ARH1 (tumor angiogenesis) Mechanism of a novel tumor angiogenesis inhibitor by ARH1 protein

Similar documents


Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

Can032.hwp


Kaes010.hwp

PowerPoint 프레젠테이션

Chapter 26

김범수


Aging Tissue Bank κ κ κ κ (9 월호에계속...) 2

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

untitled

388 The Korean Journal of Hepatology : Vol. 6. No COMMENT 1. (dysplastic nodule) (adenomatous hyperplasia, AH), (macroregenerative nodule, MR

최근연구소식 Molecular and Cellular Biology News 최근의연구동향을이해할수있도록몇편의논문을요약하여하나의주제로소개합니다. TGF-β 신호전달경로의새로운조절기전 Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu

550호(01-09)

Jkbcs016(92-97).hwp

jaeryomading review.pdf

( )Jkstro011.hwp

<B0E6C8F1B4EBB3BBB0FA20C0D3BBF3B0ADC1C E687770>


2016 학년도약학대학면접문제해설 문제 2 아래의질문에 3-4분이내로답하시오. 표피성장인자수용체 (epidermal growth factor receptor, EGFR) 는수용체티로신인산화효소군 (receptor tyrosine kinases, RTKs) 의일종으로서세

γ

7월웹진

노화조직은행소식지 주소 : 부산광역시금정구부산대학로 63번길 2( 장전동 ) 부산대학교약학대학 / 노화조직은행 전화 :051) 팩스 :051) Homepa


7.ƯÁýb71ÎÀ¯È« š

ºÎÁ¤¸ÆV10N³»Áö

A 617

歯1.PDF

EMT

( )Kju269.hwp

Wnt and other signalings

석사논문.PDF

ºÎÁ¤¸ÆÃÖÁ¾

주간건강과질병 제 8 권제 7 호 신호전달체계에서의동종이량체의역할연구 Exploration of Homodimer Receptor: Homodimer Protein Interactions Abstract Background: Homodimerisation is a pr

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

항체 포털 서비스 Preparation Peptide 총 4주 소요 / 473,000 ~ 511,000 Free of charge 2~3 days 243,000 ~ 281,000 의뢰서 작성 Peptide epitope prediction 유전자 정보

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소


Treatment and Role of Hormaonal Replaement Therapy

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend



Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

한국성인에서초기황반변성질환과 연관된위험요인연구

02-³í´Ü1

012임수진

°í¼®ÁÖ Ãâ·Â

황지웅

May 10~ Hotel Inter-Burgo Exco, Daegu Plenary lectures From metabolic syndrome to diabetes Meta-inflammation responsible for the progression fr

化學科

300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,... (recall). 2) 1) 양웅, 김충현, 김태원, 광고표현 수사법에 따른 이해와 선호 효과: 브랜드 인지도와 의미고정의 영향을 중심으로, 광고학연구 18권 2호, 2007 여름

05( ) CPLV12-04.hwp

DBPIA-NURIMEDIA

<BCF6C1A42DB3EBC8ADC1B6C1F7C0BAC7E0BCD2BDC4C1F62033BFF92E687770>

02이용배(239~253)ok

untitled


WHO 의새로운국제장애분류 (ICF) 에대한이해와기능적장애개념의필요성 ( 황수경 ) ꌙ 127 노동정책연구 제 4 권제 2 호 pp.127~148 c 한국노동연구원 WHO 의새로운국제장애분류 (ICF) 에대한이해와기능적장애개념의필요성황수경 *, (disabi

09ÃѼ³-Á¶±¤Çö

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

Sheu HM, et al., British J Dermatol 1997; 136: Kao JS, et al., J Invest Dermatol 2003; 120:

<B3EDB9AEC1FD5F3235C1FD2E687770>


노인의학 PDF

10김묘선

大学4年生の正社員内定要因に関する実証分析

농림수산식품부장관귀하 이보고서를 팥의대사성질환개선및기능성규명 에관한연구의최종보고서로제출 합니다 년 2 월 11 일 - 1 -

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

¹ýÁ¶ 12¿ù ¼öÁ¤.PDF

untitled

기관고유연구사업결과보고

4단 리플렛


<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770>

<28BCF6BDC D B0E6B1E2B5B520C1F6BFAABAB020BFA9BCBAC0CFC0DAB8AE20C1A4C3A520C3DFC1F8C0FCB7AB5FC3D6C1BE E E687770>

한약치료와표적항암요법 ( 아피니토 ) 을병행하여부분관해된신세포암간전이환자 1 례 Abstract Sung-Hwan Chang 1, Ji-Hye Park 1,2, Hwa Seung Yoo,2*

