Korean Journal of Microbiology (2016) Vol. 52, No. 1, pp. 98-109 pissn 0440-2413 DOI http://dx.doi.org/10.7845/kjm.2016.5072 eissn 2383-9902 Copyright c 2016, The Microbiological Society of Korea 보문 야생효모 Saccharomyces cerevisiae Y28 을이용하여제조한참다래 - 대봉감혼합과실주의이화학적특성및향기성분 이희율 1 서원택 1 정성훈 2 황정은 1 안민주 1 이애련 1 신지현 3 이주영 3 조현국 3 조계만 1 * 1 경남과학기술대학교식품과학부, 2 남해마늘연구소, 3 영농조합법인오름주가 Physicochemical characteristics and volatile flavor compounds of produced mixture wine with kiwi and permission fruits using wild yeast, Saccharomyces cerevisiae Y28 Hee Yul Lee 1, Weon Taek Seo 1, Seong Hoon Jeong 2, Chung Eun Hwang 1, Min Ju Ahn 1, Ae Ryeon Lee 1, Ji Hyun Shin 3, Joo Young Lee 3, Hyeon Kook Jo 3, and Kye Man Cho 1 * 1 Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea 2 Namhae Garlic Research Institute, Namhae 52430, Republic of Korea 3 Farming Corporation OrumJooga Winery, Sacheon 52546, Republic of Korea (Received December 31, 2015; Revised March 21, 2016; Accepted March 22, 2016) ABSTRACT: The study was aimed to investigate the mixing ratio of kiwi and persimmon juices for the production of good quality wine by Saccharomyces cerevisiae Y28. Firstly, the optimum condition of rapidase treatment for the kiwi and persimmon juices was established, thereafter various mixing ratio (10:0, 9:1, 8:2, 7:3, 6:4, 5:5) of kiwi and persimmon was investigated regarding physiochemical properties and flavor compounds of wine. As the result, the optimum conditions were obtained as 0.3% rapidase for 1 h in kiwi and 0.3% rapidase for 3 h in persimmon. According to higher ration of persimmon, the ph of wines increased from 3.69 to 3.77, while the acidity of wines decreased from 2.07% to 1.51% at 14 days fermentation. The ranges of brix and reducing sugar in wines were decreased which ranges around 9.6 to 8.8 and 6.07 to 6.90 g/l, respectively, after fermentation. Major organic acid in wines were identified as tartaric acid, malic acid, and citric acid. A small amount of free sugar such as sucrose and glucose were detected in wines, but fructose was completely absent. The soluble phenolic contents were decreased that ranges around 1.00 to 1.25 g/l, in contrast, browning degree were increased ranges around 0.212 to 0.412 after fermentation. The major flavor components were identified as ethyl acetate and hydrazine, and 1,1-dimethyl. Importantly, phenylethyl alcohol was detected from the all wines that have a typical rose like flavor. But sensory test results and preference of kiwi-persimmon (7:3) mixing wine was better than the other wines. Key words: Saccharomyces cerevisiae Y28, kiwi, persimmon, volatile flavor compound, wine 국내와인시장은 2000년부터 20, 30대의젊은소비층의관심이높아지면서지속적으로증가하고있으며 2012년와인의소비는 2000년보다 2.5배증가한 3.8 10 7 L를소비하였고 (Cho and Joo, 2014), 최근에는알코올함량이낮은주류선호도가증가함에따라편의점등에서손쉽게구할수있는대중적인술로써와인소비량이더욱증가하고있는추세이다 *For correspondence. E-mail: kmcho@gntech.ac.kr; Tel.: +82-55-751-3272; Fax: +82-55-751-3279 (Woo et al., 2007; Kim et al., 2010). 특히와인의향기성분은제품의품질과기호도를결정하는중요한요소로서제품의등급, 숙성도등의품질을결정하는가장중요한요인중하나이다 (Jo et al., 2013; Lee, 2014). 와인의경우 alcohols, esters, organic acids, aldehydes, monoterpenes, ketones 및 sulfide를포함하는 800종이상이분석되어보고되어있다 (Rombouts and Pilnk, 1979; Ebeler, 2001; Lee, 2014). 와인의제조를위한주스제조시과실중의 pectin질에의해가공공정중압착수율
야생효모 Y28 이용참다래 - 대봉감혼합과실주 99 이좋지않거나혼탁해지는문제가발생한다 (Kim et al., 2005). 이러한이유로식물세포벽성분을가수분해하기위한전처리과정으로 pectinase 및 cellulase 등의효소처리가상용화되어있으며특히야채혹은과일주스제조에널리이용되고있다 (Jang et al., 2014). 참다래는온대성낙엽과수로우리나라에서는주로남해안일대와제주도에서재배되고있으며품종은 Hayward 품종이주를이루고있다 (Choi et al., 2006a). 참다래는 hexanal로대표되는향을지니며자체당도와구연산, 사과산등의유기산, 식이섬유, 비타민 C, 비타민 E 함량이높고칼슘, 마그네슘, 인등의무기질함량도풍부하며그외에클로로필, 카로티노이드, 폴리페놀, 플라보노이드와같은생리활성물질을지닌다 (Woo et al., 2007; Kim et al., 2008; Kang et al., 2011; Oh et al., 2011). 감 (Diospyros kaki) 은우리나라에서재배되고있는온대성과실중하나로포도당과과당을주로포함한당분이약 14% 로함유되어있으며무기질, 비타민 C, 비타민 A 및비타민 B 풍부한영양학적가치가높은알칼리식품이며 (Cho et al., 2006), epicatechin 등의녹차에함유된 tannin 성분의기능성 phenolics가다량함유되어있다 (Joo et al., 2011). 참다래는에틸렌생성량의증가, 과육의연화, 향기및색소성분의분해와합성, 유기산감소등다양한생리활성현상이진행되는호흡상승형과실로저장기간이짧고장기저장시상품성이떨어지는단점을가지고있으며, 대부분생과형태로소비되고있다 (Park et al., 2013). 한편감역시홍시, 곶감및감식초등의형태로일부소비되고있다 (Joo et al., 2011). 특히, 기존에판매되고있는참다래와인의경우 tannin 함량이부족하고신맛이강해와인의고급화가어렵고, 감와인의경우떫은맛저감을위해장기간발효가필요하다. 이에본연구에서는감으로참다래에부족한 tannin 함량을강화시키고신맛을감소시켜참다래와인의고급화를위해참다래및감을이용한효소전처리기술개발과동시에 tannin이강화된참다래-감혼합과실주개발로참다래와대봉감을비율별로혼합하고발효하여이화학적특성및향기성분을분석하였다. 재료및방법 재료및시약참다래는경상남도사천지역에서재배된것을영농조합법인오름주가로부터공급받아사용하였으며, 대봉감은경남하동군일대에서수확된것을악양농협을통해서구입하여사용하였다. Rapidase는 ( 주 ) 비전바이오켐 (BISON Corparation) 에서구입하여사용하였다. 미생물배양용배지 PD (Potato Dextrose) 는 Difco 사제품을구입하여사용하였다. 효모동정에사용된효소는 Promega에서구입하여사용하였다. 