w CAD/CAM wz 15«3y 2010 6 pp. 189-203 œ w w *, **, x***, v ** The Conceptual Design of Semi-submersible Type Mobile Harbor Using Axiomatic Design Principles Joohee Lee*, Seongjin Yoon**, Hyun Chung*** and Phill-Seung Lee** ABSTRACT The axiomatic design principles are applied to the conceptual design of semi-submersible type mobile harbor (B1). The process of how the design of mobile harbor is elaborated, evaluated and improved from the very beginning is presented in this paper. The concept of mobile harbor is a functional harbor, which can move to a container ship anchoring out of ports in the deep water to load/unload containers on sea and transfer them to their destination ports. This floating system will innovate the maritime transport and distribution since it will greatly enhance the accessibility of super-sized container ships to existing harbors and harbors without enough infrastructures. Designing a mobile system which can perform the functions of traditional harbors on the floating system requires innovative ideas as well as rigorous validations of each sub systems. In order to enhance the chance of design success, we try to satisfy the design axioms in early stage of conceptual design. We use the zigzagging process for defining Functional Requirements (FR)-Design Parameters (DP) hierarchy due to the complexity of the system. In other words, we decomposed the complexity of the design by FR-DP hierarchy and reduced coupled design logically and systematically. This paper shows applicability of the axiomatic design principles to the field of ocean systems engineering. Key words : Axiomatic design, Mobile harbor, Container transport 1. w w r, fl ã ƒwš. Fig. 1, 2007 ¾ fl ã ƒw ƒ x y w wš [1]. w d w wz 2 z l z wì ƒw. *w z, e p» wœ lœw w l œw œ ** z, e p» wœ lœw w l œw œ *** z, e p» wœ lœw w l œw œ - nš : 2010. 03. 03 - : 2010. 05. 06 - : 2010. 05. 07 wr fl xy š. 1990 z r s p qù 13000 TEU fl š. w ƒ xy fl w j wš w fl xy ƒw fl ³ z w» w [2]. x fl ww fl w» w š, w z ƒ. x fl ƒ š. ù ƒ fl xy j z š q w». ÿw x fl» ww w w j». w f 189
œ w w 190 lp MDS Transmodal Table 1 w, w y x k w š ƒ w fl ƒ w w w [3]., w w, w w w ƒ Fig. 1. fl ƒ[1]. Table 1. w fl ( : TEU) 2006 2014 225 195 225 324 128, 95 61 95 101 29 w 70 43 70 72 10 v e 0 0 0 0 0 y, 7 4 7 7 1 w 397 303 397 505 168 w w w(hub port) w(spoke port) fl xy w» y.» w fl ww. w w w x fl w š ü z w w w w p j w. x w r w w» x w r š. x fl w w w» w w w [2]. fl xy x w w x fl w 16~18 m, ¼ 400 m ü z, l ƒ z w ww ù 16 m x fl w w Table 2 w Ÿ gw, l, r x w [2,4]. w w e w y w y w» w j n x fl ƒ. w, w l» w y wš, ewš w xy fl w l w y ƒ wš w xy ƒ.» w w w p j x fl wš w z w š. w fl xy w r w -w z» w š w l. w w w w x w l [5]. w x fl w œ» w xyw»z w w ƒ ƒ w w ƒ y ƒ. w» w. w 16 m w w, ƒƒ w w w., x f l w ¼ w w w š ƒ w,»» w w,, w,,, w w ƒ w. w» w y w ƒ
