대한안과학회지 2014 년제 55 권제 10 호 J Korean Ophthalmol Soc 2014;55(10):1504-1510 pissn: 0378-6471 eissn: 2092-9374 http://dx.doi.org/10.3341/jkos.2014.55.10.1504 Original Article 스펙트럼영역빛간섭단층촬영을이용한연령과성별에따른황반형태연구 Foveal Shape According to Age and Gender Using Spectral Domain Optical Coherence Tomography 채민병 1 김재석 2 Min Byung Chae, MD 1, Jae Suk Kim, MD, PhD 2 인제대학교의과대학서울백병원안과학교실 1, 인제대학교의과대학상계백병원안과학교실 2 Department of Ophthalmology, Seoul Paik Hospital, Inje University College of Medicine 1, Seoul, Korea Department of Ophthalmology, Sanggye Paik Hospital, Inje University College of Medicine 2, Seoul, Korea Purpose: To compare foveal shapes in Koreans according to age and gender using spectral domain optical coherence tomography (SD-OCT). Methods: This study included 230 eyes of 115 healthy adults. The subjects were divided into three groups: group 1 (20-39 years of age), group 2 (40-59 years of age) and group 3 (60-79 years of age). Using spectralis OCT, we measured central foveal thickness (CFT), regional maximal retinal thickness (MRT), pit diameter and pit depth and compared the differences between the groups. Results: The MRT of the superior, inferior and nasal sides in group 1 was higher than in groups 2 and 3 (p < 0.05). No significant difference was observed in the MRT of the temporal side. Regarding differences based on age, no significant differences in CFT, pit diameter and pit depth were observed. Regarding differences in gender, the temporal regional MRT of males in group 3 was significantly lower than in group 1 and the pit depth of males in group 1 was significantly higher than in groups 2 and 3. Therefore, differences were observed according to gender. Conclusions: In the present study, differences in foveal shape were found according to age and gender which should be considered when foveal diseases are evaluated. J Korean Ophthalmol Soc 2014;55(10):1504-1510 Key Words: Foveal shape, Spectral-domain optical coherence tomography 망막의중심부는중심와 (fovea), 중심와부근 (parafovea), 중심와주위 (perifovea) 로나뉘는데중심와를임상적으로황반 (macula lutea) 이라고칭한다. 중심와속에는직경이 0.5 Received: 2014. 2. 14. Revised: 2014. 4. 24. Accepted: 2014. 9. 17. Address reprint requests to Jae Suk Kim, MD, PhD Department of Ophthalmology, Inje University Sanggye Paik Hospital, #1342 Dongil-ro, Nowon-gu, Seoul 139-707, Korea Tel: 82-2-950-1096, Fax: 82-2-935-6904 E-mail: eyedoctor@freechal.com mm인무혈관부위 (capillary-free zone) 가있는데이곳은적색과녹색원뿔세포의외절 (outer segment) 을제외하면세포가존재하지않고그주변은몇개의망막내층으로둘러싸여있다. 