표준유기산화합물 oxalic acid, tartaric acid, malic acid, ascorbic acid, acetic acid, malic acid, citric acid, succinic acid, fumaric acid, glutaric acid 및표준유리당화합물 fructose, glucose, sucrose 는 Sigma Chemical Co. 에서구입하였다. High performance liquid chromatography (HPLC)-grade H 2O, methanol, acetonitrile, glacial acetic acid는 Fisher Scientific의제품을구입하여사용하였고, Folin-Cicalteu s phenol reagent, 2,2-diphenyl-1- picrylhydrazyl (DPPH), 2,2'-Azino-bis (3-ethylbenzothiazoline- 6-sulfonic acid) diammonium salt (ABTS) 및그외기타시약은 Sigma Chemical Co. 에서구입하여사용하였다. 알코올발효효모분리및동정참다래, 감, 포도, 사과및딸기등의과일발효액으로부터알코올발효를위하여야생효모를분리하였다. 최종선발한균주 Y28을 PD broth에접종하여 30 C에서 30 ± 6시간배양후 DNAzol (Invtrogen) 를이용하여 genomic DNA를분리하고이를주형으로하여 26S rrna를증폭하였다. 26S rrna의단편을증폭하는데사용되는 PCR yeast-specific primer 5 - ACC CGC TGA AYT TAA GCA TAT-3 (3YF/21 mer, forward primer, Saccharomyces cerevisiae rrna) 와 5 -CTC CTT GGT CGT GTT TCA AGA CGG-3 (3YR/25 mer, reverse primer) 를사용하였다 (Cho et al., 2009). PCR 반응은 (50 μl) Taq polymerase (2.5 unit) 1 μl, 3YF-3YR (10 pmol) primer 3 μl, 반응 buffer (15 mm MgCl 2) 5 μl, 2 mm dntp 5 μl, 주형 DNA 5 μl, 그리고살균한증류수 28 μl을포함하였다. PCR 조건은 94 C 5분, 30 cycles (94 C for 30 sec, 50 C for 30 sec, 72 C for 2 min) 수행그리고 72 C에서 10분 extension 하였다. PCR 반응이끝난후전기영동하여 26S rrna 단편을확인하고 PCR Purified Kit (intron Biotechnology) 로정제하였다. 정제한 26S rrna 단편을주형으로염기서열을결정하였다. 결정된염기서열은 26S rrna는 GenBank database로부터얻은또다른효모의 26S rrna와비교분석하였다. 26S rrna 유사성값은 DNAMAN analysis system (Lynmon Biosoft) 를사용하여 alignments, evolutionary distance로부터계산하였다. Phylogenetic tree는 neighbour-joining method와 distance matrix data를사용하여확인하였다. 참대래및대봉감의 rapidase 처리 Rapidase는상업적으로과일혹은채소의가공에사용되고 Korean Journal of Microbiology, Vol. 52, No. 1
100 Lee et al. 있는것을이용하였다. 참다래와대봉감은흐르는수돗물에세척하여냉동하였다. 냉동참다래 ( 품종명 : 헤이워드 ) 및냉동대봉감해동후분쇄하여준비하였다. 매실엑기스 5%, rapidase 0, 0.1, 0.2 및 0.4% 첨가후 45 C 항온수조에서 0, 0.5, 1, 2 및 4시간반응하여치즈크로스를사용하여고형분을걸러실험에사용하였다. 참다래와대봉감의비율별와인제조대봉감의첨가비율을설정하기위하여 24 brix로보당한참다래-대봉감과즙을 10:0, 9:1, 8:2, 7:3, 6:4 및 5:5 ( 참다래 : 대봉감 ) 비율로설정하여 30 C에서 48시간배양한균주 Y28 배양액을 5.0% (v/v) 으로접종한후 20 C에서 14일간정치발효시켜실험에사용하였다. 갈변도및수용성 phenolics 갈변도는원심분리후시료를분광광도계 (Spectronic 2D) 를이용하여 420 nm에서흡광도를측정하여표시하였다 (Joo et al., 2011). 수용성 phenolics 함량은 Folin-Denis법 (Folin and Denis, 1912) 로측정하였다. 원심분리한후시료를 0.45 μmmembrane filter (Dismic R -25CS, Toyoroshikaisha, Ltd.) 로여과하여희석한후시험관에시료 0.5 ml과 25% Na 2CO 3 용액 0.5 ml을첨가하여 3분간정치시킨다. 다시 2 N Folin-Ciocalteu phenol 시약 0.25 ml 첨가하여혼합한다음상온에서 1시간동안정치시켜발색시켰다. 발색된청색을분광광도계 (Spectronic 2D) 를이용하여 750 nm에서흡광도를측정하였다. 이때수용성 phenolics 함량은 gallic acid를사용하여작성한표준곡선으로부터함량을구하였다. ph, 총산및생균수 ph는시료를원심분리기 (MF-550, Hanil Science Indu-strial Co.) 에서 3,000 rpm으로 15분간원심분리한후얻은상등액을 ph meter (model 3510, Jenway) 를사용하여측정하였다. 총산은중화적정법으로원심분리한시료 1 ml를 ph 8.2 ± 0.1까지중화시키는데소비된 0.1 N NaOH의양을구하여젖산 (lactic acid) 양으로환산하였다. 생균수는멸균증류수로단계별희석하여 chloramphenicol (CHL) 을 1.5 mg/ml 첨가한 PDA 평판배지에도말하여 30 C에서 48시간배양후나타난집락수를계수하여시료 1 ml당 log colony forming unit (log CFU/ml) 로나타내었다. 각시험은 3회반복하여평균값으로나타내었다. 알코올, 가용성고형분 (Brix) 및환원당알코올측정은증류법으로발효후시료 50 ml에증류수 100 ml을가하여희석시킨후증류시켜 30 ml을회수하여증류수 20 ml을넣어 50 ml로정용하여주정계 (MT-380, Atago Co.) 로측정하였다. 가용성고형분은굴절당도계 (N-1α, Atago Co.) 를이용하여측정하였다. 환원당은 Miller (1959) 의 3,5- dinitrosalicylic acid (DNS) 법에준하여분석하였다. 시료의당농도가 1.0 g/l 이하가되게희석하여시료 0.1 ml에 DNS 시약 1 ml을첨가하여 100 C 끓는물에서 10분동안발색시킨후냉각하여분광광도계 (Spectronic 2D, Thermo Co.) 를사용하여 570 nm에서흡광도를측정하였다. 흡광도값은표준물질 glucose를사용하여측정한다음표준물질로 glucose를사용하여작성한표준곡선을이용하여환산하였다. 유기산과유리당유기산과유리당의분석은 Joo 등 (2011) 의방법에준하여 HPLC (Agilent 1200 series, Agilent Co.) 를이용하여분석하였다. 유리당분석은원심분리한시료를 sep-pak NH 2 column (Waters Co.) 과 0.45 μm-membrane filter (Toyoroshikaisha, Ltd.) 를순차적으로통과시켜전처리하였다. 유리당분석칼럼 (Polyamine II, 4.6 150 mm, 5 μm, YMC Co.) 에전처리한시료 20 μl을주입하고 55 C에서이동상용매 (acetonitrile:water = 75:25 [v/v]) 를 1.0 ml/min 속도로이동시키면서 reflective index (RI, Agilent 1200 series, Agilent Co.) 검출기상에서유리당을검출하였다. 유기산분석은원심분리후시료를 deionized water (D.W.) 와 1:1로희석하여 0.45 μm-membrane filter (Toyoroshikaisha, Ltd.) 를통과시켜입자를제거하였다. 유기산분석 column (TSKgel ODS-100V, 4.6 250 mm, 5 μm, Tosoh Corp.) 에전처리한시료 20 μl을주입하고 30 C에서이동상용매 (0.1% phosphoric acid) 를 1.0 ml/min 속도로이동시키면서 UV 검출기 (Agilent 1200 series, Agilent Co.) 의 210 nm에서측정하였다. 향기성분향기성분분석을위한추출및포집방법은 solid phasemicro extraction (SPME) 을이용한 headspace (Autosampler, HS-7697A, Agilent technologies) 분석방법을사용하였다 (Jo et al., 2013). 시료 5 ml를정확히취해 20 ml headspace vial에넣은후알루미늄캡으로밀봉한다음 100 μm polydimethylsiloxane (PDMS) fiber에 100 rpm, 100 C에서 8분동안흡착하였다. 시료의향기성분분석은 Jo 등 (2013) 의방법을변형하 미생물학회지제 52 권제 1 호