191,, x, v Table 2. x fl»w ƒ w w l (m) ¼ (m) j (MT) j Ÿ (w ) 3-1 16~17 1,400 12-22~23 Rows - Yantian( ) 3 16 1,400 18-60 - gw ( ) C-1,2 16 1,400 5 65 65 40 e( ) T 16 1,500 16 65 61 - l ( ) Ceres Paragon 16 1,050 9 65 61 - x ( r ) Mulle Del Navio 16 1,456 3 65 59 36 w ( ) Wilhelm Kaisen 16 2,300 4 65 63 33 Salalah( ) Salalah 16 1,236 2 65 63.5 33 ¼ (m) Lift Ht. (m) ƒ, ƒ w» w 8850 50%» ƒ w [6]. w,» w 151. ù w» 5% ƒ, 213, w w»»z, n x š w, d w ƒ [6]. w w x w w w w e ƒ, w w r w. š fl w, w. w w q w š w. w r w 2008» 2021 n z š z w w e wš [6]. w w, x š ƒƒeƒ. w w t w w r. ƒ w l» l w w. z l e w ƒ ww. w ywš w» w l w w v ƒ. ù x w w, œ mw ƒ š œ wš w» œ w š wƒ. 2. w 2.1 w w w fl w, w w w. l w x j t š.,» ew w, w, e w e [5-9]. Ax ù fl d w j w w w w.» Ax w j w, w ƒ w fl w w j w A1x A2x. Fig. 2 šw Ax w fl d w, A1x ƒ w ƒ j w wš, A2x w 2 ƒ fl š ƒƒ d d w z j w xw ƒ w. 250 TEU 700 TEU, 1200 TEU ù š, ü w wš w t
œ w w 192 Fig. 2. w Ax. Bx w ew, j fl z w wš, w w v (Feeder) w. Fig. 3 š w B1x, B2x, B3x, œm w wš. B1x xk fl w ü w q fl w xw w. B2x x x j e. fl ew w Fig. 3. w Bx. w. B3x B2x w w w k w ww, w t w w w» ƒ w w» w Ax ƒ» Bx. š w w Bx w B1x. 2.2 w» w Ax Bx Sea State 3 w ƒ w»» w w Bx Ax š y w t w ew, x fl w. w w w» w w fl» w w [5-9]. w w k fl w x fl w z w w w w w, w fl w w w» ƒ x w. w ew x fl w j y œw š, w» w l. sww ew w, w j fl w w w j, ƒ» ù ƒ. ƒ ¼, j» w» (Pillar) š, ew j. j fl w x w w x w j. fl sww w fl w w fl, fl d y wš» w r l. š w wš ƒ. w» ƒ Fig. 4 ùký [8].
이주희, 윤성진, 정현, 이필승 193 Fig. 4. 반잠수식 모바일하버의 초기 개념설계. 반잠수식 모바일하버를 이용한 해상 물류 처리는 해상에서 컨테이너선과 운송유닛 사이에 화물을 선적 및 하역하는 방법으로서 컨테이너선이 접안하는 과정 과 운송유닛이 접안하는 과정, 화물을 선적 및 하역하 는 과정으로 이루어진다. 컨테이너선의 접안 과정은 모바일하버의 컨테이너 선 지지부가 접안할 컨테이너선 선저보다 아래에 위 치하도록 부유체의 부력을 조절하여 하강하는 단계 와 컨테이너선이 접안한 후에 컨테이너선 하중의 일 부를 지지하도록 부력을 조절하여 상승하는 단계로 이루어지며, 이후 컨테이너의 선적 및 하역 작업을 수행한다. 운송유닛 접안 과정은 운송유닛 지지부가 수면 아 래쪽에 위치한 상태에서 운송유닛을 지지부의 상부로 이동시키는 단계, 운송유닛의 부력을 조절하여 운송 유닛의 선저부와 운송유닛 지지부를 접촉시키는 단계 로 이루어진다. 이상 기술된 모바일하버의 개념설계는 초기단계의 설계로, 본 연구에서는 공리설계를 이용하여 모바일 하버에 요구하는 각 기능들을 만족하는지 적정성을 검토하였고 새로운 개선안을 도출하였다. 한국CAD CAM학회 논문집 제 15 권 제 3 호 2010년 6월 3. 공리설계 공리설계는 1990-2000년에 Nam P. Suh에 의해 개 발된 설계이론이다. 설계할 방향을 잡고, 설계를 수행 하고 완성하는 과정에 따라 영역을 나눌 수 있다. Fig. 5와 같이 소비자 영역과 기능적 영역, 물리적 영역, 생산 영역으로 나눌 수 있는데, 먼저 소비자 영 역에서는 소비자 요구(Customer attributes, CAs)를 정의 하고, 기능적 영역에서는 소비자 요구를 공학용 어를 이용하여 기능요구(Functional Requirements, FRs)로 정의한다. 그리고 물리적 영역에서는 기능요 구를 만족시키는 설계 파라미터(Design Parameters, DPs)를 정의한다. 이러한 설계 과정에서의 공통적인 [10-15] Fig. 5. 공리설계의 영역과 영역간의 관계.