1 중심와의발생은출생후에도세포의재배열과원뿔세포형태의변화와함께지속되어생후 4년에이르러야완전한중심와가형성되게된다. 생후 12주부터 52주까지신경요소들은중심와로부터바깥쪽으로이동하며생후 15개월에서 45개월사이에중심와원뿔세포는그형태가길게변하며밀도도증가하는데이런발달과정은개인간정도의차이가있고결국구조적차이를유발하게된다. 2-4 c2014 The Korean Ophthalmological Society This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 1504
- 채민병 김재석 : 연령과성별에따른황반형태연구 - 빛간섭단층촬영기 (optical coherence tomography, OCT) 의발명으로황반의구조를연구하는데큰도움이되고있고망막의 10개층을높은해상도로구분할수있으며망막의두께를정량적으로평가할수있게되었다. OCT는지난이십여년동안급속도로발전하여서, 기존에는초당 400회의스캔을하며약 8-10 μm의축해상도 (axial resolution) 를가진시간영역빛간섭단층촬영기 (time-domain OCT, TD-OCT) 가널리이용되었으나최근에는푸리에변환 (Fourier transform) 을통해영상을얻어속도가더빠르고해상도가더좋은스펙트럼영역빛간섭단층촬영기 (spectral domain OCT, SD-OCT) 가개발되어보편화되고있다. 5,6 SD-OCT를이용하여황반두께를측정한논문에서측정자내반복성및측정자간재현성은뛰어난결과를보였고이는 TD- OCT와비교해도더뛰어난것으로나타났다. 6-8 이러한장점으로황반처럼아주미세한구조를분석하고작은변화를초기에감지할수있게되었는데 OCT를이용한대부분의논문에서는 Early Treatment Diabetic Retinopathy Study (ETDRS) 의 9개 subfield 9 를이용하였다. 하지만이방법은구역별평균두께는알수있으나황반의구체적인형태를이해하기에는제한점이있어최근에는다른방법을이용하여황반형태의정량적인평가및여러가지요인에따른차이를분석하였고이를황반질환에적용시킨연구들이발표되고있다. 10,11 황반의형태를객관적으로측정하는것은황반질환의위험성을예견하고경과를관찰하며치료의효과를판정할수있는근거가되기때문에임상적으로매우중요하다. 따라서본연구에서는 Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany) 를이용하여연령과성별에따른황반의형태를분석하였고기존의논문에서제시한황반두께측정방법과다른방법을통해황반의형태를이해하는데도움이되고자하였다. 대상과방법 2013년 8월부터 2014년 2월까지본원에내원한지원자중건강한성인을대상으로하여전향적연구를시행하였다. 대상자의연령은 20세부터 79세사이로선정하였고 20 세간격으로 1군 (20-39세), 2군 (40-59세), 3군 (60세-79세) 으로분류하였다. 본원의연구윤리심의위원회를통하여모집공고를하였고각군별인원은 40명을목표로하여지원자에한해검사를진행하였는데다음과같은이상소견이관찰되는경우대상에서제외하였다. 최대교정시력이 0.8 미만인경우, 안압이 21 mmhg 이상인경우, 안구외상이나백내장수술을포함한안내수술및 굴절교정수술을받은병력이있는경우, 당뇨, 고혈압, 신경학적질환의병력이있는경우, 세극등현미경, 또는자동시야검사에서비정상소견을보이는경우연구대상에서제외하였고양안을비교하기위해한눈이라도안과적이상이관찰된경우연구대상에서제외하였다. 모든대상자에게자동굴절검사 (Auto-Kerato-Refractometer KR-8800; Topcon Co., Tokyo, Japan) 를시행하여구면렌즈대응치 (spherical equivalent) 를구하였고굴절이상의영향을최소한으로하기위해부등시인경우, +2디옵터이상의원시인경우나 -3 디옵터이상의근시인경우연구대상에서제외하였다. 빛간섭단층촬영검사상황반형태에영향을주는유리체황반견인이관찰된경우에도대상에서제외하였다. 빛간섭단층촬영검사는 Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany) 를사용하였다. Spectralis OCT는레이저검안경검사 (SLO) 를동시에시행할수있는고해상도 SD OCT로광원으로 50 nm의 bandwidth와 840 nm의파장을가진다이오드레이저를사용하고, 7 μm의축해상도로초당 40,000개의 A-scan을조사한다. Raster scan방식으로황반을중심으로수평, 수직이각각 768 pixel (8.7 mm) 496 pixel (1.9 mm) 로이루어진 25개의 B-scan 방식으로황반부 8.8 5.9 mm에해당하는부위의 cross-sectional image를얻었다. Eye tracking을하는 Automatic Real-Time (ART) 기능을사용하여측정하였고좋은상을얻기위해모든스캔은신호강도 20 db 이상만결과에포함하였다. 