12이문규

216 동북아역사논총 41호 인과 경계공간은 설 자리를 잃고 배제되고 말았다. 본고에서는 근세 대마도에 대한 한국과 일본의 인식을 주로 영토와 경계인 식을 중심으로 고찰하고자 한다. 이 시기 대마도에 대한 한일 양국의 인식을 살펴볼 때는 근대 국민국가적 관점에서 탈피할

Vol.259 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

대한한의학원전학회지24권6호-전체최종.hwp

<31382D322D3420BDC5B1D4C8AF5FB3EDB9AE28C3D6C1BEBABB292E687770>

ÀÇÇа�ÁÂc00Ì»óÀÏ˘

DBPIA-NURIMEDIA

Disclaimer IPO Presentation,., Presentation,. Presentation..,,,,, E..,.,,.

System Biology Core

Minimally invasive parathyroidectomy

Microsoft Word doc

À±½Â¿í Ãâ·Â

정보화정책 제14권 제2호 Ⅰ. 서론 급변하는 정보기술 환경 속에서 공공기관과 기업 들은 경쟁력을 확보하기 위해 정보시스템 구축사업 을 활발히 전개하고 있다. 정보시스템 구축사업의 성 패는 기관과 기업, 나아가 고객에게 중대한 영향을 미칠 수 있으므로, 이에 대한 통제

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of


45-51 ¹Ú¼ø¸¸

스포츠과학 143호 내지.indd

<30352EB0A3BAB4B8AE2E687770>

레이아웃 1

Output file

Transcription:

ARH1 (tumor angiogenesis) Mechanism of a novel tumor angiogenesis inhibitor by ARH1 protein

... ARH1 (tumor angiogenesis)...

ARH1 (tumor angiogenesis)

Title of Project Key Words Mechanism of a novel tumor angiogenesis inhibitor by ARH1 protein tumor angiogenesis, apoptosis, protein-protein interaction, signal pathway Project Leader Seung Bae Rho Associated Company κ κ κ κ κ κ κ Our study of the protein ARH1 has uncovered a novel mechanism that is capable of inhibiting angiogenesis. Through our study, ARH1 was determined to be a new potent antiangiogenic and antitumor molecule that targets TRADD. Here, we suggest a possible mechanism for the inhibition of angiogenesis and tumor growth by ARH1, which involves direct binding to TRADD thereby inhibiting the NF-kB-activated JNK signaling pathway. Human tumor necrosis factor 1 (TNFR1)-associated death domain protein (TRADD) plays an essential role as a multifunctional signaling molecule to the TNFR1 receptor complex located at the cell membrane. Previous data shows that TRADD-TRAF2 complex leads to the activation of JNK and NF-kB in an animal model. Here we identified human ARH1, well known as a tumor suppressor protein in ovarian carcinomas, to be the TRADD-interacting protein. Extensive protein-protein interaction studies demonstrated strong evidence that ARH1 is a component of TNFR1 signaling. In cells lacking ARH1 (RNAi), NF-kB transcriptional activation was markedly enhanced, whereas transient over-expression of ARH1 in SKOV-3 and 2774 cells repressed NF-kB-mediated transcription. Thus, ARH1 acts as a TNFR1 signaling protein that represses NF-kB transcriptional activation by the formation of a protein complex in cells. Since no X-ray and NMR structures are available for ARH1 protein, we built the three-dimensional structure of the protein using the established molecular modeling methods such as homology modeling and molecular dynamics simulations.

Based on the structure observation, the Lys15 and Arg16 were suggested as the potential key residues in N-terminal domain. We also show that ARH1 acts as a potent inhibitor of angiogenesis. The data indicates that ARH1 play crucial functions in maintaining cellular homeostasis by not only binding to TRADD, but also competing or preventing the protein complex formation of TRADD with TRAF2. These findings show that the inhibition of TNF signal transduction by ARH1 results in antiangiogenic and antitumor effects, suggesting that ARH1 may be valuable in anticancer therapy. k

ARH1 DAPI Merge Figure 2. Intracellular localization of ARH1 in ovarian cancer cells. Figure 1. Microarray analysis of ARH1 expression in ovarian cancer tissues. cdnas obtained from 11 ovarian cancer tissues were analyzed by microarray. The values are represented by fold of the mrna level in the paired normal tissues.