œ w w 194 œ š w, t œ ƒ. 1œ : œ.» 2œ : œ. y FR DP w [A] m w (1) t w. { FR} = A [ ]{ DP} (1) w [A]ƒ ƒ w (Uncoupled) wš w œ w. [A]ƒ ƒ w y (Decoupled) œ ù [A]ƒ ƒ w ù ƒ w (Coupled design) œ w w. š w w w (Constraints, Cs) g w. œ w w š, z 4. w 4.1 w œ w w w» w, w š, w(customer attributes, CAs) j w w w x fl y, w. CA1. fl w š w w w CA2. w z CA3. fl CA4. w w w CA5. û CA6. w w w w w» w» w w œw w œw w»» w wš, ƒ» w q l 4.2 l FR-DP w w fl w x w, fl l w fl w ww» w w w w w. w»» w w.. FR1. w e FR2. w FR3. fl w FR4. fl w FR5. w w ƒ FR. ƒ FR DP ùký. DP1. DP2. l DP3. j l DP4. fl l DP5. l FR DP w [A] w (2) txw. FR1 DP1 X 0 0 0 0 FR2 X X 0 0 0 DP2 FR3 = 0 X X 0 0 DP3 FR4 X X X X 0 DP4 FR5 X 0 0 0 X DP5 (2) FR-DP r, w [A] X e w FR DP w š, 0 w ùkü [10-15]. w (3) w w ùkü» FR1 DP1 A11 0 0 0 0 FR2 A21 A22 0 0 0 DP2 FR3 = 0 A32 A33 0 0 DP3 FR4 A41 A42 A43 A44 0 DP4 FR5 A51 0 0 0 A55 DP5 (3)
195,, x, v w ƒ w r, ƒ l» w. fl fl d ƒ j l ü ƒ. 4.3 l FR-DP w w l w l 1 FR-DP w» ƒ j q. Fig. 6 ½ v w ƒ FR, DP ww w ¾ ½ v» ƒ w FR-DP wƒ. DP w FR š, w FR DP w [10-15]. ƒ FR DP w FR DP g w l Fig. 6. ½ v. 4.3.1 FR1 w w w ƒ s w FR DP w w,, FR1 w ww. FR1. w e FR1.1 FR1.2 j. FR1.3 FR1.4 FR1.5 DP w (4). DP1. DP1.1 v r DP1.2 y l DP1.3 DP1.4 p kj DP1.5 p rv FR1.1 DP1.1 A11 0 0 0 0 FR2.2 0 A22 0 0 0 DP2.2 FR3.3 = 0 0 A33 0 0 DP3.3 FR4.4 0 0 0 A44 0 DP4.4 FR5.5 0 0 0 0 A55 DP5.5 (4) p kj w ƒ j w f l y DP1.2 w w FR1.2 ww š, FR1.2 DP FR1.2 j. FR1.2.1 z. FR1.2.2 z. FR1.2.3 w. DP1.2 y l DP1.2.1 x DP1.2.2 z l DP1.2.2» FR-DP œ» j. x j xk w k.» wù ƒ ¼, w k. z l j. œ d. 4.3.2 FR2 w w 1 FR FR2 w r, w fl w»»(thruster) mw s z, ƒ, w.,» Dynamic Route Assisting» w w k. w Fig. 7 z w fl
