10(3)-12.fm

Similar documents
10(3)-02.fm

10(3)-09.fm

10(3)-10.fm

11(1)-15.fm

605.fm

14.531~539(08-037).fm

304.fm

50(1)-09.fm

16(1)-3(국문)(p.40-45).fm

9(3)-4(p ).fm

69-1(p.1-27).fm

< DC1A4C3A5B5BFC7E22E666D>

15.101~109(174-하천방재).fm

11(5)-12(09-10)p fm

untitled

10(1)-08.fm

82-01.fm

DBPIA-NURIMEDIA

12(2)-04.fm

17.393~400(11-033).fm

12(3) 10.fm

12(4) 10.fm

416.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

12.077~081(A12_이종국).fm

14(2) 02.fm

50(5)-07.fm

82.fm

<30332DB9E8B0E6BCAE2E666D>

07.051~058(345).fm

31(3B)-07(7055).fm

8(3)-15(p ).fm

14(4)-14(심고문2).fm

untitled

fm

19(1) 02.fm

8(2)-4(p ).fm

15(2)-07.fm

14(4) 09.fm

32(4B)-04(7455).fm

07.045~051(D04_신상욱).fm

16(2)-7(p ).fm

<31325FB1E8B0E6BCBA2E687770>

<30312DC0CCC7E2B9FC2E666D>

202.fm

< C0E5BFC1C0E72E666D>

82-08.fm

51(4)-13.fm

27(5A)-15(5868).fm

3-15(3)-05(이주희).fm

DBPIA-NURIMEDIA

fm

201.fm

26(3D)-17.fm

27(5A)-07(5806).fm

01.01~08(유왕진).fm

69-1(p.1-27).fm

51(2)-09.fm

415.fm

18211.fm

fm

untitled

143.fm

<312D303128C1B6BAB4BFC1292E666D>

m, w, w w. xœ y t y w en, ùw,, ƒ y (, 1994; w, 2000). ƒ x œ (NGA; National Geospatial-intelligence Agency) t t wù x (VITD; Vector product Interim Terr

93.fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

7(4)-07.fm

04-46(1)-06(조현태).fm

14.fm

06.177~184(10-079).fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

16(4)-05.fm

93-09.fm

38(6)-01.fm

50(4)-10.fm

인문사회과학기술융합학회

11(4)-13(09-12)p fm

49(6)-06.fm

25(3c)-03.fm

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

DBPIA-NURIMEDIA

Microsoft Word - KSR2012A038.doc

27(3D)-07.fm

10(3)-11.fm

17(2)-00(268).fm

10.063~070(B04_윤성식).fm

(2)-02(최경자).fm

< B3E2BFF8BAB828C8AFB0E629312E687770>

3.fm

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

歯1.PDF

23(2) 71.fm

(163번 이희수).fm

43(5)-1.fm

41(6)-09(김창일).fm

( )-113.fm

012임수진

fm

» t d» y w š q, w d» y ƒ ƒ w tree-ring t w d» y ƒ w š w. w tree-ring t mw»z y p q w š w. Tree-ring t mw, 500» ƒ wš p w» ƒ, y»z p wš»»z y. ù tree-ring

Transcription:

w y wz 10«3y 273~280 (2010.12.) Journal of Korean Society of Urban Environment p yá xá½k w y œw (2010 9 15, 2010 12 2 k) Analysis of Characteristics of Delivered Nonpoint Source Pollution at Forested Watershed Ji-Hong Jeon ½ Dong-Hyuk Choi ½ Tae-Dong Kim Department of Environmental Engineering, Andong National University (Received 15 September 2010 : Accepted 2 December 2010) Abstract Calculating delivery ratio is very important procedure to apply Korean Total Maximum Daily Load (TMDL). Characteristics of delivered pollutant load were analyzed by plotting flow duration curve, load duration curve, and delivery ratio duration curve for BOD, T-N and T-P using HSPF simulation results. As a result of HSPF calibration, HSPF could simulate well both pollutant load and stream flow with high model efficiency. At high flow condition, the delivery ratio of BOD and T-P was higher than that of T-N. However flow condition from medium to low, the delivery ratio of T-N was higher than those of BOD and T-P because nitrogen can be easily delivered from site of source to stream as soluble form such as NOx whereas, phosphorus can easily adhere to soil and is discharged with soil when rainy season. Overall, delivery ratios were very low especially at condition from medium to low and we concluded that that's traditional trend of forested watershed. As a result of plotting load duration curve based on target water quality and monitoring data, all of T-P concentration at high flow condition (< 10% days exceeded) were not meet target water quality so, primary measure to improve water quality, if needed, at Giran watershed is to reduce nonpoint source pollution of T-P at high flow condition. Key Words : HSPF, forested watershed, delivery ratio, load duration curve, flow duration curve w. ¼ BOD, T-N, T-P w HSPF w z yš yš, yš wš p š w., HSPF w w, T-N BOD, T-P w ù š BOD, T-P T-N ùkû. k NO X w» s ù», ù BOD ù» q. w yš, ¼ š TPƒ t w ùkù T-P ùkû. : HSPF,,, w yš, yš Corresponding author E-mail : tdkim@andong.ac.kr I. ù 273