TRADD mrna GAPDH mrna TRADD TRAF2 HEK293 MRC-5 SKOV-3 2774 HEK293 MRC-5 SKOV-3 2774 TRAF2 mrna GAPDH mrna Figure 3. ARH1 inhibits endothelial cell proliferation in vitro. (A) The angiogenic effects of ARH1 on DNA synthesis in endothelial cells were followed with/without VEGF (10 ng/) treatment for 48 hours. cpm values of [ 3 H]thymidine were determined using a liquid scintillation counter. (B) Ablation of GFP-ARH1 mrna expression by sirna in HUVECs. Anti-TRADD Anti-TRAF2 Anti-beta-actin Anti-beta-actin Figure 5. Endogenous expression of TRADD and TRAF2 in normal and ovarian cancer cells. β Whole cell IP lysate Anti-TRADD Anti-IgG Anti-ARH1 Whole cell lysate IP Anti-ARH1 Anti-IgG Anti-TRADD Figure 6. Co-immunoprecipitation between the endogenous TRADD and the exogenously introduced GFP-tagged ARH1 (GFP-ARH1) display the interactions of the two proteins. κ ARH1 + - + - p65 CE NE HSP90 Histone H1 Figure 7. ARH1 inhibits nuclear localization of p65 Figure 4. Interaction Aanalysis between Human ARH1 and TRADD-N Terminus.

κ κ κ κ κ κ κ NF-κB 활성이저해되는것인지를재확인하기위하여 Ras family (H-ras, K-ras, N-ras) 로알려져있는단백질들을가지고상호결합력을측정하였다. 그결과그림 10에서보시는바와같이 TRADD 단백질은유일하게암억제단백질인 ARH1 단백질과상호결합한다는사실을알수있었다. ARH1 H-ras K-ras N-ras TRADD IP : anti-gfp WB : TRADD WB : ARH1 WB : beta-actin in WCL Figure 10. Interaction of TRADD with RAS family Figure 8. ARH1 competes with TRAF2 for TRADD binding ARH1 VEGF tubulin SKOV-3 2774 ES-2 SNU-8 P1 P2 P3 P4 P5 ARH1 methyl ARH1 methyl Figure 9. ARH1 inhibits VEGF expression in HUVECs Figure 11. Methylation status of candidate gene in ovarian cancer cells and clinical cancer tissues

k k 1 34 35 192 193 229 G1 G2 (Effector) G3 G4 G5 N-terminal Extension GTP Binding Domain C-terminal Domain Figure 12. Comparison of the amino-acid sequence of ARH1, Rig, and H-Ras. 그림 13에서보시는바와같이 ARH1-N 단백질을난소암세포주에 transfection 시킨결과 early stage에서 39.15% 의난소암세포를사멸시키는효과를보여주고있다. 그리고 growth 를조사한결과 ARH1-N 과발현시켰을때난소암세포주에서성장이일어나지않았다. 동시에 TUNEL assay와 caspase-3 activity를조사한결과에서도현저히사멸하는세포가증가하는것을관찰하였다. Figure 13. ARH1-N induces apoptosis in ovarian cancer cells. A. FACS analysis B. TUNEL assays (apoptotic cells). C. Caspase-3 activity assay.

Figure 15. ARH1-N inhibits migration of HUVECs. Figure 14. ARH1-N inhibits endothelial cell proliferation in vitro. (A) The angiogenic effects of ARH1-N on DNA synthesis in endothelial cells were followed with/without VEGF (10 ng/) treatment for 48 hours. cpm values of [ 3 H]thymidine were determined using a liquid scintillation counter. Figure 16. ARH1-N inhibits tube formation in vitro.

Figure 19. ARH1-N VEGF expression in HUVECs. Figure 17. ARH1-N inhibits vessel sprouting ex vivo. κ Figure 18. ARH1-N inhibits nuclear localization of p65. κ κ κ Figure 20. ARH1-N blocks with VEGF-mediated PI3K-Akt signaling in HUVECs.

Figure 21. 3D structure of ARH1-N via computer modeling. Figure 22. Angiostatic activity in the chicken chorioallantoic membrane (CAM) assay.

Figure 23. Reporter activity test for various ARH1 promoters in human ovarian cancer cell line, SKOV-3 and 2774. Figure 24. Effect of cisplatin and etoposide with ARH1-N in ovarian cancer cells.

다. 바.

A. B. Figure 25. Adenovirus-mediated systemic gene delivery of ARH1 inhibits tumor growth and angiogenesis. (A) Xenograft mouse model. (B) Orthotopic mouse model.