모든대상자의양안을숙련된한명의검사자가무산동상태로촬영을시행하였다. 검사전정확한자세를교육및확인하였고측정시망막색소상피층의수평을맞추어서측정하였다. 중심이이탈된경우, 근시안에서잘나타날수있는 mirror artifact로인한 peripheral abnormality가있는경우, SD-OCT에서발생할수있는경계설정오류나등록오류등이발견되는경우는대상에서제외하였다. OCT에내장된경계설정 (segmentation line) 기능으로유리체망막경계와망막색소상피층의외측경계를확인한후두경계선사이의거리를망막두께로정의하였고내장된캘리퍼기능을이용하여여러부위에서측정하였다. 먼저 Figure 1. Illustration of the measured parameters. CFT = central foveal thickness; MRT = maximal retinal thickness. 1505
- 대한안과학회지 2014 년제 55 권제 10 호 - 중심와의가장오목한부분의중심황반두께 (central foveal thickness, CFT) 를가로, 세로스캔에서각각측정하였고상측, 비측, 하측, 이측에서구역별최대망막두께 (maximal retinal thickness, MRT) 를구하였다. 또비측과이측, 상측과하측의망막두께가최대값이되는부분사이의거리를각각가로, 세로오목직경 (pit diameter), 중심와의깊이를각각가로, 세로오목깊이 (pit depth) 로설정하였다 (Fig. 1). 10 통계분석은표준소프트웨어 (SPSS, version 16.0 for Windows, SPSS Inc., Chicago, IL, USA) 를사용하였다. 집단간차이를검정하기위해 one-way analysis of variance (ANOVA) 를이용하였으며, 유의한차이가있는경우 tukey test를이용하여사후검정하였다. 그리고성별과양안의차이를비교하기위해서독립 t 검정을이용하였으며중심와위치의일관성을확인하기위해가로, 세로스캔에서 CFT 의측정치간급내상관계수 (intraclass correlation coefficient, ICC) 를분석하였다. 모든경우에서 p값이 0.05 미만인경우통계적으로의미가있는것으로해석하였다. 결과 검사를받은지원자는총 182 명이었으며안과적이상소 견을보인 55명과 OCT 상이불분명한 12명을제외한연구대상자는 115명 230안 ( 남자 110안, 여자 120안 ) 으로 1군 (20-39세) 80안, 2군 (40-59세) 80안, 3군 (60-79세) 70안이었다. 20세부터 77세까지의연령이포함되었고각군별평균연령은 29.07 ± 5.9세, 51.22 ± 5.6세, 67.53 ± 4.8세이었다. 연령을제외한구면렌즈대응치와최대교정시력은세군간유의한차이가없었다 (Table 1). 급내상관계수 (Intraclass coefficient correlation) 를이용한세군의가로, 세로스캔에서측정한중심황반두께의반복성의정도비교에서는 95% 신뢰구간내에서 Group 1이 0.97으로가장높았으며, Group 3 (0.95), Group 2 (0.94) 순이었다. 중심황반두께의평균은 1군부터 3군까지각각 215.08 ± 16.92 μm, 214.13 ± 13.89 μm, 212.67 ± 14.26 μm로나타났으며세군간의유의한차이를보이지않았다 (p=0.38). 상측과비측, 하측의구역별최대망막두께는세군간의차이가통계학적으로유의하였는데 (p<0.05), 1군이 2군과 3군에비해두꺼웠고, 2군과 3군간에는유의한차이를보이지않았다. 이측의구역별최대망막두께도차이가크게났으나통계적으로유의하진않았다 (p=0.078). 가로, 세로오목직경과오목깊이는연령증가에따른유의한차이를보이지않았다 (Table 2). Table 1. Demographics of patients Number of subjects (eyes) 40 (80) 40 (80) 35 (70) Sex (M/F) 20/20 20/20 15/20 Age (years) 29.07 ± 5.90 (20-39) 51.22 ± 5.60 (40-59) 67.53 ± 4.80 (60-77) <0.001 Spherical equivalent (OD) -1.31 ± 1.68-0.88 ± 1.30-0.65 ± 1.53 0.227 Spherical equivalent (OS) -1.18 ± 1.80-0.94 ± 1.43-0.53 ± 1.28 0.180 BCVA (OD) 0.98 ± 0.02 0.98 ± 0.05 0.94 ± 0.05 0.433 BCVA (OS) 0.99 ± 0.02 0.97 ± 0.04 0.95 ± 0.07 0.239 Values are presented as mean ± SD unless otherwise