야생효모 Y28 이용참다래 - 대봉감혼합과실주 101 여분리및동정하였다. 즉, GC-MS (Gas Chromatograph-Mass spectrometer, GC-7890A, MSD-5975C, Agilent technologies) 를이용하였으며, column은 HP-5MS (30 m 0.25 mm, 0.25 µm film thickness) 를사용하였다. Oven의온도프로그램은 40 C에서 3분간머물게한후 180 C까지 1분당 5 C로승온시켜 3분간머물게하고다시 280 C까지승온시켰다. 시료는분활주입법 (10:1) 을사용하여 0.2분간주입하였으며운반기체로헬륨을사용하였으며, 유속은 1 ml/min로설정하였다. Injector 및 quadrapole의온도는각각 110 C이었고질량분석은전자충격이온화 (69.9 ev) 방식을이용하여 scene mode ( 범위 50 550) 로실시하였다. 얻어진 chromatogram으로부터각각의 peak에대한질량 spectrum을확인하였고이를 GC-MS NIST library와비교하여각각의성분을확인하였다. 관능평가발효가완료된참다래-대봉감혼합과실주의관능평가는영농조합법인오름주가직원, 경남과학기술대학교학부생및대학원생 30명으로구성된패널에의해평가되었으며평가전에실험목적, 평가유의사항등을설명하였고, 맛, 향, 색및전체적인기호도를조사하였다. 관능평가는 1 (very bad) 에서 5 (very good) 까지 5점법으로평가하여통계분석하였다. 통계분석각실험결과는 SPSS 12.0 package (IBM) 를사용하여분산분석을수행하였고평균 ± 표준편차로나타내었다. 한편관능평가결과의유의성검정은 ANOVA test로유의성을검정하여각시험구간의유의차를 5% (P < 0.05) 유의수준에서검증하였다. 결과및고찰 알코올발효효모균주동정다양한과일발효액으로부터약 100여종의야생효모를분리하고내산성, 내알코올성및내당성확인을통하여최종야생산딸기발효물로부터 Y28 균주를분리하였다. 26S rrna 염기서열을분석한결과 Saccharomyces cerevisiae D3C 및 S. pastorianus RH6136이각각 99.6% 및 99.4% 의상동성을나타내어균주 Y28을최종 S. cerevisiae Y28로명명하였다 (Table 1). 참다래및대봉감의효소첨가량에따른이화학적특성효소첨가량에따른참다래및대봉감의이화학적특성은 Table 2와같았다. 효소첨가량이증가할수록참다래및대봉감의 ph는감소하여 rapidase를처리하지않은대조구에서 3.64 ( 참다래 ) 와 4.89 ( 대봉감 ) 로가장높았고 0.4% rapidase 첨가시 3.51 ( 참다래 ) 과 4.11 ( 대봉감 ) 로가장낮게나타났다. 가용성고형물은 0.4% rapidase 첨가시각각 12 Brix ( 참다래 ) 와 18.2 brix ( 대봉감 ) 로나타났으며환원당은 102.18 g/l ( 참다래 ) 와 207.33 g/l ( 대봉감 ) 로가장높게나타났다. 효소첨가량이높아질수록참다래및대봉감의수득율은증가하여 0.4% rapidase 처리시각각 89.80% 와 81.64% 의수득율을나타내었다. 수용성 phenolics는효소첨가량에따라유의적인차이를보이지않으며, 0.4% rapidase 처리시 2.26 g/l ( 참다래 ) 와 5.82 g/l ( 대봉감 ) 로나타났다. 갈변도는효소첨가량이증가할수록대체적으로감소하여 0.4% rapidase 처리시 0.268 ( 참다래 ) 과 0.564 ( 대봉감 ) 로나타났다. Jang 등 (2014) 은참외에 pectinase, cellulase 및복합효소처리농도가증가함에따라 ph 5.35에서 5.30으로 ph 5.33에서 Table 1. Pairwise similarity between Saccharomyces cerevisiae Y28 and other Saccharomyces genus closely related yeast based on 26S rrna gene sequences Similarity (%) with 26S rrna gene sequences a Strains b 1 2 3 4 5 6 7 8 1. Y28 100 2. DC3 99.6 100 3. RH6136 99.4 99.8 100 4. IFO1802 98.0 98.4 98.4 100 5. IFO1815 97.1 97.5 97.5 97.8 100 6. CBS380 97.5 97.8 97.8 98.7 97.6 100 7. a124 98.5 98.9 98.9 99.1 98.4 98.5 100 8. TJ14M01 97.8 98.2 98.2 99.1 98.0 98.5 99.3 100 a Calculated with CLUSTAL W and the PAM250 residue weight table. b Then strain S. cerevisiae Y28 (KU499844), S. cerevisiae DC3 (JF715188), S. pastorianus RH6136 (AJ508593), S. kudriavzevii IFO1802 (AB040995), S. mikatae IFO1815 (AB040996), S. bayanus CBS380 (AF113892), S. paradoxus a124 (FN868260), and S. arboricola TJ14M01 (JQ914741). Korean Journal of Microbiology, Vol. 52, No. 1
102 Lee et al. Table 2. Physicochemical property and juice yields of freezed kiwi and persimmon according to rapidase treatment concentrations a Contents b Rapidase treatment concentrations (%) 0 0.1 0.2 0.4 Kiwi ph 3.64 ± 0.13 3.56 ± 0.12 3.54 ± 0.12 3.51 ± 0.12 Brix ( ) 11.40 ± 0.41 11.60 ± 0.41 12.00 ± 0.42 12.00 ± 0.42 Browning degree (420 nm) 0.819 ± 0.03 0.275 ± 0.01 0.282 ± 0.01 0.268 ± 0.01 Reducing sugar (g/l) 90.98 ± 3.18 93.22 ± 1.06 102.18 ± 3.58 102.18 ± 3.55 Soluble phenolics (g/l) 2.03 ± 0.07 2.07 ± 0.07 2.15 ± 0.08 2.26 ± 0.08 Yield (%) 76.40 ± 2.67 82.00 ± 2.87 83.60 ± 2.93 89.80 ± 3.12 Persimmon ph 4.89 ± 0.17 4.31 ± 0.15 4.2 ± 0.15 4.11 ± 0.14 Brix ( ) 17.20 ± 0.60 17.60 ± 0.62 18.00 ± 0.63 18.20 ± 0.66 Browning degree (420 nm) 0.537 ± 0.02 0.851 ± 0.03 0.622 ± 0.02 0.564 ± 0.02 Reducing sugar (g/l) 201.01 ± 7.01 199.05 ± 6.89 208.08 ± 7.22 207.33 ± 7.28 Soluble phenolics (g/l) 5.80 ± 0.20 4.76 ± 0.17 5.31 ± 0.19 5.82 ± 0.20 Yield (%) 44.61 ± 1.56 70.90 ± 2.48 78.55 ± 2.75 81.64 ± 2.88 a The juices were treated with 0, 0.1, 0.2, and 0.4% rapidase at 45 C for 4 h. b Values indicate the mean s of three replication (n=3). 5.30으로 ph 5.32에서 ph 5.29로감소하였고, 갈변도또한효소첨가수준에따른유의적인변화를보이지않아본실험과유사하였다. 그러나, Kim 등 (2005) 은석류추출액에복합효소첨가량증가함에따라갈변도가급격히감소한다고보고하였다. Jeong 등 (2002) 은감에 pectinase 처리시농도가증가함에따라 ph는유의적으로증가한다고보고하였다. Shin 등 (2007) 은마늘에 protopectinase 효소처리농도가증가함에따라수율이유의적으로증가하지않았고반면복합효소처리시수율이유의적으로증가한다고보고하였다. 또한 Jeong 등 (2010) 은딸기에 4가지의효소처리시효소처리농도가증가함에따라수율에서유의적인차이를보이지않는다고보고하였다. Park과 Kim (2009) 은사과껍질에 cellulase 및 pectinase 처리시처리농도가증가함에따라총 phenolics 함량이증가하였으며효소처리농도 0, 0.5, 1.0, 1.5 및 2.0% 처리시 1.0% 에서 2.0% 처리시함량의차이는미미하다고보고하였다. 특히, Park 등 (2013) 은참다래를이용한발효주제조시 cytolase PCL5 효소제를처리하여착즙수율을높이는것이유리할것으로제시하여본연구결과에서도유사한결과를제시하는바이다. 한편, 이러한차이는처리효소의종이다른것에서기인한것뿐만아니라다양한과채류의기질과효소반응의특이성때문인것으로추측되었다. 참다래및대봉감의효소처리시간에따른이화학적특성참다래및대봉감의효소처리시간에따른이화학적특성 은 Table 3과같았다. Rapidase 처리시간이길어질수록대봉감의 ph는감소하여 4시간처리시 4.33으로가장낮게나타났으며참다래는시간에따라유의적인변화를보이지않았지만 4시간처리시 3.51로가장낮게나타났다. 가용성고형분은 4 시간처리시각각 13.0 brix ( 참다래 ) 와 18.4 brix ( 대봉감 ) 으로가장높게나타났으며환원당은참다래의경우처리시간이증가함에따라함량이증가하여 4시간처리시 112.26 g/l으로가장높게나타났으며반면대봉감은함량이감소하여 193.34 g/l로가장낮게나타났다. 갈변도는효소처리시간이증가함에따라 4시간처리시참다래의갈변도는감소하여 0.313이었고대봉감은증가하여 0.717로나타났다. 참다래는효소처리시간이증가함에따라수득율과수용성 phenolics 함량이증가하여 4시간처리후각각 84.0% 와 2.39 g/l로가장높게나타났다. 하지만 0.5, 1, 2 및 4시간반응결과수득율은각각 73.0%, 80.6%, 81.0% 및 81.6% 로나타났고수용성 phenolics 함량은각각 2.01, 2.09, 2.13 및 2.18 g/l로다른처리시간과비교하여 4시간처리시수득율과수용성 phenolics 함량의차이가크지않았다. 반면대봉감은 0.5, 1, 2 및 4시간반응결과중 4시간처리시수용성 phenolics 함량이 5.32 g/l로가장낮게나타났지만수득율의경우 82.70% 로가장높게나타났다. 한편, 효소처리농도와처리시간을고려하여최적효소처리조건은참다래는 0.3%, 1시간및대봉감은 0.3%, 3시간으로설정하고이후이와동일한조건으로처리하여참다래-대봉감알코올발효를위한과즙을제조하여사용하였다. 미생물학회지제 52 권제 1 호
