후 5 분간뜸을들이고도요식미계 (Toyo MB90A) 로측정하였다. 질소시비량산출은시비효율지수와환경부하지수를표준화하여시비량을산출하였는데, 시비효율지수는시비된질소성분이작물에이용되는효율을 100분율로나타낸값으로산출식은 시비효율지수 = ( 처리구질소비료이용률 / 검정시비구질소비료이용률 ) 100 를이용하였고, 환경부하지수는무비구를 100으로하여시비된양분중환경부하로작용하는양을나타낸값으로산출식은 환경부하지수 = 100 ( 질소시비량 질소흡수량) 으로계산하였다. 처리간의통계적인분석은 SAS 프로그램 (SAS institute) 을사용하여 Ducan 검정및회귀분석을수행하였다. 결과및고찰 토양검정에의한 3요소의시비량을논토양유형별로평균한성적은 Table 2와같다. 토양검정에의한질소시용량은유기물함량과규산함량에의해서달라진다. 질소비료시용량은보통답 112, 사질답 109, 미숙답 138, 염해답이 226 kg/10a 으로우리나라질소표준권장량 110 kg/10a량보다많은것은나타났고, 이는시험전토양의규산함량이기준량보다높았기때문인것으로판단된다. 인산시비량은논토양 Table 1. Physicochemical properties of soils before experiment ph OM TN Av.P 2O 5 Exch.(cmol (+)/kg) Av.SiO 2 Clay (1:5) (g/kg) (%) (mg/kg) K Ca Mg (mg/kg) (%) Normal(3) 6.0 27 0.13 121 0.33 5.4 1.6 141 22.9 Sandy(3) 5.9 22 0.11 182 0.27 4.3 1.0 92 10.6 Immatured(3) 6.0 20 0.07 47 0.43 6.0 2.0 187 31.9 Saline(3) 6.1 12 0.08 104 0.95 4.6 4.7 180 19.5 Standard + 5.5 6.5 25 30 80 120 ( ): No. of experimental sites + Fertilizer application recommendation for crops(niast, 2006) 0.25 0.30 5.0 6.0 1.5 2.0 157 180
토양검정에의한논토양유형별질소시비량결정 35 Table 2. Application rates of nitrogen, phosphate and potassium fertilizers based on soil testing ( kg / 10a) N P 2O 5 K 2O Normal(3) 112 45 52 Sandy(3) 109 33 50 Immatured(3) 138 58 47 Saline(3) 226 44 34 ( ) : No. of experimental sites Table 3. Rice yield by nitrogen fertilizer rates based on soil testing Yield(Mg/10a) N rates for Maximumyield maximum yield.5 (Mg/10a) (kg/10a) Normal(Index) 5.27a (79) 6.00a (90) 6.66b (100) 7.04a (106) 7.08 174 Sandy(Index) 5.08b (80) 5.68c (89) 6.37c (100) 6.70b (105) 6.72 168 Immatured(Index) 4.50d (65) 5.86b (85) 6.90a (100) 7.13c (103) 7.31 197 Saline(Index) 4.71c (71) 5.70c (86) 6.66b (100) 6.82b (102) 6.92 315 유형별로 3358 kg/10a이었고평균시비량은우리나라인산표준시비량과같은 45 kg/10a이었다. 토양검정에의한칼리시용량은 CEC에의해서달라지는데, 논토양유형별로 3452 kg/10a로우리나라표준시비량에비해서낮게나타났다. 논토양유형별질소시비수준별정조수량은 Table 3에서보는바와같다. 수량지수는보통답을기준으로했을때토양검정질소시비량대비무질소구 79, 토양검정질소시비량 0.5 배구 90, 토양검정질소시비량 1.5배는 106 이었고, 최고수량은 7.08 Mg/10a이었으며, 회귀분석에의한최고수량생산시비량은 174 kg/10a이었다. 사질답과습답에서는토양검정질소시비량별로수량지수는보통답과유사한경향을보였다. 미숙답에서는토양검정질소시비량대비무질소가 65로유형별로가장낮은생산력을보였고, 토양검정질소시비량 0.5배 85, 토양검정질소시비량 1.5배는 103 이었고최고수량은 7.31 Mg/10a이었으며회귀분석에의한최고수량생산시비량은 197 kg/10a이었다. 염해답에서는토양검정질소시비량대비무질소구 71, 토양검정질소시비량 0.5배 86, 토양검정질소시비량 1.5배는 102 이었고최고수량은 6.92 Mg/10a이었으며회귀분석에의한최고수량생산시비량은 315 kg/10a이었다. 그리고 12개논토양을평균한정조지수는토양검정질소시비량대비무질소구 73, 토양검정질소시비량 0.5배 88, 토양검정질소시비량 1.5배는 104이었고최고수량은 7.01 Mg/10a이었으며회귀분석에의한최고수량생산시비량은 214 kg/10a이었다. 유형별정조지수의차이는질소요구도가큰시기인유수분화기에질소부족으로생산량이감소됐을뿐만아니라퇴화영화수증가, 잎의노화촉진, 등숙기광합성능력감소로수량에차이가있었다고볼수있다 (Diker and Bausch, 2003; HinzmanM et al., 1986). 식물체양분흡수량은수확기벼의경엽과정조를분리하여무기성분을분석한결과에정조중과고중을각각곱하여경엽과정조의흡수량을합한성적을지상부의양분흡수량으로환산하였고, 그결과는 Table 4와같다. 