w y wz 10«3y 273~280 (2010.12.) Journal of Korean Society of Urban Environment p yá xá½k w y œw (2010 9 15, 2010 12 2 k) Analysis of Characteristics of Delivered Nonpoint Source Pollution at Forested Watershed Ji-Hong Jeon ½ Dong-Hyuk Choi ½ Tae-Dong Kim Department of Environmental Engineering, Andong National University (Received 15 September 2010 : Accepted 2 December 2010) Abstract Calculating delivery ratio is very important procedure to apply Korean Total Maximum Daily Load (TMDL). Characteristics of delivered pollutant load were analyzed by plotting flow duration curve, load duration curve, and delivery ratio duration curve for BOD, T-N and T-P using HSPF simulation results. As a result of HSPF calibration, HSPF could simulate well both pollutant load and stream flow with high model efficiency. At high flow condition, the delivery ratio of BOD and T-P was higher than that of T-N. However flow condition from medium to low, the delivery ratio of T-N was higher than those of BOD and T-P because nitrogen can be easily delivered from site of source to stream as soluble form such as NOx whereas, phosphorus can easily adhere to soil and is discharged with soil when rainy season. Overall, delivery ratios were very low especially at condition from medium to low and we concluded that that's traditional trend of forested watershed. As a result of plotting load duration curve based on target water quality and monitoring data, all of T-P concentration at high flow condition (< 10% days exceeded) were not meet target water quality so, primary measure to improve water quality, if needed, at Giran watershed is to reduce nonpoint source pollution of T-P at high flow condition. Key Words : HSPF, forested watershed, delivery ratio, load duration curve, flow duration curve w. ¼ BOD, T-N, T-P w HSPF w z yš yš, yš wš p š w., HSPF w w, T-N BOD, T-P w ù š BOD, T-P T-N ùkû. k NO X w» s ù», ù BOD ù» q. w yš, ¼ š TPƒ t w ùkù T-P ùkû. : HSPF,,, w yš, yš Corresponding author E-mail : tdkim@andong.ac.kr I. ù 273
274 yá xá½k w ƒwš, y» z 2003 x ù w 50% ùkû z ã ƒw 2015 w 65% w wš (y, 2006). ù ew, m ù w w. z œ w z ƒ v ù, w» ywš p q w. p q w» š, p q w x r. d w w w z, QUAL2E d w w w z w w ù w. w w w, d d w w w w w z x d» w w. x d w., ü w ƒ w w, (2009) ù w w w y w, (2009) ù w y w, p ƒ û T-N ƒ T-P. BOD ùkû, ùkü û ùkü š š. (2006) ù w, d 25 w d» w w z w p wš, xw Á w ƒ w, e w w w ùkü, T-N BOD T- P w š š. (2009) y A w d» w z y z Fig. 1. Study area. w. ù ew t ¼ w Hydrologic Simulation Program-Fortran (HSPF) w z w w wš, y, w y, y w w p q wš w. 1. II. ¼ ¼ ù wy w ew 2 w 519.56 km 2, 75 km w 78.5 km 2, 288.4 km 2, sw 37.9 km 2 swwš, m k ƒ 83.8% ƒ wš 7.1%, 3,4%, 1.5% ùkùš,»k 4.2% ùkù x ùkû. 2. w 2007 xy w y w 2» e w w. w HSPF w y w. w HSPF v w, d w œwš y w 2005 ¾ œ
p 275 wš 2003~2005 ¾ w ¼ w w. w 2007 7 19 ~21 d w w HSPF w w w. 2007» w w d w w y, w y, y w. w y q w» w yš p l w ³ sƒw» w wù. x ù t 8 d š w w. w m» ù x w w. x w j l w w 1 l m¾ w. ƒ w w. p m = ------------ N + 1», p ƒ w y, m ƒ w, N. ƒ, x y wš y ƒ w v ù kü yš. w y w w w y txw v w yš w w w. y y w w w ù w v txw yš w w w. 3. y BASINS w HSPF w. BASINS w» w ƒ w GIS l w w, eš (Digial Elevation Model; DEM) y œw š 30 m j» grid q w, m v y œwš w. w œ w y w. HSPF w»,, m, HSPF q w.» BASINS l ü WDMUtil v w wdmq xk,,,,,» l z wdm q jš Fig. 2. Application of BASINS-HSPF.
276 yá xá½k Fig. 3. Comparison of stream flow and pollutant load between observation and simulation. WDMUtil v w w wdm q. BASINS Delineation tool DEM w w. w» ww w, 30. BASINS- Utilities LandUse and Soil Definitionn w m v k m w w. BASINS wš w m v HSPF ƒ w. w BASINS- MODELü HSPF w HSPF w. 1. III. š de de 1:1 Fig. 3 4. Table 1 w m w, NS ƒƒ 0.68, 0.63, ƒƒ 0.90, 0.83 z ùkü. Donigian (2000) w de de w Table 1. HSPF performance of stream flow simulation R 2 Nash-Sutcliffe Coefficient Daily 0.68 0.63 Monthly 0.90 0.83 Table 2. General calibration/validation target or tolerances for HSPF application (Donigian, 2000) very good good fair poor Daily > 0.8 0.7-0.8 0.7-0.6 < 0.6 Monthly > 0.85 0.75-0.85 0.65-0.75 < 0.65 Table 2 (Very good), (good), m(fair), ù (poor) w,» m,» ùkù w q. Fig. 3 w w de w ùkû, Fig. 4 1:1 w ù kû.
