보건소 의사결정지원을 위한 데이터웨어하우스 구축에 대한 연구

Similar documents
DW 개요.PDF

Intra_DW_Ch4.PDF

ETL_project_best_practice1.ppt

CRM A Study on the Datawarehousing build_up methodology for CRM System :

ecorp-프로젝트제안서작성실무(양식3)

Oracle Apps Day_SEM

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

歯1.PDF

歯목차45호.PDF

PowerPoint 프레젠테이션

Portal_9iAS.ppt [읽기 전용]

슬라이드 1

歯CRM개괄_허순영.PDF

Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based

Ç¥Áö

<C0CCBCBCBFB52DC1A4B4EBBFF82DBCAEBBE7B3EDB9AE2D D382E687770>

#Ȳ¿ë¼®

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

15_3oracle

untitled

pdf 16..

I. - II. DW ETT Best Practice

Output file

06_ÀÌÀçÈÆ¿Ü0926

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2

about_by5

04서종철fig.6(121~131)ok

한국성인에서초기황반변성질환과 연관된위험요인연구


Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

MS-SQL SERVER 대비 기능

Service-Oriented Architecture Copyright Tmax Soft 2005

PCServerMgmt7

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

SW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

슬라이드 1

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

Web Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인 웹 확장 아키텍처는 높은 수준의 안정성을 보장하기 위해 복잡한 솔루션으로 구현

CRM Fair 2004

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

Microsoft Word doc

The Self-Managing Database : Automatic Health Monitoring and Alerting

PowerPoint 프레젠테이션

DBPIA-NURIMEDIA

(5차 편집).hwp

DBPIA-NURIMEDIA

Microsoft SQL Server 2005 포켓 컨설턴트 관리자용

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

Microsoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM

초보자를 위한 ADO 21일 완성

04-다시_고속철도61~80p

Microsoft PowerPoint - 6.CRM_Consulting.ppt

1.장인석-ITIL 소개.ppt

1217 WebTrafMon II

untitled

1

PowerPoint 프레젠테이션

Data Industry White Paper

歯부장

DBPIA-NURIMEDIA


강의지침서 작성 양식


Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

6.24-9년 6월

untitled

시안


¹ýÁ¶ 12¿ù ¼öÁ¤.PDF

인문사회과학기술융합학회

레이아웃 1

원고스타일 정의

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2016, Vol. 26, No. 1, pp.1-19 DOI: *,..,,,.,.,,,,.,,,,, ( )


<31335FB1C7B0E6C7CABFDC2E687770>

< FC1A4BAB8B9FDC7D D325FC3D6C1BEBABB2E687770>

Analyst Briefing

<28BCF6BDC D B0E6B1E2B5B520C1F6BFAABAB020BFA9BCBAC0CFC0DAB8AE20C1A4C3A520C3DFC1F8C0FCB7AB5FC3D6C1BE E E687770>

목차 1. 서론 1.1. 연구의 배경 및 목적 1.2. 연구의 내용 및 방법 2. 제품스타일 분석 2.1. 제품이미지 2.2. 미래지향적 스타일 3. 신세대 감성분석 3.1. 라이프스타일 3.2. 광고전략 3.3. 색채에 따른 제품구매 분석 4. 결론 *참고문헌 ( )

10¿ÀÁ¤ÁØ

09오충원(613~623)

FileMaker 15 WebDirect 설명서

2 KHU 글로벌 기업법무 리뷰 제2권 제1호 또 내용적으로 중대한 위기를 맞이하게 되었고, 개인은 흡사 어항 속의 금붕어 와 같은 신세로 전락할 운명에 처해있다. 현대정보화 사회에서 개인의 사적 영역이 얼마나 침해되고 있는지 는 양 비디오 사건 과 같은 연예인들의 사

06_À̼º»ó_0929

13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3

Intro to Servlet, EJB, JSP, WS

,.,..,....,, Abstract The importance of integrated design which tries to i

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

°í¼®ÁÖ Ãâ·Â


00내지1번2번

공학박사학위 논문 운영 중 터널확대 굴착시 지반거동 특성분석 및 프로텍터 설계 Ground Behavior Analysis and Protector Design during the Enlargement of a Tunnel in Operation 2011년 2월 인하대

보고서(겉표지).PDF

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

BSC Discussion 1

ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O

DBPIA-NURIMEDIA

USB USB DV25 DV25 REC SRN-475S REC SRN-475S LAN POWER LAN POWER Quick Network Setup Guide xdsl/cable Modem PC DVR 1~3 1.. DVR DVR IP xdsl Cable xdsl C

Transcription:

..,.,,,,,,,,,,,... 2002 12

I. 1 1. 1 2. 4 II. 4 1. 4. 4. 7. 7. 9 2. 14. 14. OLTP OLAP 16 3. KMS(Knowledge Management System) 8 1. 18. 19. 21

III. 23 1. 23 2. 24 3. 24. 24. ETT(Extraction, Transformation, Transportation) 7 2. OLAP(On Line Analytical Processing) 9 2 IV. 30 1. 30. 30. 31. 34 2. ETT 45 3. OLAP 46 4. 46 V. 53 VI. 56 58