indicated. BCVA = best corrected visual acuity. * ANOVA. Table 2. Morphometric parameters in the 3 groups CFT (μm) 215.1 ± 16.9 214.1 ± 13.9 212.7 ± 14.3 0.375 Superior MRT (μm) 362.4 ± 15.7 349.9 ± 17.2 349.1 ± 12.6 <0.05 Nasal MRT (μm) 360.2 ± 14.4 347.2 ± 16.8 346.3 ± 14.3 <0.05 Inferior MRT (μm) 356.3 ± 15.0 339.5 ± 16.5 338.4 ± 13.4 <0.05 Temporal MRT (μm) 337.9 ± 15.8 332.3 ± 19.5 327.8 ± 13.3 0.078 Horizontal pit diameter (μm) 2304.8 ± 337.8 2260.4 ± 235.4 2205.4 ± 198.6 0.647 Vertical pit diameter (μm) 2119.4 ± 261.7 2126.6 ± 209.9 2071.0 ± 200.5 0.715 Horizontal pit depth (μm) 149.5 ± 24.6 141.9 ± 16.9 140.0 ± 18.2 0.082 Vertical pit depth (μm) 150.2 ± 19.7 142.3 ± 16.0 141.2 ± 16.7 0.101 * ANOVA; p < 0.05 compared with group 2 and group 3. 1506
- 채민병 김재석 : 연령과성별에따른황반형태연구 - 전체대상자의가로, 세로오목직경의평균은각각 2256.87 ± 225.67 μm, 2105.68 ± 230.812 μm로가로오목직경이세로오목직경에비해유의하게길었지만 (p<0.05), 가로, 세로오목깊이의평균은각각 143.88 ± 20.14 μm, 144.56 ± 20.11 μm로두 parameter 간에유의한차이는없었다. 세군모두구역별최대망막두께는상측, 비측, 하측, 이측순으로두꺼웠다 (Table 2). 성별을나누어연령에따라황반의형태를비교해보았을때남자에서 1군의상측, 비측, 하측구역별최대망막두께가 2군과 3군에비해두꺼웠고 (p<0.05) 비측구역별최대망막두께도 3군이 1군에비해유의하게얇아 (p<0.05) 모든구역별최대망막두께에서연령증가에따른차이를보였다. 그리고가로와세로오목깊이도 1군이 2군과 3군에비해유의하게길었다 (Table 3). 여자에서는 1군의상측, 비측, 하측구역별최대망막두께가다른 2군에비해유의하게두꺼운것외에유의한변화는관찰되지않았다 (Table 4). 중심황반두께와각구역별최대망막두께는남자가여자보다모든군에서두꺼웠고 (p<0.05), 오목직경과오목깊이는남녀간유의한차이를보이지않았다. 각군별로양 안을비교하였을때유의한차이를보이는값은없었다 (Table 5). 고찰 OCT를이용한연구에서중심황반두께는연령이증가함에따라감소한다는보고가있으나유의한차이가없다는보고도있어논란이있다. 5,12-18 본연구에서는중심황반두께가연령에따른차이를보이지않았다. Kanai et al 14 및 Guedes et al 16 은중심소와는나이에따라변화가없고, 그외부분은나이에따라감소한다고하였으며, Song et al 12 은중심와의가장얇은부위 (foveal minimum area) 가연령에따른차이가없다고발표한바있다. 한국인에서의연령에따른황반두께를비교한연구또한보고되어있는데 Kang et al 17 은 OCT III (OCT model 3000, Zeiss-Humphrey, Dublin, CA, USA) 를이용하여 112안의정상한국인을분석한결과중심와를제외한영역에서연령이증가함에따라황반두께는감소한다는결과를발표하였다. Kim et al 18 은정시안 162안을대상으로 Cirrus HD-OCT (Carl Zeiss Table 3. Morphometric parameters of male Male CFT (μm) 220.7 ± 17.6 221.5 ± 11.9 217.4 ± 13.4 0.313 Superior MRT (μm) 370.2 ± 14.9 358.4 ± 17.3 358.4 ± 17.3 <0.05 Nasal MRT (μm) 368.6 ± 12.1 356.8 ± 16.9 354.6 ± 14.5 <0.05 Inferior MRT (μm) 363.8 ± 14.1 341.2 ± 15.8 339.9 ± 12.1 <0.05 Temporal MRT (μm) 345.8 ± 15.0 342.2 ± 19.2 334.3 ± 15.2 <0.05 Horizontal pit diameter (μm) 2326.1 ± 290.2 2230.5 ± 246.2 2202.3 ± 205.9 0.097 Vertical pit diameter (μm) 2050.0 ± 231.9 2124.5 ± 223.7 