논토양유형별질소흡수량은보통답 112.6, 사질답 115.0, 미숙답 112.8, 염해답 151 kg/10a이었으며, Table 2에서보는바와같이토양검정에의한질소시비량이보통답 112, 사질답 109, 미숙답 138, 염해답 226 kg/10a이었으므로보통답, 사질답에서는질소흡수량과질소시용량이비슷한경향을보였다. 그리고질소흡수량은토양유형에관계없이질소시용량이많을수록높게나타났다. 사질답에서질소시비량을 1.0배나 1.5배처리했을때질소, 인산, 및칼리흡수량은같은수준을보였고, 규산은보통답과사질답에서 1.0배처리했을때가장높은흡수율을보여보통답이나사질답에서질소시비량은토양검정시비량이적당한것으로나타났다. 지상부의볏짚과정조가질소성분을흡수하여이용한질소이용율은 Table 5와같다. 토양검정시비량을기준으로한질소이용율은보통답 35.3, 사질답 34.2, 미숙답 36.7, 염해답 23.7% 로미숙답에서질소이용율이가장높은반면염해답에서가장낮았으며질소시비량이 1.5배로증가하면질소이용률은감소하는경향을보였으며, 논유형별로평균질소이용율은 32.0% 수준이었다. 염해답과사질답은질소를 0.5배와 1.0배처리했을때흡수율은같았고, 질소시비량이증가하면이용율은감소하였다. 현미와백미비율이 91% 로조절된쌀의밥맛을도요식미계로식미치를측정한결과 Table 6과같다. 먹을때느끼는맛을식미는기호성은절대적인것이아니지만, 식미를검정
36 문영훈 권영립 안병구 이진호 최동칠 Table 4. Nutrient absorption of rice(shoot + grain) by soil types and N application rates (kg/ 10a) Normal N fertilizer rates.5 TN P 2O 5 K 2O CaO MgO SiO 2 79.5 d 96.5 c 112.6 b 135.7 a 43.9 d 52.2 c 61.5 b 65.8 a 127.5 d 151.0 c 180.7 b 199.5 a 26.5 c 29.9 b 37.5 a 37.7 a 20.0 d 23.8 c 27.6 b 31.2 a 610.7 d 665.9 c 771.0 a 758.9 b Sandy.5 84.2 d 98.6 c 115.0 b 136.7 a 45.7 d 53.1 c 58.9 b 65.7 a 128.1 d 144.1 c 162.7 b 190.4 a 26.3 c 27.5 c 31.0 b 33.6 a 18.3 d 21.5 c 25.5 b 28.8 a 557.2 d 585.2 c 632.1 b 682.6 a Immatured.5 62.2 d 87.6 c 112.8 b 126.0 a 36.7 d 48.1 c 54.4 b 59.6 a 103.4 d 138.6 c 170.5 b 180.7 a 20.7 d 27.6 c 32.4 b 35.2 a 16.6 d 23.7 c 28.8 b 33.2 a 505.5 d 632.4 c 732.0 b 759.0 a Saline.5 96.9 c 124.5 b 151.0 a 155.1 a 41.0 c 51.9 b 63.3 a 63.1 a 80.8 c 114.3 b 141.2 a 145.0 a 27.2 d 32.3 c 39.0 b 42.2 a 19.4 d 25.6 c 31.0 b 34.5 a 652.4 d 741.7 c 815.4 a 782.2 b Table 5. Nitrogen utilization rates of rice plant at the different soil testing N treatments Normal Sandy Immatured Saline N utilization rates (%) times.5 times times times 27.9b 24.2c 36.8a 24.4c 35.3ab 34.2b 36.7a 23.7c 30.7a 29.4a 30.8a 17.2b Table 6. Palatability score of milled rice at the different soil testing N treatments N fertilizer rates based on soil testing Normal Sandy Immatured Saline Mean(index) 69.5 a 70.2 a 70.8 a 68.5 a 69.8(105).5 66.8 b 66.7 b 67.5 b 62.5 b 66.7(100) 67.5 b 66.7 b 66.8 c 63.0 b 66.9(100) 63.9 c 64.7 c 66.0 c 59.5 c 64.7(97) 하는기계적인방법도여러가지가있으나, 본실험에서는밥의윤기가많을수록밥맛이좋다는원리에근거하여밥의윤기를측정하여이를수치화한방식으로조사한결과를처리별로보면무질소구가 69.8로토양검정시비량구 66.7 보다약간높았고, 토양검정시비량 0.5배는 66.9로토양검정시비량구와같은경향이었고질소를 1.5배시용한구에서는 64.7 로낮은경향이었는데도요식미값은질소를많이시용할수록낮았다. 토양유형별로는염해답에서가장낮았고나머지토양유형에서는비슷한경향이었다. 송등 (Song et al., 2006.) 의연구에서도질소시비수준이증가하면완전미비율및 Toyo 식미치는낮아진다고하였다. 토양유형별토양검정질소시비량과수량, 시비효율, 환경및품질과의관계는 Fig. 1과같다. 과거에는벼재배시시비기준은최고수량을얻는데중점을두었으나점차기상과병해충발생등을감안한안전시비량으로조정하여시용하여최근에는환경에대한관심이높아지고농업환경보전에대한필요성이요구되면서친환경적인저투입시비기준으로재조정이되어왔다.