60

1. OLAP 15 2. OLTP OLAP 17 3. 32 4. 38 5. K 40 6. 43

1. 8 2. 9 3. PTS 13 4. 23 5. 30 6. 34 7. 36 8. ODS 42 9. 44 10. DTS ETT 4 5 11. OLAP 46 12. Microsoft Excel 2000( ) 7 4 13. Microsoft Excel 2000( ) 8 4 14. Microsoft Excel 2000( ) 9 4 15. 50 16. 51 17. 52

..,,.. (data warehouse) ODS ODS.. Microsoft SQL Server 2000 OLAP(On-Line Analytical Processing : ) Microsoft Analysis Services. (Pilot). ASP,

HTML, Java Script, Olectra 6.0 Chart Control....

,.,,., (knowledge management)., (datawarehouse), (data-mining), OLAP(On Line Analytical Processing)..,

.,,, (, 1998)..,,.

K,..,.,,, OLAP(On-Line Analytical Processing).,.

1980IBM, IBM (information warehouse).,,, 1980 Inmon(1994) ' '. Poe(1996) ' '., (warehousing). Gardner(1998) ' '.,. Inmon,,,

. (view).(butler Group, 1999) (Historical Information)., (Operational Environment). (Subject-Oriented), (Integration), (Time Variant), (Non-Volatile). (Subject Orientation) (Subject Area) (Operational System),.,..,

.,. (Integration).,. (Time Variancy).,. (,,, ). UPDATE. (Non-Volatility)

. Current Detail Data : Old Detail Data : ( ) Lightly Summarized Data : Highly Summarized Data : Metadata :, OLTP..,,. OLTP. ODS(Operational Data Store).

Fact table, Dimension table, summary table, meta data.,, 4.( 1) 1.

2... ODBC. ODBC - (CLI) ODBC.,. OLE DB. OLE DB COM API. OLE DB.

ISAM(Indexed Sequential Access Method)/VSAM(Virtual Storage Access Method), HDB(Hierarchy Database) E-mail OLE DB ODBC..,.,, DTS. (ETT : Extraction, Transformation and Transportation ETL : Extraction, Transformation and Loading). DTS. OLE DB. - DTS. Microsoft Repository OIM((Open Information Model). DTS,,.,

. Analysis Services,,, OLAP. DTS. DTS.... DTS... DTS....

. Analysis Services., OLAP. (PTS ) Analysis Services (Analysis Server)-. (Excel.),.. PTS. Analysis Services PTS. PTS. Analysis Services MDX(Multidimensional expressions),

HTTP HTML PivotTable. PTS.

(online analytical processing, OLAP) 1968 12 RDBMS(relational database management system) 25 1993 12 OLAP (online transaction processing, OLTP) (Codd, 1993). OLAP ꡒ (, 1996). OLAP (Arbor, Comshare, IRI, Pilot ) ꡒOLAP Councilꡓ OLAP ꡒFast Analysis of Shared Multidimensional Information(FASMI)ꡓ.,. OLAP 4.

OLAP,, MOLAP, ROLAP, DOLAP, HOLAP.

,,,., OLTP (cleansing) (transformation).. OLAP (, 1996).,.

( ) (,,, ) 2,,, ( ),, (, / ),,, (Off-the-Shelf, (4GL) Customizing / Out-of-Box) Customizing / EUC(End User Computing)

,.., (, 1998).,,, (Nonaka & Takeuch, 1999).,, (Ruggles, 1998).,, (Prusak, 1998).,,, (Nonaka, 1991).

...,,, 4.(, 2001) IQ,,. 4.,,, 4. 1 -..

. 2 -..,,..,.. 3 -,..,,

.,. 4 -......,, EVA,,, TQM,...,

.....,..

K 1995,.,,,. OLTP(On Line Transection Process)... RWM(Rapid Warehouse Methodology).

. 1) 2) 3) 4) 5).,,.,,...,.,. (Pilot System) (Prototype).

,,.,,,..,,,,, (Aging)/ (Achieving).,,,.,. OLAP. ETT,,.,.

. 5).,,,..,,.. ETT (Extraction) (Transformation), (Transportation),,., DBMS(DataBase Management System),,,., ETT. ETT

,,,,,,,.,. Microsoft SQL Server 2000 ETT DTS(Data Transformation Service)....,.

,.,.,.. ODS(Operational Data Store).,,,,,. (Repository), OLAP OLAP.

K,.. ODS,, ETT Microsoft SQL Server 2000 Microsoft Analysis Services. (Pilot). 5.

1),,..... 3 ( 2002).

OLAP, = ( / ) 100 = ( / ) 100, ( ),,, DT rate( )

OLAP,,,,,,,,,,,,,,,,,,,,

.,.. 1 6.

. Analysis Services. Application.. Analysis Services Web Server.. Analysis Services Web Server.

2 7.... Analysis Services Analysis Services. client

. client.. Cache Server WAN Traffic Local Traffic,, HTTP, FTP, SMTP, POP3, NNTP,., DNS URI IP URI.