274 yá xá½k w ƒwš, y» z 2003 x ù w 50% ùkû z ã ƒw 2015 w 65% w wš (y, 2006). ù ew, m ù w w. z œ w z ƒ v ù, w» ywš p q w. p q w» š, p q w x r. d w w w z, QUAL2E d w w w z w w ù w. w w w, d d w w w w w z x d» w w. x d w., ü w ƒ w w, (2009) ù w w w y w, (2009) ù w y w, p ƒ û T-N ƒ T-P. BOD ùkû, ùkü û ùkü š š. (2006) ù w, d 25 w d» w w z w p wš, xw Á w ƒ w, e w w w ùkü, T-N BOD T- P w š š. (2009) y A w d» w z y z Fig. 1. Study area. w. ù ew t ¼ w Hydrologic Simulation Program-Fortran (HSPF) w z w w wš, y, w y, y w w p q wš w. 1. II. ¼ ¼ ù wy w ew 2 w 519.56 km 2, 75 km w 78.5 km 2, 288.4 km 2, sw 37.9 km 2 swwš, m k ƒ 83.8% ƒ wš 7.1%, 3,4%, 1.5% ùkùš,»k 4.2% ùkù x ùkû. 2. w 2007 xy w y w 2» e w w. w HSPF w y w. w HSPF v w, d w œwš y w 2005 ¾ œ

p 275 wš 2003~2005 ¾ w ¼ w w. w 2007 7 19 ~21 d w w HSPF w w w. 2007» w w d w w y, w y, y w. w y q w» w yš p l w ³ sƒw» w wù. x ù t 8 d š w w. w m» ù x w w. x w j l w w 1 l m¾ w. ƒ w w. p m = ------------ N + 1», p ƒ w y, m ƒ w, N. ƒ, x y wš y ƒ w v ù kü yš. w y w w w y txw v w yš w w w. y y w w w ù w v txw yš w w w. 3. y BASINS w HSPF w. BASINS w» w ƒ w GIS l w w, eš (Digial Elevation Model; DEM) y œw š 30 m j» grid q w, m v y œwš w. w œ w y w. HSPF w»,, m, HSPF q w.» BASINS l ü WDMUtil v w wdmq xk,,,,,» l z wdm q jš Fig. 2. Application of BASINS-HSPF.

276 yá xá½k Fig. 3. Comparison of stream flow and pollutant load between observation and simulation. WDMUtil v w w wdm q. BASINS Delineation tool DEM w w. w» ww w, 30. BASINS- Utilities LandUse and Soil Definitionn w m v k m w w. BASINS wš w m v HSPF ƒ w. w BASINS- MODELü HSPF w HSPF w. 1. III. š de de 1:1 Fig. 3 4. Table 1 w m w, NS ƒƒ 0.68, 0.63, ƒƒ 0.90, 0.83 z ùkü. Donigian (2000) w de de w Table 1. HSPF performance of stream flow simulation R 2 Nash-Sutcliffe Coefficient Daily 0.68 0.63 Monthly 0.90 0.83 Table 2. General calibration/validation target or tolerances for HSPF application (Donigian, 2000) very good good fair poor Daily > 0.8 0.7-0.8 0.7-0.6 < 0.6 Monthly > 0.85 0.75-0.85 0.65-0.75 < 0.65 Table 2 (Very good), (good), m(fair), ù (poor) w,» m,» ùkù w q. Fig. 3 w w de w ùkû, Fig. 4 1:1 w ù kû.