œ w w 196 w» e. f l w óùš w w» mw w fl ƒ ww w w fl ww» e. ú y w w q ƒ w d w l,» w w q ƒ ù w z k w fl w z.» FR2 w. Fig. 7. w w y. FR2. w FR2.1 w www FR2.2 w yw FR2.3 e DP2. l DP2.1 ww l DP2.2 w y»(thruster) DP2.3 e l(dynamic Positioning System, DPS) FR2 DP2 w (5) ù kü, œ FR2.1 A11 0 0 DP2.1 FR2.2 = 0 A22 0 DP2.2 FR2.3 0 0 A33 DP2.3 (5) 4.3.3 FR3 w w Fig. 4 w» x w j l w d y d w w w w z 2 k. 1 FR fl w w» w FR3 w w FR3. fl w FR3.1 fl ƒ ƒ w FR3.2 fl w FR3.3 w, w ƒ w DP3. j l DP3.1 fl j DP3.2 fl r DP3.3 fl l FR3.1 A11 0 DP3.1 FR3.2 = A21 0 DP3.3 FR3.3 A31 A33 (6)» w (6) fl w fl rƒ w. w fl w š. w» w DP» w œ j (7) w. FR3.1 FR3.2 = FR3.3 A11 0 0 DP3.1 0 A22 0 DP3.2 (7) 0 0 A33 DP3.3 2 FR-DP w FR3.1 fl ƒ ƒ w FR3.1.1 fl ü fl ƒ w FR3.1.2 fl k. FR3.1.3 fl. FR3.2 fl w FR3.2.1 w e. FR3.2.2 fl e FR3.3 w, w ƒ w
197,, x, v FR3.3.1 j w w fl ù p (Trolley) y FR3.3.2p, fl y DP3.1 fl j DP3.1.1 j j» x DP3.1.2 j fl l DP3.1.3 j ü, DP3.2 fl r DP3.2.1 r œ DP3.2.2 ew DP3.3 fl l DP3.3.1 j, p, r l DP3.3.2 f, e(cable, Winch) l FR3.1.1 A11 0 0 DP3.1.1 FR3.1.2 = A21 A22 0 DP3.1.2 FR3.1.3 A31 0 A33 DP3.1.3 (8) w (8), j j» fl ƒ w A21 ƒ ùkû. A31 j x w w. j w w y y wš, w ww v ƒ. 3 FR-DP y w v ƒ 4 (9), (10) w FR3.1.1 fl ü fl ƒ w FR3.1.1.1 j fl w fl w FR3.1.1.2 j fl s w fl w FR3.1.1.3 j fl - w fl w FR3.1.2 fl k. FR3.1.2.1fl ù e. FR3.1.2.2 fl ù. FR3.1.2.3 fl w FR3.1.2.4 fl s FR3.1.2.5 e» w w FR3.1.2.6 wef (Hatch cover). FR3.1.2.7 wef. FR3.1.3 fl. FR3.1.3.1 w ü fl ƒ ew fl FR3.1.3.2 j ó ew FR3.1.3.3 fl ƒ. DP3.1.1 j j» x DP3.1.1.1 j x DP3.1.1.2 j x s¼ DP3.1.1.3 w j l DP3.1.2 j fl l DP3.1.2.1, e e DP3.1.2.2 v x DP3.1.2.3 f, e DP3.1.2.4 p DP3.1.2.5 r DP3.1.2.6 zj(hook) DP3.1.2.7 wef r DP3.1.3 j ü, DP3.1.3.1 j ü, DP3.1.3.2 j ü, DP3.1.3.3 p j FR3.1.1.1 A11 0 0 DP3.1.1.1 FR3.1.1.2 = 0 A22 0 DP3.1.1.2 FR3.1.1.3 0 0 A33 DP3.1.1.3 FR3.1.2.1 FR3.1.2.2 FR3.1.2.3 FR3.1.2.4 FR3.1.2.5 FR3.1.2.6 FR3.1.2.7 = (9)