2036.9 ± 196.9 0.126 Horizontal pit depth (μm) 152.2 ± 23.8 142.9 ± 14.6 141.6 ± 15.6 <0.05 Vertical pit depth (μm) 153.3 ± 22.5 143.4 ± 13.4 142.2 ± 16.0 <0.05 * ANOVA; p < 0.05 compared with group 2 and group 3; p < 0.05 compared with group 1. Table 4. Morphometric parameters of female Female CFT (μm) 209.3 ± 18.2 206.6 ± 15.1 207.9 ± 13.3 0.455 Superior MRT (μm) 354.5 ± 11.9 341.5 ± 15.1 339.7 ± 12.5 <0.05 Nasal MRT (μm) 351.7 ± 11.4 337.5 ± 15.4 338.1 ± 13.7 <0.05 Inferior MRT (μm) 348.8 ± 11.9 337.9 ± 15.2 336.9 ± 14.8 <0.05 Temporal MRT (μm) 328.0 ± 11.6 322.4 ± 16.2 320.3 ± 11.8 0.144 Horizontal pit diameter (μm) 2280.1 ± 272.0 2290.5 ± 224.2 2208.6 ± 179.0 0.647 Vertical pit diameter (μm) 2188.8 ± 279.7 2128.7 ± 210.8 2105.1 ± 203.2 0.717 Horizontal pit depth (μm) 146.9 ± 22.3 140.9 ± 18.8 138.4 ± 18.8 0.125 Vertical pit depth (μm) 147.2 ± 24.9 141.3 ± 17.2 140.3 ± 16.6 0.098 * ANOVA; p < 0.05 compared with group 2 and group 3. 1507
- 대한안과학회지 2014 년제 55 권제 10 호 - Table 5. Morphometric parameters of both eyes OD OS p-value * CFT (μm) 213.6 ± 14.8 214.3 ± 16.1 Superior MRT (μm) 355.1 ± 15.5 352.5 ± 17.0 Nasal MRT (μm) 351.9 ± 16.0 350.6 ± 15.6 Inferior MRT (μm) 346.1 ± 17.2 344.3 ± 16.5 Temporal MRT (μm) 335.6 ± 16.7 329.6 ± 16.3 >0.05 Horizontal pit diameter (μm) 2267.0 ± 276.8 2246.7 ± 253.0 Vertical pit diameter (μm) 2178.9 ± 225.8 2232.4 ± 233.2 Horizontal pit depth (μm) 142.5 ± 21.2 145.1 ± 20.7 Vertical pit depth (μm) 144.8 ± 19.7 144.3 ± 19.9 * Independent t-test. Meditec, Inc., Dublin, CA) 를이용하여 ETDRS의 9개 subfield 방법으로측정하였는데중심와를중심으로직경 1 mm 이내인중심원 (central circle) 에서의평균황반두께는연령에따른차이가없다고하였다. 황반두께에대한대부분의이전논문들은 Early Treatment Diabetic Retinopathy Study (ETDRS) 의 9개 subfield를이용하였다. 18-22 즉, 중심오목을기준으로하는 3개동심원을만들고중심원을제외한안쪽원, 바깥쪽원은각각상측, 비측, 하측, 이측의 4분역으로나누어총 9개의구역으로나눈후각구역별평균망막두께를구하였다. 하지만이런방법으로는구역별평균두께만알수있기때문에황반의구체적인형태를파악할수없고 ETDRS subfield는당뇨에의한변화를평가하기위해망막의범위를나눈것이기때문에황반의형태를분석하기에는제한점이있다. 본연구에서는중심황반두께와구역별최대망막두께를측정하였고그동안관심이적었던오목부위도측정함으로써황반형태의이해를돕고자하였다. 황반형태의개인간차이가황반원공, 망막전막, 황반부종등황반을침범하는질환의발생에도영향을끼칠것으로생각하여 Kumagai et al 11 은 Cirrus OCT를이용하여단안황반원공, 망막전막, 망막정맥폐쇄, 정상안에서반대쪽정상안의황반형태를분석하였다. 그결과황반원공환자의반대쪽정상안의중심황반두께가가장얇았고. 오목깊이를오목길이로나눈 foveal depression 값을구하여비교하였는데황반원공환자의반대쪽정상안의값이 0.063 ± 0.012로대조군에비해컸다고하였다 (p<0.05). 이처럼황반형태의차이가황반질환의발생에도영향을주며황반형태를파악해두는것은중요한과정이라고생각하였고본연구에서 foveal depression 값은연령및성별에따른유의한차이를보이지않았다. 