야생효모 Y28 이용참다래 - 대봉감혼합과실주 103 Table 3. Physicochemical property and juice yields of freezed kiwi and persimmon according to rapidase treatment time a Rapidase treatment time (h) Contents b 0 0.5 1 2 4 Kiwi ph 3.62 ± 0.13 3.55 ± 0.12 3.51 ± 0.12 3.53 ± 0.11 3.51 ± 0.13 Brix ( ) 12.70 ± 0.44 12.40 ± 0.43 12.20 ± 0.43 13.00 ± 0.46 13.00 ± 0.46 Browning degree (420 nm) 1.37 ± 0.05 0.33 ± 0.01 0.317 ± 0.01 0.306 ± 0.01 0.313 ± 0.01 Reducing sugar (g/l) 98.57 ± 3.45 99.62 ± 3.50 100.30 ± 3.51 105.79 ± 3.70 112.26 ± 3.37 Soluble phenolics (g/l) 2.01 ± 0.07 2.09 ± 0.07 2.13 ± 0.07 2.18 ± 0.09 2.39 ± 0.08 Yield (%) 73.00 ± 2.56 80.60 ± 2.82 81.00 ± 2.84 81.60 ± 2.88 84.00 ± 2.95 Persimmon ph 4.81 ± 0.17 4.77 ± 0.17 4.67 ± 0.16 4.48 ± 0.15 4.33 ± 0.15 Brix ( ) 17.40 ± 0.61 18.20 ± 0.64 18.00 ± 0.63 18.00 ± 0.62 18.40 ± 0.62 Browning degree (420 nm) 0.144 ± 0.01 0.281 ± 0.01 0.379 ± 0.01 0.554 ± 0.02 0.717 ± 0.03 Reducing sugar (g/l) 211.69 ± 7.41 213.42 ± 7.47 206.27 ± 7.22 200.93 ± 7.01 193.34 ± 6.70 Soluble phenolics (g/l) 1.27 ± 0.04 5.98 ± 2.41 6.54 ± 0.23 5.97 ± 0.21 5.32 ± 0.19 Yield (%) 61.25 ± 2.14 69.01 ± 2.42 74.00 ± 2.58 77.71 ± 2.70 82.70 ± 2.80 a The juices were treated with 0.3% rapidase at 45 C for 0, 0.5, 1, 2, and 4 h. b Values indicate the mean s of three replication (n = 3). 과채류의주스가공에서수율향상을위해 pectinase 및 cellulase 등과같은효소를이용하고있다 (Rombouts and Pilnik, 1979). Grassin (1993) 은사과펄프에 pectinlyase, hemicellulase 및 cellulase 등을포함하는복합효소를첨가하여 2 3시간반응후수율이 13 23% 정도수율이증가한다고보고하였다. Jang 등 (2014) 은참외주스에복합효소처리시 0.5시간처리구의경우가용성고형분은 10.58 brix, ph의경우 5.28로 1 2 시간처리구 (10.80 brix 수준, ph 5.24) 와구분된다고보고하였고, 갈색도는 1시간경과후값이유지되거나소폭증가한다고보고하여본연구와유사하였다. Park과 Kim (2009) 은사과껍질에효소처리후총 phenolics 함량측정결과처리시간이증가함에따라 30 C에서반응시유지되거나미미한수준으로증가하였으며 40 C에서반응시오히려유지되거나감소되는경향을보였으며 50 C 반응시 30 C에서반응시킨결과와유사한양상을나타낸다고보고하였다. Jeong 등 (2010) 은 0.5시간과 1시간반응시 4가지복합효소는처리시간에따른차이가미미하다고보고하였고, Shin 등 (2007) 은 protopectinase 및복합효소처리시수율이증가하였고복합효소의 1시간에서 1시간 30분사이에수율이소폭상승한다고보고하여본연구와유사한결과를나타냈다. 이와같은결과들로효소처리시간은 1시간이상일때수율이높아지는것으로판단되었다. 한편, 대봉감의경우 rpidase 무처리 4시간후갈변도와수용성 phenolics 함량 (Table 2) 보다 0.3% rapidase 처리직후갈변도와수용성 phenolics 함량 (Table 3) 이낮게나타났다. 이는 rpidase 무처리라도과일자체효소의자가가수분해 (autolysis) 에의해증가한것으로추측되었다. 참다래와대봉감혼합과실주의이화학적특성참다래- 대봉감혼합과실주의이화학적특성은 Table 4와같았다. 과실주의 ph는발효초기 (0 day) 3.61 ( 참다래 : 대봉감 = 10:0) 에서 3.76 ( 참다래 : 대봉감 = 5:5) 수준이었으며, 산도는 1.96% ( 참다래 : 대봉감 = 5:5) 에서 2.20% ( 참다래 : 대봉감 = 9:1) 수준으로감의비율이높아짐에따라감소하였다. 환원당은 158.25 g/l ( 참다래 : 대봉감 = 10:0) 에서 231.62 g/l ( 참다래 : 대봉감 = 5:5) 로감의비율이높아짐에따라증가하였다. 발효종기 (14 day) 의 ph는 3.69 ( 참다래 : 대봉감 = 10:0) 에서 3.77 ( 참다래 : 대봉감 = 5:5) 로감이비율이높아짐에따라 ph가높았으며, 발효초기 ph와비교하여거의변화가없었다. 산도는 2.07% ( 참다래 : 대봉감 = 10:0) 에서 1.51% ( 참다래 : 대봉감 = 5:5) 로감의첨가량이증가함에따라산도가감소하였고발효초기와비교하여매우낮게나타났다. 가용성고형분은 9.6 brix ( 참다래 : 대봉감 = 10:0) 에서 8.8 brix ( 참다래 : 대봉감 = 5:5) 였으며, 환원당은 6.09 g/l ( 참다래 : 대봉감 = 10:0) 에서 6.90 g/l ( 참다래 : 대봉감 = 5:5) 수준으로참다래와대봉감의비율에따라가용성고형분과환원당의큰차이는없었다. 알코올함량은대부분 11 12% 로대봉감첨가량비율에따라서큰차이를보이지않았다. 발효초기 (0 day) 의균수는 7.45 log CFU/ml이었으며, 발효종기균수는 10:0, 9:1, 8:2, 7:3, 6:4 및 5:5 각각 Korean Journal of Microbiology, Vol. 52, No. 1
104 Lee et al. Table 4. Comparison of physicochemical property and viable cell numbers of kiwi-persimmon must and wine according to mixing ratio of kiwi and persimmon juices Mixing ratio of kiwi and persimmon Contents a 10 : 0 9 : 1 8 : 2 7 : 3 6 : 4 5 : 5 Must (0 day) ph 3.61 ± 0.13 3.63 ± 0.12 3.66 ± 0.12 3.68 ± 0.13 3.73 ± 0.13 3.76 ± 0.13 Acidity (%, lactic acid) 2.14 ± 0.07 2.20 ± 0.08 2.17 ± 0.08 2.14 ± 0.07 2.13 ± 0.07 1.96 ± 0.07 Brix ( ) 23.80 ± 0.83 23.80 ± 0.83 24.00 ± 0.82 23.80 ± 0.84 24.00 ± 0.84 24.00 ± 0.84 Reducing sugar (g/l) 158.25 ± 5.54 179.52 ± 6.28 204.54 ± 7.55 215.64 ± 7.92 228.38 ± 7.95 231.62 ± 8.11 Alcohol (%) 0 0 0 0 0 0 Viable cell numbers (log CFU/ml) 7.45 ± 0.25 7.45 ± 0.26 7.45 ± 0.25 7.45 ± 0.26 7.45 ± 0.26 7.45 ± 0.26 Wine (14 day) ph 3.69 ± 0.13 3.70 ± 0.12 3.70 ± 0.12 3.73 ± 0.13 3.72 ± 0.13 3.77 ± 0.13 Acidity (%, lactic acid) 2.07 ± 0.08 2.03 ± 0.07 1.96 ± 0.07 1.84 ± 0.06 1.64 ± 0.06 1.51 ± 0.05 Brix ( ) 9.60 ± 0.32 9.40 ± 0.33 9.20 ± 0.32 9.00 ± 0.32 9.00 ± 0.31 8.80 ± 0.31 Reducing sugar (g/l) 6.07 ± 0.21 6.52 ± 0.23 6.56 ± 0.23 6.68 ± 0.22 6.85 ± 0.24 6.90 ± 0.22 Alcohol (%) 12.00 ± 0.42 12.00 ± 0.42 11.00 ± 0.39 11.00 ± 0.39 11.00 ± 0.38 11.00 ± 0.39 Viable cell numbers (log CFU/ml) 7.57 ± 0.25 8.52 ± 0.30 8.35 ± 0.29 7.76 ± 0.27 7.88 ± 0.28 7.11 ± 0.25 a Values indicate the mean's of three replications (n = 3). 