œ w w 198 A11 0 0 0 0 0 0 DP3.1.2.1 DP3.1.2.2 0 A22 0 0 0 0 0 0 A32 A33 A34 0 0 0 DP3.1.2.3 0 A42 0 A44 0 0 0 DP3.1.2.4 0 0 0 0 A55 0 0 DP3.1.2.5 0 0 0 0 0 A66 0 DP3.1.2.6 0 0 0 0 0 0 A77 DP3.1.2.7 ew, s w ƒ w. (10) Fig. 4» fl ƒ - w w ƒ š. f l - wwš., fl w w» w w w w ƒ ¼., p fl (Bay) yw ew ù y p ƒ ew w ù. w w w» w w x w j w w FR-DP w (11) w. FR3.1.1.3 j fl - w fl w FR3.1.1.3.1 j w ƒ œ FR3.1.1.3.2 w e j FR3.1.1.3.3 w e š DP3.1.1.3 w j l DP3.1.1.3.1 ƒ DP3.1.1.3.2 j DP3.1.1.3.3 j š e FR3.1.1.3.1 FR3.1.1.3.2 = FR3.1.1.3.3 A11 0 0 DP3.1.1.3.1 A21 A22 0 DP3.1.1.3.2 A31 0 A33 DP3.1.1.3.3 (11) - w fl ƒ w j» x j l ww Fig. 8 w. w j j ww w j š k j w œwš, w». j l mw fl - w w. j Fig. 9 p ƒ Fig. 8. FR3. Fig. 9. j. 4.3.4 FR4 w w fl l w FR4 w 2»» w q l w. FR4. fl w FR4.1 fl ƒ FR4.2 fl. DP4. fl l DP4.1 fl ƒ l DP4.2 fl l fl w w ƒ d r (Fender) z ƒ w fl fl fl w ƒ w ƒ d r v - rƒ e w ƒ w fl ƒ d r v š fl w ƒ š v r w. d r fl
199,, x, v w wš œ w w. FR4.1 fl ƒ FR4.1.1 w fl ƒ FR4.1.2 w ü fl ƒ FR4.2 fl. FR4.2.1 fl w. FR4.2.2 fl yw y DP4.1 fl ƒ l DP4.1.1 ƒ l DP4.1.2 ü ƒ l DP4.2 fl l DP4.2.1 fl DP4.2.2 r l FR4 w 4 ¾. fl l œ mw w» yw Fig. 10. FR4.1.1 fl ƒ FR4.1.1.1 fl FR4.1.1.2 y FR4.1.1.3 fl, w FR4.1.1.4 fl. FR4.1.2 w ü fl ƒ FR4.1.2.1 fl ü ƒ w, f l w. FR4.1.2.2 fl ü ƒ w, ƒ FR4.1.2.3 fl w ü ƒ w, fl FR4.2.2 fl yw y FR4.2.2.1 fl ù ü fl w. FR4.2.2.2 fl ù ü f l w d y FR4.2.2.3 fl y, (z y). FR4.2.2.4 fl y, fl DP4.1.1 ƒ l DP4.1.1.1 j üd (Beam) DP4.1.1.2 ƒ r DP4.1.1.3 ƒ r l DP4.1.1.4 ƒ r v - r l DP4.1.2 ü ƒ l DP4.1.2.1 x d r DP4.1.2.2 x d r z l DP4.1.2.3 x d r v - r l DP4.2.2 r l DP4.2.2.1 r DP4.2.2.2 ƒ x d r DP4.2.2.3 ƒ x d r z l DP4.2.2.4 ƒ x d r v - r l 4.3.5 FR5 w w Fig. 4 w» l r, ƒ e w w š sq g w wì Fig. 10. FR4.