본연구에서구역별망막두께는상측, 비측, 하측, 이측순서로두꺼운것으로나타났으며이는기존의연구결과 와일치한다. Lim et al 23 은 130명의근시안에서구역별최대망막두께를측정하였고상측과비측 (288.3, 284.2 μm) 이하측과이측 (278.4, 262.2 μm) 에비해유의하게두껍다고보고하였다. 유럽인 57명을대상으로 SD-OCT를이용한 Tick et al 10 의연구에서는상측, 비측, 하측 (332, 329, 325 μ m) 의최대망막두께는유의한차이를보이지않았고이측 (306 μm) 에서유의하게얇았다. 본연구와비교하였을때오목깊이 (131 ± 22 μm) 와오목직경 (2474 ± 24.3 μm) 은한국인과비슷한결과를보였다. 최대망막두께는한국인보다더얇게측정되었는데대상자수가적었고연령과안축장의길이가구분되지않아정확한비교가어렵다. 그리고비측이이측에비해두껍게나타나는것은해부학적으로유두황반다발의수렴 (convergence) 에의한것으로생각한다. 24 본연구에서가로오목직경이세로오목직경보다큰것으로보아황반의가로경사가더완만하다는것을알수있고, 비측의구역별최대망막두께가가장작은것은가로오목깊이의평균이세로오목직경의평균보다작다는것과일치한다. 구역별최대망막두께는연령이증가함에따라감소하는추세를보였는데 20-30대와 40-50대사이의감소폭이가장컸고그후에유의한변화는관찰되지않았다. 남자의구역별최대망막두께의감소폭이커서가로, 세로오목깊이도이에따라유의하게감소하는결과를보였지만여자에서는유의한차이를보이지않았다. 성별에따른황반두께의비교에서중심황반두께, 구역별최대망막두께는모든연령대에서남자가여자보다더두꺼웠다. ETDRS subfield를이용한다른연구에서도황반의구역별차이는있지만남자가여자보다더두껍다는결과가대부분이었다. 19-22 본연구에서도일치하는결과를보이고있으며, 이는사람에있어서도호르몬의차이에의한망막두께가다를수있다는것을암시하지만남녀간차이의정확한원인은밝혀져있지않다. 25 Wagner-Schuman et al 20 1508
- 채민병 김재석 : 연령과성별에따른황반형태연구 - 은미국인 90명을대상으로 Cirrus OCT를사용하여 pit morphology의남녀차이도비교하였는데오목깊이 (0.120 ± 0.027 vs. 0.119 ± 0.019 mm), 오목직경 (1.93 ± 0.22 vs. 1.96 ± 0.19 mm), 최대기울기 (maximum slope, 12.2 ± 3.2 vs. 11.8 ± 2.2 ) 모두유의한차이를보이지않았다고하였다. Wagner-Schuman et al 20 은인종에따른오목깊이와오목직경의차이도분석하였는데백인 (0.129 ± 0.027 mm, 1.88 ± 0.16 mm) 이아프리카계미국인 (0.114 ± 0.025 mm, 2.07 ± 0.022 mm) 보다오목깊이와오목직경이모두유의하게컸다고하였다. 본연구와비교하였을때한국인의오목깊이와오목직경이백인보다큰결과를보였지만 OCT의기종이달라정확한비교는어렵다. 본연구의제한점은정시안을대상으로한것이아니며황반두께에영향을주는안축장 (Axial length) 을고려하지않은제한점이있다. 황반의형태를연구한 Tick et al 10 은안축장의길이가 pit diameter에영향을준다고하였으나그외중심황반두께, 구역별최대망막두께, 오목깊이에는유의한영향을주지않는다고하였다. Kim et al 18 은구면렌즈대응치와황반두께에통계학적인연관성은없다고하였고, Kim et al 26 은고도근시인경우황반두께에차이가있다고하였으나본연구에서중등도이상의근시는제외를하였고세군의평균구면렌즈대응치에유의한차이가없었으므로결과에큰영향은없었을것으로생각한다. 그리고측정간의망막의약간의틀어짐으로도값의차이가발생할수있는데본연구에서는측정치간반복성을비교하지않았고가로와세로스캔에서 CFT의측정치간급내상관계수만분석하였다는제한점이있다. Lim et al 27 은시간영역빛간섭단층촬영기를이용한연구에서시력이나쁜환자일수록광원을황반의중심에정확히주시하지못하기때문에실제중심황반두께보다두껍게측정될수있다고생각하였다 (Off-foveolar fixation). 하지만본연구에서는평균시력이 0.94 이상으로주시를잘하였고눈의움직임을추적할수있는빛간섭단층촬영기를사용하였기때문에 off-foveolar fixation의경우는없을것으로생각한다. 황반을침범하는여러가지질환들을이해하기위해황반의형태를분석하는연구가지속되고있는데본연구에서는연령및성별에따른황반형태의변화를 Spectralis OCT를통해알수있었다. 이런황반형태의차이는황반원공등황반질환의발생에도관련이있는것으로알려져있어서앞으로황반질환의형태를평가하는데있어본연구자료가좋은참고가될수있을것이다. REFERENCES 1) Hendrickson A. Organization of the adult primate fovea. In: Penfold PL, Provis GM, eds. Macular degeneration. Heidelberg, Germany: Springer Verlag, 2005;1-23. 