3 4. Network traffic fact dimension fact dimension.... DW,. DW,. 2000.. DW....

.,. Client.. 1 K,,,,,. K 1995. 5.

DB PEOPLE ORCL FAMILY ORCL INSUNUMB ORCL CLIENT ORCL CLIENT1 ORCL HCLIENT ( ) ORCL DISECODE ORCL DATAPILE ORCL CHK_SUM ORCL X_RAY ORCL CHECK DBF ILBANVAC ORCL HBSCODE DBF PREVCODE DBF VAGR_RE1 ORCL TAGI ORCL CHC01 DBF CHC02 6 DBF CHC03 18 DBF CHC04 DBF MHC01 DBF MHC02 DBF MHC03 DBF MEDICODE ORCL MEDISTOCK ORCL ZIP DBF

2,,. OLTP. ODS(Operational Data Store). 3,,... factdata. 4 ODS(Operational Data Store) ODS OLTP

, OLTP. 8. ODS

5 ODS.,,,, 5 8. 6, 9. 6. ID,,,,,, code ID,, TimeID,, ID,, TimeID,,,,, ID,, TimeID,, ID,, TimeID,,,,, Time TimeID,,,,,,,,, ID,, PW,

9..

ETT ODS, ODS, ODS,. Microsoft SQL Server 2000 DTS ETT. 10. DTS ETT

OLAP. SQL2000 olap manager.( 11) 11. OLAP

4. OLAP CUBE. (Pilot). Microsoft Excel 2000 Analysis Services. 12. Microsoft Excel 2000( )

12 Microsoft Excel 2000( ) Microsoft Analysis Services.,. 13 12.. 13. Microsoft Excel 2000( )

14. Microsoft Excel 2000( ) 14. 2D 3D.

, ASP, HTML, Java Script, (Web Components) Olectra 6.0 Chart Control.

16 OLAP 3. 16.

17. 17.

. -L (Customer Relationship Management based on Knowledge Management -The case of L convenience store) KAIST Graduated School of Management, 2002, ꡒ :, 1999, ꡒ 2 ꡓ, 1999., 2002., 1998. 3, 2002, ꡒ ꡓ,1999, ꡒ ꡓ, 1999,. Ⅰ,Ⅱ, 1998.., 2001.., 2000,. OLAP., 1999

Bremer W & Winslow C, ꡒFutureworkꡓ Brobst S. D/W. CIO, 2001 Clancey WJ, ꡒPractice cannot be reduced to theory: Knowledge Representations and change in the work placeꡓ Davenport TH & Prusak L, ꡒWorking Knowledgeꡓ, 1998 Drucker PF, ꡒPost-Capitalist Societyꡓ, 1993 Ewen EF, Medsker CE, Dusterhoft LE. Data Warehousing in an Integrated Health System; Building the Business Case. DOLAP 98 Washington DC USA ACM, 1999 1-58113-120-8 Inmon WH, Building the Data Warehouse(2nd Ed.). John Wiley & Sons, Inc., 1996 Liebowitz J & Wilcox LC (Editor), ꡒKnowledge Management and Its Intergrative Elementsꡓ Myers PS (Editor),ꡒKnowledge Management and Organizational Designꡓ Pedersen TB, Jensen CS. Multidimensional Data Modeling for Complex Data. Proc. of the 10th IEEE Int l Conference on Scientific and Statistical Database Management, 1999; 336-345 Spek R & Spijikervet A, ꡒKnowledge management: Dealing intelligently with knowledgeꡓ, 1997

Abstract Development of a Data Warehouse for Decision Support in Public Health Center Yoo Heon Ko Graduate School of Health Science and Management Yonsei University (Directed by Professor Young Moon Chae, Ph. D.) With improvement in our economy and rising interest in health, the role of public health centers in our society is increasing. In order for health centers to provide quality services, there is a need for an information system that provides essential information to health center managers to support their decision-making based on a comprehensive data warehouse which contains decision-related information. In this study, model data warehouses that support decision-making were presented using centralized and decentralized approaches at three levels: community, province, and the nation. In the centralized model, data warehouse would not be constructed at an individual health center. Instead,

provincial data warehouse would be constructed at the province level using the data collected from health centers. The national data warehouse would be constructed using the data collected from the provincial data warehouse. On the other hand, data warehouse would be constructed at every health center and provincial department in a decentralized model. Advantages as well as methods for constructing data warehouse in a centralized model were presented. Microsoft SQL Server 2000 was used to design the data warehouse and Microsoft Analysis Services was applied for OLAP(On-Line Analytical Processing). The decision support system for health center was developed using graphs and spreadsheets, which enables the user to easily access data warehouse and analyze the various policy scenarios. The program languages used in building the websites were ASP, HTML, and Java Script. Visual Basic, and Olectra 6.0 Chart Control were used in developing the web components. To date, the Ministry of Health and Welfare is only experimenting with a decentralized model. However, as we presented in the study, a centralized model is less costly and is easier to implement at the community level considering a lack of system skilled workforce. Accordingly, a pilot data warehouse should be constructed using a centralized model at one province as a demonstration basis in the future.