œ w w 200 w ƒ x r ƒ e. sq w w š ù w w š ƒ. w l w» j» FR-DP (12) mw FR5. w FR5.1 FR5.2 w y FR5.3 w ù w DP5. l DP5.1 š l DP5.2 r l DP5.3» l FR5.1 A11 0 0 DP5.1 FR5.2 = A21 A22 0 DP5.2 FR5.3 A31 0 A33 DP5.3 (12) l w»». wš yw w w» w w w ƒ w p w» sww Fig. 11 w œ q wš w w. w r l w š, w Fig. 11. FR5. w w. w y ù,» l mw wš t w FR-DP. FR5.1 FR5.1.1 w j» FR5.1.2. FR5.1.3 FR5.2 w y FR5.2.1 w j» y FR5.2.2 DP5.1 œ š l DP5.1.1 œq, DP5.1.2 DP5.1.3 e DP5.2 r l DP5.2.1 ¼ DP5.2.2 ƒ x r 4.3.6 w» œ mw Table 3 w. j, j l, fl l, l w w. l ww w Fig. 12.» xk š, z l œ w y š w w. ew j l» x š j ù, xw j y w». š xk j - w ww fl j y ew fl w w ƒ. x j š» w. w j š w j w wš üw w» fl w» w š. œ»
201,, x, v Table 3. w»» z l y š» (w j ) ( j ) j l x š j j fl l fl - fl r e š fl l r l ƒ» r l y ƒ l ew, r w š w» l w š w œq l, ƒ x r w w ƒ fl w» š w v w š,» j» w q l fl r w š, r fl ew» š w z š w. ½ mw w FR-DP w w ƒ fl l r l ywš q w.»» w w,, r l w. w» wwš, j w. w š w ƒ sww œq, ƒ x r l w. 5. œ w w ƒ, ww» w.» w w ù, w w» wü š w š q. Fig. 12. w.
œ w w 202 p, w w l mw. w ù mw DPƒ FR w, DPƒ FR w w mw. w w, œ w w. w w w l wš w v p w l w œm ƒ š œ z w, w» ww w š ƒ ƒ w» 2009 w» w w» w w w. š x 1., Hybrid Quay Wall fl l, mw, 2009. 2. k,, fl xy z, w w (KMI), 2002. 3. Mike Garratt, The Holistic Approach, Introduction to Mechanical Design (to container trade and transport data), Containerisation International Magazine, March 2007 (www.mdst.co.uk) 4. y, ½ š,,,, y, w w l», w w (KMI), 2002. 5. ût, w l w j» w w w y, KR, y 10-2008-0041981, 2009. 6. ³, w p j š, w w» (KAIST) lj w, 2009. 7., v, x,, ût, w w e w, KR, y 10-2009-0045667, 2009. 8. v, x,, ³, û y, ³,,, w w y, KR, y 10-2009-0045697, 2009. 9. v, x,, ½, k l w k, KR, y 10-2009-0074208, 2009. 10., Introduction to Mechanical Design,, 2007. 11. Nam P. Suh, Axiomatic Design Theory for Systems, Research in Engineering Design, Vol. 10, No. 4, pp. 189-209, 1998. 12. David A. Gebala and Nam P. Suh, An Application of Axiomatic Design, Research in Engineering Design, Vol. 3, No. 3, pp. 149-162, 1992. 13. Leonard D. Albano and Nam P. Suh, Axiomatic Approach to Structural Design, Research in Engineering Design, Vol. 4, No. 3, pp. 171-183, 1992. 14. Nam P. Suh, Principles of Design, Oxford University Press, USA, 1999. 15. Nam P. Suh, Axiomatic Design: Advances and Applications, Oxford University Press, USA, 2001.
203,, x, v 2009 KAIST w w 2009 ~x KAIST» wœ lœ w w lœw œ : Transportation design, Design optimization 2004 w w œw w 2009 ~x KAIST» wœ l œw w lœw œ : CFD x 1998 w w œw w 2000 University of Michigan œw 2006 University of Michigan œw 2006 ~2009 University of Michigan z 2009 ~x KAIST» wœ lœ w w lœw œ : Tolerance analysis and optimization, ship production systems engineering, design optimization, CAD/CAM v 1997 w w m œw w 1999 KAIST y œw 2004 MIT m y œw 2005 ~2009 œ w q 2009 ~x KAIST» wœ lœ w w lœw œ : FEM, Offshore structures, Fluid-structure interaction