7.57, 8.52, 8.35, 7.76, 7.88, 및 7.11 log CFU/ml로나타났다. Woo 등 (2007) 의보고에따르면서로다른효모균주에따른참다래와인의총산도는발효초기 1.03 1.04% 수준에서발효후 1.15 1.33% 로발효가진행됨에따라증가한다고보고하였으며, Towantakavanint 등 (2010) 은 3종의효모균주로참다래와인발효중발효종기산도는 0.68 0.72% 로증가하는경향을나타냈으며, Joo 등 (2011) 은대봉감와인발효중발효 9일째산도는 8.38 ml (0.1 N NaOH) 로증가하여본연구와상이하였다. 20, 25 및 30 C의 3가지서로다른온도로키위와인발효중발효가진행됨에따라발효 20일째 0.75 0.79% 로총산이감소한다고보고하여본연구와유사하였다 (Kang et al., 2011). 5종의효모균주로참다래와인발효시발효초기 22 brix에서발효 8일째 8 brix로감소한후일정하게유지되었다고보고하였고 (Woo et al., 2007), 3 종의효모균주로참다래와인발효중발효초기 22 brix에서발효가진행됨에따라감소하여발효 16일째 6.0 7.3 brix로감소하였다고보고하였다 (Towantakavanint et al., 2010). 대봉감연시발효중발효초기환원당은 69.14 g/l에서발효후 9.24 g/l로감소하여본연구와유사한경향을나타내었다 (Joo et al., 2011). 최근에 Park 등 (2013) 참다래발효주를제조시 ph는발효 2주후에약간감소하였고, 총산도는증가하였으며, 알코올함량은 1주까지급격히증가하였으며이에상응하여환원당은급격히감소한다고보고하여본연구결과와유사하였다. 이들결과로부터참다래-대봉감혼합과실주의경우전형적인알코올발효가 진행되는것으로판단되었다. 참다래와대봉감혼합과실주의유기산및유리당함량참다래- 대봉감혼합과실주의유기산및유리당함량은 Tables 5 6과같았다. 발효 0 day에 10:0 ( 참다래 : 대봉감 ), 9:1, 8:2, 7:3, 6:4 및 5:5의유기산총함량은각각 22.00, 18.91, 17.44, 15.92, 14.80 및 12.63 g/l였으며, 발효 14 day에유기산총함량은각각 13.63, 12.37, 11.33, 10.04, 9.01 및 7.48 g/l로발효후유기산함량이현저히떨어졌다. 전체적으로발효초기및종기의주요유기산은 tartaric acid, malic acid 및 citric acid 이었으며대봉감의비율이증가할수록유기산함량이낮아졌다 (Table 5). 이결과로부터대봉감첨가시참다래의신맛을감소시킬수있는효과가있을것으로판단되었다. 대봉감연시발효중발효후총유기산함량은 95.24 g/l로발효전에비해 2배이상증가하였고 (Joo et al., 2011), 단감와인발효후총유기산의함량은 10.91 g/l로증가한다고보고하였다 (Cho et al., 2006). 한편, Park 등 (2013) 은 2종의참다래발효주의유기산을분석한결과청량한신맛인 citric acid와감칠맛을나타내는 succinic acid가주요유기산으로보고하여본연구결과와는약간상이하였다. 이와같은결과는참다래품종, 재배토양등의환경적인요인과발효효모및발효과정의차이에의한것으로판단되었다. 참다래- 대봉감혼합과실주의유리당함량은발효 0 day에 미생물학회지제 52 권제 1 호
야생효모 Y28 이용참다래 - 대봉감혼합과실주 105 Table 5. Distribution of organic acid contents of kiwi-persimmon must and wine according to mixing ratio of kiwi and persimmon juices Organic acid contents Mixing ratio of kiwi and persimmon (g/l) a 10 : 0 9 : 1 8 : 2 7 : 3 6 : 4 5 : 5 Must (0 day) Oxalic 0.53 ± 0.02 0.48 ± 0.02 0.47 ± 0.02 0.48 ± 0.02 0.48 ± 0.02 0.48 ± 0.02 Tartaric 3.66 ± 0.13 3.57 ± 0.12 3.35 ± 0.12 3.08 ± 0.11 2.77 ± 0.10 2.40 ± 0.08 Malic 2.55 ± 0.09 2.50 ± 0.09 2.41 ± 0.08 2.31 ± 0.08 2.23 ± 0.08 2.07 ± 0.07 Ascorbic 0.33 ± 0.01 0.31 ± 0.01 0.29 ± 0.01 0.28 ± 0.01 0.23 ± 0.01 0.20 ± 0.01 Lactic 1.51 ± 0.05 1.27 ± 0.04 1.21 ± 0.04 1.09 ± 0.04 1.04 ± 0.04 0.61 ± 0.02 Citric 11.21 ± 0.39 10.24 ± 0.36 9.27 ± 0.32 8.39 ± 0.29 7.54 ± 0.26 6.52 ± 0.23 Succinic 0.91 ± 0.03 0.5 ± 0.02 0.41 ± 0.01 0.23 ± 0.01 0.46 ± 0.02 0.30 ± 0.01 Fumaric 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 Glutaric 1.26 ± 0.04 ND b ND ND ND ND Total 22.00 ± 0.77 18.91 ± 0.66 17.44 ± 0.61 15.92 ± 0.56 14.80 ± 0.52 12.63 ± 0.44 Wine (14 day) Oxalic 0.16 ± 0.01 0.16 ± 0.01 0.17 ± 0.01 0.22 ± 0.01 0.21 ± 0.01 0.21 ± 0.01 Tartaric 3.37 ± 0.12 2.96 ± 0.10 2.57 ± 0.09 2.17 ± 0.08 1.93 ± 0.07 1.73 ± 0.06 Malic 1.83 ± 0.05 1.86 ± 0.07 1.90 ± 0.07 1.91 ± 0.07 1.87 ± 0.07 1.49 ± 0.05 Ascorbic 0.14 ± 0.00 0.14 ± 0.00 0.13 ± 0.00 0.11 ± 0.00 0.12 ± 0.00 0.02 ± 0.00 Lactic ND ND ND ND ND ND Citric 7.69 ± 0.27 6.93 ± 0.24 6.31 ± 0.22 5.41 ± 0.19 4.69 ± 0.16 3.82 ± 0.13 Succinic 0.39 ± 0.01 0.29 ± 0.01 0.21 ± 0.01 0.19 ± 0.01 0.16 ± 0.01 0.17 ± 0.01 Fumaric 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 Glutaric ND ND ND ND ND ND Total 13.63 ± 0.48 12.37 ± 0.43 11.33 ± 0.40 10.04 ± 0.35 9.01 ± 0.32 7.48 ± 0.26 a Values indicate the mean's of three replications (n = 3) b ND, Not detected. Table 6. Distribution of free sugar contents of kiwi-persimmon must and wine according to mixing ratio of kiwi and persimmon juices Free sugar contents a Mixing ratio of kiwi and persimmon (g/100 g) 10 : 0 9 : 1 8 : 2 7 : 3 6 : 4 5 : 5 Must (0 day) Sucrose 0.73 ± 0.03 1.12 ± 0.04 2.03 ± 0.07 2.14 ± 0.07 1.67 ± 0.06 1.51 ± 0.05 Glucose 8.65 ± 0.30 10.58 ± 0.37 11.44 ± 0.40 10.03 ± 0.35 11.30 ± 0.40 11.22 ± 0.39 Fructose 8.25 ± 0.29 9.77 ± 0.34 10.24 ± 0.36 9.52 ± 0.33 10.43 ± 0.37 10.47 ± 0.37 Total 17.63 ± 0.62 21.47 ± 0.75 23.71 ± 0.83 21.69 ± 0.75 23.40 ± 0.82 23.20 ± 0.81 Wine (14 day) Sucrose 0.15 ± 0.01 0.26 ± 0.01 0.20 ± 0.01 0.24 ± 0.01 0.24 ± 0.01 0.21 ± 0.01 Glucose 0.17 ± 0.01 0.05 ± 0.00 0.02 ± 0.00 0.09 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 Fructose ND b ND ND ND ND ND Total 0.32 ± 0.01 0.31 ± 0.01 0.22 ± 0.01 0.33 ± 0.01 0.27 ± 0.01 0.24 ± 0.01 a Values indicate the mean's of three replications (n = 3). b ND, Not detected. 10:0, 9:1, 8:2, 7:3, 6:4 및 5:5의유리당총함량은각각 17.63, 21.47, 23.71, 21.69, 23.4 및 23.2 g/100 g이었으며, 발효 14 day 에유리당의총함량은각각 0.32, 0.31, 0.22, 0.33, 0.27 및 0.24 g/100 g으로알코올발효후당이소모되어발효종기에는유리당의함량이현저하게낮아졌으며소량의 sucrose 및 glucose 가남았다 (Table 6). Park 등 (2013) 은 2종의참다래발효주의 Korean Journal of Microbiology, Vol. 52, No. 1