p 277 Fig. 4. 1 : 1 scatter plot between observed and simulated stream flow and pollutant loads. Table 3. Flow and load duration analysis at Giran watershed 2. p Q95 Q185 Q275 Q355 Flow (cms) 0.360 0.012 0.002 0.000 BOD (g/day) 10,024.54 0.934 0.009 0.000 T-N (g/day) 2,844 721 124 1 T-P (g/day) 249.000 0.653 0.118 0.000 2.1. w y HSPF w 2007» w ¼ w yš w Table 3 Fig. 5. 2007» w, 95, 185 275, 355 w y w w ƒƒ 0.360 m 3 /sec, 0.012 m 3 /sec, 0.002 m 3 /sec, 0.000 m 3 /sec, BOD w ƒƒ 10,024 g/day, 0.934 g/day, 0.009 g/day, 0.000 g/ day, T-N w ƒƒ 2,844 g/day, 721 g/ day, 124 g/day, 1 g/day, T-P w ƒƒ 249 g/day, 0.653 g/day, 0.118 g/day, 0.000 g/day ùkû. Table 4. Delivered ratio duration analysis at Giran watershed Q95 Q185 Q275 Q355 BOD 0.629 0.000 0.000 0.000 T-N 0.203 0.053 0.009 0.000 T-P 0.235 0.001 0.000 0.000 2.2. yš HSPF w 2007» w ¼ w yš w Table 4 Fig. 6. 2007» w, 95, 185 275, 355 w y w w ƒƒ 0.360 m 3 /sec, 0.012 m 3 /sec, 0.002 m 3 /sec, 0.000 m 3 /sec, BOD w ƒƒ 10,024 g/day, 0.934 g/day, 0.009 g/day, 0.000 g/day, T-N w ƒƒ 2,844 g/day, 721 g/day, 124 g/day, 1 g/day, T-P w ƒƒ 249 g/day, 0.653 g/day, 0.118 g/day, 0.000 g/day ùkû. 2.3. p š HSPF w ¼ yš w yš, š yš w y p w

278 yá xá½k Fig. 5. Flow and load duration curve at Giran watershed. Fig. 6. Delivered ratio duration curve at Giran watershed.

p 279 Table 5. Delivered ratio at high stream flow (Unit: %) Percent of days flow exceeded BOD T-N T-P 1% 77 23 41 2% 62 17 34 3% 47 13 23 4% 27 8 15 5% 26 7 12 Table 6. Delivered ratio at 30~50 percent of days flow exceeded (Unit: %) Percent of days flow exceeded BOD T-N T-P 30% 0.5 0.2 0.2 35% 0.1 0.9 0.04 40% 0.04 0.08 0.01 45% 3.7E-3 0.07 1.8E-3 50% 7.3E-5 0.05 6.2E-4. ¼ 2007» w 365 5 ù ùkû, 275 w y 0.002 m 3 /sec ùkû. w yš yš p w w p ùkü. Table 5 š ùküš, t w BOD T-Pw tw w T-N w w ùküš. BOD T-P wì» š ùküš. Table 6 30~50% w ùk üš, t wì BODw T-Pw 45% w w ùkû, tw w T-N w w ùkû. w t w BOD T-P w š w( ), t û (û ). twù w T-N t wì w ùkü» š û ùkü, w ù tw w» T-N š û ùkü ù û s ƒ w w û, 35% z l T-N w ƒ ùküš. w p l p w ùkú q. x w ùkü š w ùký q. p š w w w v ƒ. p» BOD T-N, T-P û ù küš. 3. w yš w w t w w y l mw w g y w w. Fig. 7 ¼ 2007» w w t BOD 1.5 mg/l, T-P 0.034 mg/l w w yš w z, 8 d w k w yš š. Fig. 7 t w š, t w. BODw t 1.5 mg/l w ùkû, T-P y 10% ü t w ùkû. BOD T-P w ùkü, T-P y 10% ü l t 0.034 mg/l w ùkù ¼ z w š ƒ w ùkû, w w ƒ v w ùkû.

280 yá xá½k Fig. 7. Plotting load duration curve and observed value for water quality management. IV. ¼ 2007» w HSPF w yš w y w, 95, 185 275, 355 w y w w ƒƒ 0.360 m 3 /sec, 0.012 m 3 /sec, 0.002 m 3 /sec, 0.000 m 3 /sec ùkû. w yš yš w w, t wì BOD T-Pw š ùkü ù, w t wì w w ùkû. tw w T-N š û ùkü ù, w tw w w f BOD T-P w ùkü. ¼ t w w w yš wš l k BOD t w, T-P 10%ü t w ùkù T-P w ƒ v w ùkû. wš ¼ û û ùkü š w s ù ù» û ùkü q w p w p ùkü q.,», s w ( ) ùkü ¼ w w š w, d p w w v w q. References 1. y. 2006. y» z: 4 z( 06~ 15). GPVP1200710956. y. 2. ³, x,, ½. 2009. SWAT x w. w y wz 25(3): 375-385. 3. k,, x. 2009. ù w y. w y wz 25(5): 792-802. 4.., ½, x. 2006. ù w sƒ. w y wz 22(2): 277-287. 5. ½, x, x, ½. 2009. ù xœ. w y wz 25(4): 580-588. 6., Ÿ, z,,,,, û. 2009. z w y A y. w œwz 51(6): 25-31.