토양검정에의한논토양유형별질소시비량결정 37 Normal Sandy Immatured Saline Multiplication of soil test N level Fig. 1. Relationship among N fertilizer rate based on soil test, rice yield, N fertilization efficiency, and environmental index in the productive soil. ; Yield index, ; Fertilization efficiency, ; Environmental index. Fertilization efficiency index = N efficiency of plots/ N efficiency of soil test N plot * 100 Environmental index = 100 (N fertilizer rate N absorption rate) 시비량은기존공식에 F 값곱하여산출했을때환경친화적인농업을지속적으로유지할수있을것으로판단한다. 요약 Fig. 2. Optimum N rates in consideration with fertilization efficiency for rice. 토양유형별벼재배최적질소시비량은 Fig. 1에서산출한시비효율지수와환경지수및쌀품질을표준화하여계산하였고, 토양유형별로보통답과사질답은토양검정시비량의 1.0배, 미숙답과염해답은각각토양검정시비량의 0.92와 0.83배에서최적시비량수준을보였다. 이값을 F값으로사용하여시비효율, 환경및품질을고려한논토양유형별질소 토양화학성을고려한기존의토양검정시비추천방법을보완하기위하여논토양유형별질소시비기준을설정하기위하여 12개벼시험포장에서토양유형별질소검정시비량시험을실시하였다. 유형별토양검정에의한질소시용량은질소표준권장량보다많게환산되었고, 질소수준별회귀분석에의한최소수량생산시비량은염해답에서 315 kg/10a, 사질답에서 168 kg/10a로최고와최저시비량을보였다. 유형별질소흡수량은질소시비량과비례관계였고, 질소이용률은미숙답에서 36.7% 로가장높았으며, 질소시비량과반비례관계였다. 쌀의식미치는논토양유형에관계없이무질소에서높았고, 유형별로는염해답에서가장낮았다. 시비효율지수와환경지수및쌀품질을표준화하여얻은최적시비량은보통답과사질답에서는토양검정시비량의 1.0배, 미숙답과염해답에서는각각 0.92와 0.83배했을때최적시비량수준을보였다.
38 문영훈 권영립 안병구 이진호 최동칠 참고문헌 Ahn, S.T., Kim, D.H. (1996) Effects of application rates on quality of rice. Inst. Agric. Resour. Res. 3: 916. DongA Univ., Korea. Choi, D.H. (2006) Application technology of organic agriculture materials. Int. Org. Symp. pp. 3558. Diker, K., Bausch, W.C. (2003) Radiometric field measurements of maize for estimating soil and plant nitrogen. Biosys. Eng. 86(4): 411420. Eom, K.V. (2005) Measure for improving rice quality with market sale of imported rice. In proceedings of symposium of improving rice quality in Korea. pp. 2751. National Institute of Crop Science, Rural Development Administration. Hinzman, L.D., Bauer, M.E., Daughtry, C.S.T. (1986) Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remo. Sens. Environ. 19: 4761. Jun, H.J. (2005) Nitrogen fertilizer recommendation on different soil management groups based on soil test results. Report of AgroEnvironment Science. Lee, C.S., Kwak, H.K., Hwang, K.S., Park. J.K. (1988) Estimation for application amount of N fertilizer in mid mountainous paddy soils with special reference to content of organic matter and available silica in soils. Research Reporters of Rural Development Administration. 30: 4147. NIST. (2000) Methods of soil and crop plant analysis. National Institute of Agricultural Science and Technology, Rural Development Administration. Korea. NIST. (2006) Fertilizer application recommendation for crops. National Institute of Agricultural Science and Technology, Rural Development Administration. Korea. Park, Y.H., Lee, Y., Noh, J.S., Kim, S.C., Lee, K.S. (2004) Integrated nutrition management for rice cultivation. Plant Nutrition Division, Dept. of Agricultural Environment, National Institute of Agricultural Science and Technology, Suwon, Korea. Song, Y.S., Lee, K.S., Jung, B.G., Jun, H.J., Kwag, K.S., Yeon, B.Y., and Yoon, Y.S. (2006) Determination of nitrogen application rates with paddy soil types for production of high rice quality. Korean J. Soil Sci. Fert. 39(2): 8694.