2) Springer AD, Hendrickson AE. Development of the primate area of high acuity, 3: temporal relationships between pit formation, retinal elongation and cone packing. Vis Neurosci 2005;22:171-85. 3) van Driel D, Provis JM, Billson FA. Early differentiation of ganglion, amacrine, bipolar, and Muller cells in the developing fovea of human retina. J Comp Neurol 1990;291:203-19. 4) Provis JM, Diaz CM, Dreher B. Ontogeny of the primate fovea: a central issue in retinal development. Prog Neurobiol 1998;54: 549-80. 5) Ko BW, Shin YW, Lee JM, et al. Comparison of macular thickness measurements between fourier-domain and time-domain optical coherence tomography in normal eyes and eyes with macular diseases. J Korean Ophthalmol Soc 2009;50:1661-8. 6) Moon SW, Kim ES, Kim YG, et al. The comparison of macular thickness measurements and repeatabilities between time domain and spectral domain OCT. J Korean Ophthalmol Soc 2009;50: 1050-9. 7) Kang NH, Kim HJ, Lee JH. The measurements of macular thickness and volume with SD-OCT in normal eyes. J Korean Ophthalmol Soc 2011;52:1182-8. 8) Menke MN, Dabov S, Knecht P, Sturm V. Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography. Am J Ophthalmol 2009;147:467-72. 9) Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology 1991;98:741-56. 10) Tick S, Rossant F, Ghorbel I, et al. Foveal shape and structure in a normal population. Invest Ophthalmol Vis Sci 2011;52:5105-10. 11) Kumagai K, Hangai M, Larson E, Ogino N. Foveal thickness in healthy fellow eyes of patients with unilateral macular holes. Am J Ophthalmol 2013;156:140-8. 12) Song WK, Lee SC, Lee ES, et al. Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Invest Ophthalmol Vis Sci 2010;51:3913-8. 13) Zou H, Zhang X, Xu X, Yu S. Quantitative in vivo retinal thickness measurement in chinese healthy subjects with retinal thickness analyzer. Invest Ophthalmol Vis Sci 2006;47:341-7. 14) Kanai K, Abe T, Murayama K, Yoneya S. [Retinal thickness and changes with age]. Nihon Ganka Gakkai Zasshi 2002;106:162-5. 15) Neuville JM, Bronson-Castain K, Bearse MA Jr, et al. OCT reveals regional differences in macular thickness with age. Optom Vis Sci 2009;86:E810-6. 16) Guedes V, Schuman JS, Hertzmark E, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 2003; 110:177-89. 17) Kang JH, Kim SA, Song WG, Yoon HS. Macular thickness changes with age in normal subjects measured by optical coherence tomography. J Korean Ophthalmol Soc 2004;45:592-8. 18) Kim SH, Choi KS, Lee SJ. Macular thickness changes with age and gender in emmetropia using spectral domain optical coherence 1509