C. D.

Interaction between fortilin and transforming growth factor-beta stimulated clone-22 (TSC-22) prevents apoptosis via the destabilization of TSC-22 Tissue inhibitor of metalloproteinases-3 interacts with angiotensin II type 2 receptor and additively inhibits angiogenesis Interferon regulatory factor-1 (IRF-1) regulates VEGF-induced angiogenesis in HUVEC Calpain 6 supports tumorigenesis by inhibiting apoptosis and facilitating angiogenesis Insulin-like growth factor-binding protein-5 (IGFBP-5) acts as a tumor suppressor by inhibiting angiogenesis FEBS Letters (3.263) Cardiovascular Research (6.127) Biochimica et Biophysica Acta (BBA) - Molecular Cell Research (4.374) Cancer Letters (3.398) Carcionogenesis (5.406) 2008: 271 (2), 306-313 2008: 29 (11), 2106-2111

Cysteine-rich 61 (CYR61) inhibits cisplatin-induced apoptosis in ovarian carcinoma cells Dkk3, downregulated in cervical cancer, functions as a negative regulator of beta-catenin Leucyl-tRNA synthetase-dependent and -independent activation of a group I intron Inhibition of angiogenesis by the BTB domain of promyelocytic leukemia zinc finger protein A gene signature-based approach identifies thioridazine as an inhibitor of phosphatidylinositol-3 -kinase (PI3K)/AKT pathwa Carbonic anhydrase IX (CA 9) modulates tumor-associated cell migration and invasion Biotechnology Letters (1.595) International Journal of Cancer (4.734) Journal of Biological Chemistry (5.520) Cancer Letters (3.741) Gynecologic Oncology (3.733) Journal of Cell Science (6.144) FEBS Letters (3.541) 2009: 31 (1), 23-28 2009: 124 (2), 287-97 2009: 284 (39), 26243-26250 2010: 294 (1), 49-56 NF-kB inhibitor containing ARH1 protein or gene encoding the same

Ashkenazi, A., and Dixit, V. M. (1998). Death receptors: signaling and modulation. Science 281, 1305-1308. Bao, J. J., Le, X. F., Wang, R. Y., Yuan, J., Wang, L., Atkinson, E. N., LaPushin, R., Andreeff, M., Fang, B., Yu, Y., and Bast. Jr. R. C. (2002). Reexpression of the tumor suppressor gene ARH1 induces apoptosis in ovarian and breast cancer cells through a caspase-independent calpain-dependent pathway. Cancer Res. 62, 7264-7272. κ Beg, A. A., and Baltimore, D. (1996). An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274, 782-784. Bosher, J. M., and Labouesse, M. (2000). RNA interference: genetic wand and genetic watchdog. Nat. Cell Biol. 2, E31-36. Campbell, S. L., Khosravi-Far, R., Rossman, K. L., Clark, G. J., and Der, C. J. (1998). Increasing complexity of Ras signaling. Oncogene 17, 1395-1413. Dauber-Osguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M., and Hagler, A. T. (1988). Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins Struct. Funct. Genet. 4, 31-47. Ferrara, N. (2002). VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2,795-803. Folkman, J., and Shing, Y. (1992). Angiogenesis. J. Biol. Chem. 267, 10931-10934. Folkman, J. (1995). Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N. Engl. J. Med. 333, 1757-1763.