106 Lee et al. Table 7. Comparison of Browning degree and soluble phenolics of kiwi-persimmon must and wine according to mixing ratio of kiwi and persimmon juices Mixing ratio of kiwi and persimmon Contents a 10 : 0 9 : 1 8 : 2 7 : 3 6 : 4 5 : 5 Must (0 day) Browning degree (420 nm) 0.387 ± 0.01 0.304 ± 0.01 0.205 ± 0.01 0.176 ± 0.01 0.156 ± 0.01 0.165 ± 0.01 Soluble phenolics (g/l) 2.54 ± 0.09 2.62 ± 0.09 3.00 ± 0.11 3.42 ± 0.12 3.76 ± 0.13 3.80 ± 0.13 Wine (14 day) Browning degree (420 nm) 0.412 ± 0.01 0.307 ± 0.01 0.325 ± 0.01 0.228 ± 0.01 0.212 ± 0.01 0.222 ± 0.01 Soluble phenolics (g/l) 1.00 ± 0.03 1.00 ± 0.03 1.06 ± 0.04 1.07 ± 0.04 1.13 ± 0.04 1.25 ± 0.03 a Values indicate the mean's of three replications (n = 3). b ND, Not detected. 유리당을분석한결과 sucrose, glucose, fructose가검출되었으나, fructose 함량이가장높은것으로보고하였다. 한편, 곶감주 (Woo and Lee, 1994), 복분자주 (Choi et al., 2006b), 단감와인 (Cho et al., 2006), 오디와인 (Kim et al., 2008), 대봉감연시와인 (Joo et al., 2011) 및뜰보리수와인 (Cho and Joo, 2014) 은발효과정중효모의당이용성이 sucrose, glucose 및 fructose 순인것으로보고되어발효후 sucrose는대부분검출되지않고 glucose 및 fructose는소량검출된다고보고하여본연구와는상이한결과를보여, 본연구에서분리한야생효모에대한오탄당인 fructose 우선이용하는것으로판단되었다. 참다래와대봉감혼합과실주의갈변도및수용성 phenolics 함량 참다래-대봉감혼합과실주의갈변도및수용성 phenolics 함량은 Table 7과같았다. 머스트 (0 day) 에 10:0 ( 참다래 : 대봉감 ), 9:1, 8:2, 7:3, 6:4 및 5:5의갈변도는각각 0.387, 0.304, 0.205, 0.176, 0.156 및 0.165이었으며, 과실주 (14 day) 에갈변도는각각 0.412, 0.307, 0.325, 0.228, 0.212 및 0.222로발효중갈변화가진행되었으나대봉감첨가에따른차이는크지않았다. 혼합과실주의수용성 phenolics 함량은 0 day에 10:0 ( 참다래 : 대봉감 ), 9:1, 8:2, 7:3, 6:4 및 5:5는각각 2.52, 2.62, 3.00, 3.42, 3.76 및 3.80 g/l로감의비율이증가함에따라조금씩증가하였다. 14 day에수용성 phenolics 함량은각각 1.00, 1.00, 1.06, 1.07, 1.13 및 1.25 g/l로발효전과마찬가지로대봉감의비율이높을수록수용성 phenolics 함량이높았다. 5종의다른균주를이용한참다래와인의발효중모든시료에서발효완료시점까지갈변도가감소한다고보고하였고 (Woo et al., 2007), 단감와인발효시갈변도는발효초기와발효종기의변화가거의없었으며 (Cho et al., 2006), 대봉감연시와인역시갈변도가 0.176 0.162 수준으로거의변화가없었다 (Joo et al., 2011). Joo 등 (2011) 의대봉감연시와인, Cho 등 (2006) 의단감와인및 Chung 등 (1984) 의사과주역시발효후함량이감소한다고보고하여본연구와유사하였다. 일반적으로 phenolics 함량이감소하는것은 phenolics의산화분해와이와더불어갈변도증가를의미하는데이에따라본연구에서참다래- 대봉감혼합과즙의발효과정에서발효후갈변도는증가하였다 (Song et al., 1988). 참다래와대봉감혼합과실주의향기성분분포참다래와대봉감혼합과실주의향기성분의분석결과는 Table 8과같았다. 6종의참다래-대봉감혼합과실주에서 29 종의향기성분이확인되었고, 공통적으로검출된향기성분은 2-fluoropropene, ethyl acetate, dimazin, ethyl propanoate, 1-pentanol, ethyl butyrate, isoamyl acetate, ethyl hexanoate 및 phenylehtyl aclcohol로총 9종있었다. 주요향기성분은 1- pentanol로각각 56.55% (10:1), 64.49% (9:1), 78.59% (8:2), 73.77% (7:3), 81.23% (6:4) 및 77.99% (5:5) 으로대봉감첨가에따라높은경향을나타내었으나, 다음으로많은 ethyl acetate는대봉감첨가에따라낮은경향을나타내었다. 본연구에서참다래-대봉감혼합과실주의주요향기성분이 ethyl acetate는발효과정중유리지방산과 ethanol의 ester 화로인해생성되며 (Schreier, 1979; Ebeler, 2001; Lee, 2014), 과도한수준의 ethyl acetate는주류에서페인트나식초향을줄수있어품질저하의원인이되기도한다. 모든혼합과실주에서공통적으로검출된전형적인 phenylethyl alcohol은장미와유사한향을내며, isoamyl acetate는배향을내며, ethyl butyrate는후숙된양다래의향긋한향으로알려져있으며본연구에서대봉감과즙첨가량이증가할수록대체적으로 ethyl butyrate 함량은낮았다 (Sun et al., 2011; Jo et al., 2013; Park et al., 2013). 모든시료에서가장높은수준의향기성분인 1-phentanol은알코올류로서불쾌한냄새를유발할수있어역시주류에과도하게존재시품질저하의원인이될수있으며, 미생물학회지제 52 권제 1 호
야생효모 Y28 이용참다래 - 대봉감혼합과실주 107 Table 8. Distribution of volatile flavor compounds of kiwi-persimmon wines according to mixing ratio of kiwi and persimmon juices No Volatile flavor compounds R.T. a Mixing ratio of kiwi and persimmon / Area% b (min) 10 : 0 9 : 1 8 : 2 7 : 3 6 : 4 5 : 5 1 Methyl isovalerate 1.953 0.34 ± 0.01 0.58 ± 0.02 2 Propene sulfide 1.987 0.14 ± 0.00 0.12 ± 0.00 0.74 ± 0.03 0.39 ± 0.01 3 2-Fluoropropene 2.170 0.67 ± 0.02 0.85 ± 0.03 0.80 ± 0.03 0.77 ± 0.03 0.81 ± 0.03 1.41 ± 0.05 4 Ethyl acetate 2.439 20.19 ± 0.71 15.13 ± 0.53 7.35 ± 0.26 9.11 ± 0.031 5.17 ± 0.18 8.44 ± 0.32 5 Isobutanol 2.611 4.36 ± 0.15 4.50 ± 0.16 4.30 ± 0.18 6 Dimazin 3.183 16.90 ± 0.59 8.26 ± 0.29 4.48 ± 0.18 3.72 ± 0.13 3.30 ± 0.12 5.38 ± 0.20 7 Ethyl propanoate 3.670 0.46 ± 0.02 0.37 ± 0.01 0.12 ± 0.00 0.27 ± 0.01 0.16 ± 0.01 0.20 ± 0.01 8 1-Pentanol 4.173 56.55 ± 1.98 64.49 ± 2.26 78.59 ± 2.80 73.77 ± 2.58 81.23 ± 2.88 77.99 ± 0.78 9 Isoamyl alcohol 4.242 0.22 ± 0.01 0.27 ± 0.01 10 4-Methoxy-1-butene 4.991 0.14 ± 0.00 11 2-Methyl-2-butene 4.991 0.28 ± 0.01 12 3,4-Dimethyl-1-hexene 5.003 0.10 ± 0.00 13 Ethyl butyrate 5.689 1.75 ± 0.06 1.72 ± 0.06 