p 277 Fig. 4. 1 : 1 scatter plot between observed and simulated stream flow and pollutant loads. Table 3. Flow and load duration analysis at Giran watershed 2. p Q95 Q185 Q275 Q355 Flow (cms) 0.360 0.012 0.002 0.000 BOD (g/day) 10,024.54 0.934 0.009 0.000 T-N (g/day) 2,844 721 124 1 T-P (g/day) 249.000 0.653 0.118 0.000 2.1. w y HSPF w 2007» w ¼ w yš w Table 3 Fig. 5. 2007» w, 95, 185 275, 355 w y w w ƒƒ 0.360 m 3 /sec, 0.012 m 3 /sec, 0.002 m 3 /sec, 0.000 m 3 /sec, BOD w ƒƒ 10,024 g/day, 0.934 g/day, 0.009 g/day, 0.000 g/ day, T-N w ƒƒ 2,844 g/day, 721 g/ day, 124 g/day, 1 g/day, T-P w ƒƒ 249 g/day, 0.653 g/day, 0.118 g/day, 0.000 g/day ùkû. Table 4. Delivered ratio duration analysis at Giran watershed Q95 Q185 Q275 Q355 BOD 0.629 0.000 0.000 0.000 T-N 0.203 0.053 0.009 0.000 T-P 0.235 0.001 0.000 0.000 2.2. yš HSPF w 2007» w ¼ w yš w Table 4 Fig. 6. 2007» w, 95, 185 275, 355 w y w w ƒƒ 0.360 m 3 /sec, 0.012 m 3 /sec, 0.002 m 3 /sec, 0.000 m 3 /sec, BOD w ƒƒ 10,024 g/day, 0.934 g/day, 0.009 g/day, 0.000 g/day, T-N w ƒƒ 2,844 g/day, 721 g/day, 124 g/day, 1 g/day, T-P w ƒƒ 249 g/day, 0.653 g/day, 0.118 g/day, 0.000 g/day ùkû. 2.3. p š HSPF w ¼ yš w yš, š yš w y p w
278 yá xá½k Fig. 5. Flow and load duration curve at Giran watershed. Fig. 6. Delivered ratio duration curve at Giran watershed.
p 279 Table 5. Delivered ratio at high stream flow (Unit: %) Percent of days flow exceeded BOD T-N T-P 1% 77 23 41 2% 62 17 34 3% 47 13 23 4% 27 8 15 5% 26 7 12 Table 6. Delivered ratio at 30~50 percent of days flow exceeded (Unit: %) Percent of days flow exceeded BOD T-N T-P 30% 0.5 0.2 0.2 35% 0.1 0.9 0.04 40% 0.04 0.08 0.01 45% 3.7E-3 0.07 1.8E-3 50% 7.3E-5 0.05 6.2E-4. ¼ 2007» w 365 5 ù ùkû, 275 w y 0.002 m 3 /sec ùkû. w yš yš p w w p ùkü. Table 5 š ùküš, t w BOD T-Pw tw w T-N w w ùküš. BOD T-P wì» š ùküš. Table 6 30~50% w ùk üš, t wì BODw T-Pw 45% w w ùkû, tw w T-N w w ùkû. w t w BOD T-P w š w( ), t û (û ). twù w T-N t wì w ùkü» š û ùkü, w ù tw w» T-N š û ùkü ù û s ƒ w w û, 35% z l T-N w ƒ ùküš. w p l p w ùkú q. x w ùkü š w ùký q. p š w w w v ƒ. p» BOD T-N, T-P û ù küš. 3. w yš w w t w w y l mw w g y w w. Fig. 7 ¼ 2007» w w t BOD 1.5 mg/l, T-P 0.034 mg/l w w yš w z, 8 d w k w yš š. Fig. 7 t w š, t w. BODw t 1.5 mg/l w ùkû, T-P y 10% ü t w ùkû. BOD T-P w ùkü, T-P y 10% ü l t 0.034 mg/l w ùkù ¼ z w š ƒ w ùkû, w w ƒ v w ùkû.
280 yá xá½k Fig. 7. Plotting load duration curve and observed value for water quality management. IV. ¼ 2007» w HSPF w yš w y w, 95, 185 275, 355 w y w w ƒƒ 0.360 m 3 /sec, 0.012 m 3 /sec, 0.002 m 3 /sec, 0.000 m 3 /sec ùkû. w yš yš w w, t wì BOD T-Pw š ùkü ù, w t wì w w ùkû. tw w T-N š û ùkü ù, w tw w w f BOD T-P w ùkü. ¼ t w w w yš wš l k BOD t w, T-P 10%ü t w ùkù T-P w ƒ v w ùkû. wš ¼ û û ùkü š w s ù ù» û ùkü q w p w p ùkü q.,», s w ( ) ùkü ¼ w w š w, d p w w v w q. References 1. y. 2006. y» z: 4 z( 06~ 15). GPVP1200710956. y. 2. ³, x,, ½. 2009. SWAT x w. w y wz 25(3): 375-385. 3. k,, x. 2009. ù w y. w y wz 25(5): 792-802. 4.., ½, x. 2006. ù w sƒ. w y wz 22(2): 277-287. 5. ½, x, x, ½. 2009. ù xœ. w y wz 25(4): 580-588. 6., Ÿ, z,,,,, û. 2009. z w y A y. w œwz 51(6): 25-31.