- 대한안과학회지 2014 년제 55 권제 10 호 - tomography. J Korean Ophthalmol Soc 2011;52:299-307. 19) Lee YJ. Analysis of factors associated with variability in measures obtained by spectral domain optical coherence tomography. J Korean Ophthalmol Soc 2012;53:639-46. 20) Wagner-Schuman M, Dubis AM, Nordgren RN, et al. Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci 2011;52:625-34. 21) Ooto S, Hangai M, Sakamoto A, et al. Three-dimensional profile of macular retinal thickness in normal Japanese eyes. Invest Ophthalmol Vis Sci 2010;51:465-73. 22) Kashani AH, Zimmer-Galler IE, Shah SM, et al. Retinal thickness analysis by race, gender, and age using Stratus OCT. Am J Ophthalmol 2010;149:496-502.e1. 23) Lim MC, Hoh ST, Foster PJ, et al. Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci 2005;46:974-8. 24) Kiernan DF, Hariprasad SM, Chin EK, et al. Prospective comparison of cirrus and stratus optical coherence tomography for quantifying retinal thickness. Am J Ophthalmol 2009;147:267-75.e2. 25) Yu X, Tang Y, Li F, et al. Protection against hydrogen peroxide-induced cell death in cultured human retinal pigment epithelial cells by 17beta-estradiol: a differential gene expression profile. Mech Ageing Dev 2005;126:1135-45. 26) Kim SH, Park JY, Park TK, Ohn YH. Use of spectral-domain optical coherence tomography to analyze macular thickness according to refractive error. J Korean Ophthalmol Soc 2011;52:1286-95. 27) Lim MC, Hoh ST, Foster PJ, et al. Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci 2005;46:974-8. = 국문초록 = 스펙트럼영역빛간섭단층촬영을이용한연령과성별에따른황반형태연구 목적 : 스펙트럼영역빛간섭단층촬영 (SD-OCT) 을이용하여연령증가와성별에따른한국인의황반형태를비교해보고자하였다. 대상과방법 : 건강한성인 115 명 230 안을대상으로연령에따라 1 군 (20-39 세 ), 2 군 (40-59 세 ), 3 군 (60-79 세 ) 으로나누어 Spectralis OCT 를이용하여중심황반두께, 구역별최대망막두께, 오목직경, 오목깊이를측정한후차이를비교하였다. 결과 : 1 군에서상측, 하측및비측의최대망막두께는 2 군과 3 군에비해두꺼웠지만 (p<0.05) 이측의최대망막두께는연령에따른유의한차이를보이지않았고중심황반두께와오목직경, 오목깊이도연령에따른유의한차이를보이지않았다. 남녀를구분하였을때남자의이측구역별최대망막두께가 3 군이 1 군에비해유의하게얇았고오목깊이는 1 군이 2 군과 3 군에비해유의하게길어여자와차이를보였다. 결론 : 황반의형태는연령과성별에따른차이가있어황반질환의형태를해석할때이를고려해야할것이다. < 대한안과학회지 2014;55(10):1504-1510> 1510