0.93 ± 0.03 1.99 ± 0.07 0.72 ± 0.03 1.26 ± 0.04 14 D-Valine 5.913 0.22 ± 0.01 15 1-Butene-3-ethoxy 5.913 0.29 ± 0.01 16 2-Buten-1-ol 5.918 0.20 ± 0.01 0.18 ± 0.01 17 3-Methyl-3-buten-1-ol 5.998 0.23 ± 0.01 18 2-Ethyl-4-pentenal 7.000 0.11 ± 0.00 19 Pentyl trifluoroacetate 7.252 0.08 ± 0.00 20 trans-1,2-dimethylcyclopentane 7.686 0.72 ± 0.03 0.52 ± 0.02 0.33 ± 0.01 21 2,2-Dimethyl-1,3-propanediol 7.692 0.39 ± 0.01 22 1-Methylbutyloxirane 7.742 0.46 ± 0.01 23 Isoamyl acetate 7.910 1.92 ± 0.05 2.08 ± 0.07 0.95 ± 0.03 3.40 ± 0.12 1.74 ± 0.06 2.44 ± 0.09 24 Ethyl hexanoate 11.829 0.23 ± 0.01 0.44 ± 0.02 0.23 ± 0.01 0.35 ± 0.01 0.29 ± 0.01 0.46 ± 0.02 25 Phenylethyl Alcohol 15.394 0.31 ± 0.01 0.60 ± 0.02 0.58 ± 0.02 0.58 ± 0.02 0.73 ± 0.03 0.47 ± 0.02 26 Ethyl caprylate 17.872 0.16 ± 0.01 0.11 ± 0.00 0.20 ± 0.01 0.13 ± 0.00 0.14 ± 0.00 27 Ethyl caprate 23.279 0.06 ± 0.00 0.09 ± 0.00 a R.T., Retention time. b Values indicate the mean's of three replications (n = 3). 9:1 혼합과실주에서유일하게검출된 1-butanol, 3-methyl은 burnt odor로불쾌한냄새의원이될수있다 (Kim et al., 2014). 또한버터나치즈등의불쾌한냄새를유발하는 sweaty 및 rancid향을나타내는 decanoic acid 및 hexnoic acid가 1.76 4.33% 로미량함유되어있다 (Jo et al., 2013). 주요향기성분인 ethyl acetate, 1-phentanol 및 1-butanol, 3-methyl의함량을저감시키는방안이모색되어야할것으로판단되었다. 참다래와대봉감혼합과실주의관능평가참다래-대봉감혼합과실주의관능평가는 Table 9와같았다. 전체적으로대봉감의함량이증가할수록신맛이감소되었고떫은맛은증가하여 5:5은맛보다떫은맛이강하여관능평 가에서상대적으로낮은점수를보였다. 반대로 10:0은상대적으로신맛이강하였으며 9:1 또한유사한수준의신맛을나타내었다. 8:2는대봉감에의해신맛이상쇄되어 10:0 및 9:1과비교하여신맛이비교적적었다. 7:3과 6:4은다른시료와비교적으로높은점수를보였고특히신맛, 단맛및떫은맛이고루어려져있었다. 한편관능평가에서는대봉감함량이증가함에따라기호적으로떫은맛의차이를보였으나실제 phenolics 함량은큰차이를보이지않았다. 이상의결과로부터참다래및대봉감의효소처리최적조건을확립할수있었으며이를토대로참다래-대봉감비율별혼합과실주를제조하여이화학적특성및향기성분분석을통해최적비율의혼합과실주선발하였다. 참다래-대봉감 (7:3) Korean Journal of Microbiology, Vol. 52, No. 1
108 Lee et al. Table 9. Sensory test of kiwi-persimmon wines according to mixing ratio of kiwi and persimmon juices Mixing ratio of kiwi and Contents 1) persimmon Taste Flavor Color Overall 10 : 0 3.24 ± 0.11c 3.87 ± 0.14ab 3.45 ± 0.12b 3.54 ± 0.12c 9 : 1 3.23 ± 0.11c 3.90 ± 0.14a 3.54 ± 0.12a 3.58 ± 0.12c 8 : 2 3.89 ± 0.14b 3.92 ± 0.13a 3.55 ± 0.13a 3.87 ± 0.13b 7 : 3 4.33 ± 0.15a 4.01 ± 0.13a 3.54 ± 0.12a 4.10 ± 0.14a 6 : 4 4.28 ± 0.15a 3.98 ± 0.14a 3.53 ± 0.12a 4.03 ± 0.13a 5 : 5 3.12 ± 0.11c 3.78 ± 0.13b 3.44 ± 0.12b 3.44 ± 0.12c 1) All values are presented as the mean ± SD of thirty replications (n = 30) determination. Means with different lowercase letters (a, b, and c) indicate significant differences of columns by Tukey s multiple range test (P < 0.05). 혼합과실주는이화학적특성및관능평가를통해최적비율혼합과실주로선발하였고반면 7:3 혼합과실주의주요향기성분인 1-phentanol은향후함량을저감화시키기위한방법이모색되어야할것으로사료된다. 적요 본연구에서는야생효모 Saccharomyces cerevisiae Y28을이용하여참다래-대봉감혼합과실주제조를위해과즙의효소처리조건확립, 참다래 -대봉감비율별알코올발효특성및향기성분분석을조사하였다. 최적효소처리조건은참다래는 0.3%, 1시간이었고대봉감은 0.3%, 3시간이었다. 참다래- 대봉감혼합과실주의 ph는발효후 3.69 3.77로거의변화가없었고, 산도는발효후증가하여 1.51 2.07% 로있었으나, 대봉감첨가량이증가할수록산도는낮았다. Brix 및환원당은발효후감소하여각각 8.8 9.6 brix 및 6.07 6.90 g/l 있었다. 혼합과일주의주요유기산은 tartaric acid, malic acid 및 citric acid 있었고, 유리당 sucrose 및 glucose은미량검출되었다. 발효후수용성 phenolics 함량감소하고상대적으로갈변도는증가하여각각 1.00 1.25 g/l 및 0.212 0.412 수준이었다. 주요향기성분으로 ethyl acetate와 hydrazine, 1,1-dimethyl가있으며장미와유사한향을가지는 phenylethyl alcohol 또한모든시료에서검출되었다. 관능평가결과, 참다래 : 대봉감 (7:3) 혼합과실주가다른비율혼합과실주보다는기호성이약간우수하였다. 감사의말 본연구는농림축산식품부고부가가치식품기술개발사업 ( 과제번호 : 11302803-1) 의지원에의해이루어진것입니다. References Cho, K.M. and Joo, O.S. 2014. Quality and antioxidant characteristics of Elaegnus multiflora wine through the thermal processing of juice. Korean J. Food Preserv. 21, 206 214. Cho, K.M., Kwon, E.J., Kim, S.K., Kambiranda, D.M., Math, R.K., Lee, Y.H., Kim, J.H., Yun, H.D., and Kim, H. 2009. Fungal diversity in composting process of Pig manure and mushroom cultural waste based on partial sequence of large subunit rrna. J. Microbiol. Biotechnol. 1, 743 748. Cho, K.M., Lee, J.B., Kahng, G.G., and Seo, W.T. 2006. A study on the making of sweet persimmon (Diosyros kaki, T) wine. Korean J. Food Sci. Technol. 38, 785 792. Choi, I.W., Baek, C.H., Woo, S.M., Lee, O.S., Yoon, K.Y., and Jeong, Y.J. 2006a. Establishment of optimum extraction condition for the manufacture of kiwi liqueur. Korean J. Food Preserv. 13, 369 374. Choi, H.S., Kim, M.K., Park, H.S., Kim, Y.S., and Shin, D.H. 2006b. Alcoholic fermentation of bokbunja (Rubus coreanus Miq.) wine. Korean J. Food Sci. Technol. 38, 543 547. Chung, K.T., Seo, S.K., and Song, H.I. 1984. Chnages of polyphenols and polyphenol oxidase active bands during apple wine fermentation. Korean J. Food Sci. Technol. 6, 413 417. Ebeler, S.E. 2001. Analytical chemistry: Unlocking the secrets of wine flavor. Food Rev. Int. 17, 45 64. Folin, O. and Denis, W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 32, 239 243. Grassin, C. 1993. Enzymetic liquefaction of apples. Fuit Process. 7, 1 6. Jang, S.J., Jo, Y.J., Seo, J.H., Kim, O.M., and Jeong, Y.J. 2014. Enzyme treatment for clarification of spoiled oriental melon juice. Korean J. Food Preserv. 21, 506 511. Jeong, E.J., Kim, M.H., and Kim, Y.S. 2010. Effect of pectinase treatment on extraction yield of the juice of Fragaria ananassa Duch. and the quality characteristics of strawberry wine during ethanolic fermentation. Korean J. Food Preserv. 17, 72 78. Jeong, Y.J., Kim, H.I., Whang, K., Lee, O.S., and Park, N.Y. 2002. Effect of pectinase treatment on alcohol fermentation of presimmon. J. Korean Soc. Food Sci. Nutr. 31, 578 582. 미생물학회지제 52 권제 1 호
야생효모 Y28 이용참다래 - 대봉감혼합과실주 109 Jo, Y.J., Kim, O.M., and Jeong, Y.J. 2013. Monitoring of the changes in volatile flavor components in oriental melon wine using SPME. Korean J. Food Preserv. 20, 207 214. Joo, O.S., Kang, S.T., Jeong, J.H., Lim, J.W., Park, Y.K., and Cho, K.M. 2011. Manufacturing of the enhances antioxidative wine using a ripe daebong presimmon (Dispyros kaki L). J. Appl. Biol. Chem. 54, 126 134. Kang, S.D., Ko, Y.J., Kim, E.J., Son, Y.H., Kim, J.Y., Seol, H.G., Kim, L.J., Cho, H.K., and Ryu, C.H. 2011. Quality characteristics of kiwi wine and optimum malolactic fermentation conditions. J. Life Sci. 21, 509 514. Kim, Y.S., Jeong, D.Y., and Shin, D.J. 2008. Optimum fermentation condition and fermentation characteristics of mulberry (Morus alba) wine. Korean J. Food Sci. Technol. 40, 63 69. Kim, S.H., Kim, I.H., Cha, T.Y., Kang, B.H., Lee, J.H., Kim, J.M., Song, K.S., Song, B.H., Kim, J.K., and Lee, J.M. 2005. Optimization of enzyme treatment condition for clarification of pomergranate extract. J. Korean Soc. Appl. Biol. Chem. 48, 240 245. Kim, E.K., Kim, I., Ko, J.Y., Yim, S.B., and Jeong, Y. 2010. Physicochemical characteristics and acceptability of commercial low-priced french wines. J. Korean Soc. Food Sci. Nutr. 39, 1666 1671. Kim, G.H., Kim, J.H., and Yang, J.Y. 2014. Change in flavor components of black-fermented galic wine according to the type if chips during the manufacturing process. J. Food Hyg. Safety 29, 73 77 Kim, K.H., Sohn, C.B., Lee, S., Lee, S.A., Lee, J.O., Kwon, J.S., and Yook, H.S. 2008. Quality of Hayward kiwifruit by low-dose gamma irradiation. J. East Asian Soc. Dietaty Life 18, 49 57. Lee, S.J. 2014. Volatile analysis of commercial Korean black raspberry wines (Bokbunjaju) using headspace solid-phase microextraction. Korean J. Food Sci. Technol. 46, 425 431. Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal. Chem. 31, 426 428. Oh, H.J., Jeon, S.B., Kang, H.Y., Yang, Y.H, Kim, S.C., and Lim, S.B. 2011. Chemical composition and antioxidative activity of kiwifruit in different cultivars and maturity. J. Korean Soc. Food Sci. Nutr. 40, 343 349. Park, K.L., Hong, S.W., Kim, Y.J., Kim, S.J., and Chung, K.S. 2013. Manufacturing and physicochemical properties of wine using hardy kiwi fruit (Actinidia argute). Korean J. Microbiol. Biotechnol. 41, 327 334. Park, M.K. and Kim, H.C. 2009. Extraction of polyphenols from apple peel using cellulase and pectinase and estimation of antioxidant activity. J. Korean Soc. Food Sci. Nutr. 38, 535 540. Rombouts, F.M. and Pilnk, W. 1979. Utilization of pectic enzymes in food prodiction. Dev. Food Sci. 2, 264 268. Schreier, P. 1979. Flavor composition of wines: a review. CRC Cr. Rev. Food Sci. 12, 59 111. Shin, D.B., Hawer, W.D., and Lee, Y.C. 2007. Effect of enzyme treatments on yield and flavor compounds of garlic extracts. Korean J. Food Sci. Technol. 39, 276 282. Song, D.H., Kim, C.J., Rho, T.W., and Lee, T.S. 1988. Phenolics contents and browing capacity during the white wine making. Korean J. Food Sci. Technol. 20, 787 793. Sun, S.Y., Jiang, W.G., and Zhao, Y.P. 2011. Evaluation of different Saccharomyces cerevisiae strains on the profile of volatile compounds and polyphenols in cherry wines. Food Chem. 127, 547 555. Towantakavanit, K., Park, Y.K., and Park, Y.S. 2010. Quality changes in Hayward kiwifruit wine fermented by different yeast strains. Korean J. Food Preserv. 17, 174 181. Woo, K.L. and Lee, S.H. 1994. A study on wine-making with dried persimmon produced in Korea. Korean J. Sci. Technol. 26, 204 212. Woo, S.M., Lee, M.H., Seo, J.H., Kim, Y.S., Choi, H.D., Choi, I.W., and Jeong, Y.J. 2007. Quality characteristics of kiwi wine on alcohol fermentation strains. J. Korean Soc. Food Sci. Nutr. 36, 800 806. Korean Journal of Microbiology, Vol. 52, No. 1