Haskell, H., Natarajan, M., Hecker, T. P., Ding, Q., Stewart, Jr. J., Grammer, J. R., and Gladson, C. L.(2003). Focal adhesion kinase is expressed in the angiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillary tube formation of brain microvascular endothelialcells. Clin. Cancer Res. 9, 2157-2165. Hsu, H., Xiong, J., and Goeddel, D. V. (1995). The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell 81, 495-504. Hsu, H., Huang, J., Shu, H. A., Baichwal, V., and Goeddel, D. V. (1996a). TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387-396. Hsu, H., Shu, H. B., Pan, M. G., and Goeddel, D. V. (1996b). TRADDTRAF2 and TRADD FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299-308. Inada, H., Izawa, I., Nishizawa, M., Fujita, E., Kiyono, T., Takahashi, T., Momoi, T., and Inagaki, M. (2001). Keratin attenuates tumor necrosis factor-induced cytotoxicity through association with TRADD. J. Cell Biol. 155, 415-425. Ito, H., Fukada, Y., Murata, K., and Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168. Joneson, T., and Bar-Sagi, D. (1997). Ras effectors and their role in mitogenesis and oncogenesis. J. Mol. Med. 75, 587-593. Jung, H. S., Kim, H. J., Kim, J. M., Lee, Y. S., Kim, K. L., Kim, J. A., Lee, J. Y., Suh, W., Choi, J. H., Jeon, E. S., Byun, J., and Kim, D. K. (2004). A novel ex vivo angiogenesis assay based on electroporation-mediated delivery of naked plasmid DNA to skeletal muscle. Mol. Ther. 9, 464-474. Kelliher, M. A., Grimm, S., Ishida, Y., Kuo, F., Stanger, B. Z., and Leder, P. (1998). The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8, 297-303. Lee, O. H., Kim, Y. M., Lee, Y. M., Moon, E. J., Lee, D. J., Kim, J. H., Kim, K. W., and Kwon, Y. G. (1999). Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 264, 743-750. Locksley, R. M. Killeen, N., and Lenardo, M. J. (2001). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501. Luo, R. Z., Fang, X., Marquez, R., Liu, S. Y., Mills, G. B., Liao, W. S. L., Yu, Y., and Bast, Jr. R. C. (2003). ARH1 is a Ras-related small G-protein with a novel N-terminal extension that inhibits growth of ovarian and breast cancers. Oncogene 22, 2897-2909. Mark, M., Perlmutter, R. A., and Madri, J. A. (1994). Modulation of platelet-derived growth factor receptor expression in microvascular endothelial cells during in vitro angiogenesis. J. Clin. Invest. 93, 131-139. Meadows, K. N., Bryant, P., and Pumiglia, K. (2001). Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J. Biol. Chem. 276, 49289-49298. Morgan, M., Thorburn, J., Pandolfi, P. P., and Thorburn, A. (2002). Nuclear and cytoplasmic shuttling of TRADD induces apoptosis via different mechanisms. J. Cell Biol. 157, 975-984. Nguyen, M., Shing, Y., and Folkman, J. (1994). Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc. Res. 47, 31-40. Nishimoto, A., Yu, Y., Lu, Z., Mao, X., Ren, Z., Watowich, S. S., Mills, G. B., Liao, W. S. L., Chen, X., Bast, Jr. R. C., and Luo, R. Z. (2005). A ras homologue member 1 directly inhibits signal transducers and activators of transcription 3 translocation and activity in human breast and ovarian cancer cells. Cancer Res. 65, 6701-6708. Plate, K. H., Breier, G., Weich, H. A., and Risau, W. (1992). Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 29, 845-848. Qi, J. H., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, L., Bond, M., Baker, A., and Anand-Apte, B. (2003). A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat. Med. 9, 407-415. Rho, S. B., Lee, K. H., Kim, J. W., Shiba, K., Jo, Y. J., and Kim, S. (1996). Interaction between human trna synthetases involves repeated sequence elements. Proc. Natl. Acad. Sci USA 93, 10128-10133. Risau, W. (1997). Mechanisms of angiogenesis. Nature 386, 671-674. Ryan, H. E., Lo, J., and Johnson, R. S. (1998). HIF-1a is required for solid tumor formation and embryonic vascularization. EMBO J. 17, 3005-3015. Ueda, Y., Nakagewa, T., Kubota, T., Ido, K., and Sato, K. (2005). Glioma cells under hypoxic conditions block the brain microvascular endothelial cell death induced by serum starvation. J. Neurochem. 95, 99-110. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R., and Verma, I. M. (1996). Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274, 787-789.

Wallach, D., Varfolomeev, E. E., Malinin, N. L., Goltsev, Y. V., Kovalenko, A. V., and Boldin, M. P. (1999). Tumor necrosis factor receptor and Fas signaling mechanisms. Annu. Rev. Immunol. 17, 331-367. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V., and Baldwin, A. S. Jr. (1998). NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-iap1 and c-iap2 to suppress caspase-8 activation. Science 281, 1680-1683. Weswmann, D. R., Qin, H., Kokorina, N., and Benveniste, E. N. (2004). TRADD interacts with STAT1-a and influences interferon-g signaling. Nature Immunol. 5, 199-206. Wu, M. X., Ao, Z., Prasad, K. V., Wu R., and Schlossman, S. F. (1998). IEX-1L, an apoptosis inhibitor involved in NF-kappaB-mediated cell survival. Science 281, 998-1001. Xu, F., Xia, W., Luo, R. Z., Peng, H., Zhao, S., Dai, J., Long, Y., Zou, L., Le, W., Liu, J., Parlow, A. F., Hung, M. C., Bast, Jr. R. C., and Yu, Y. (2000). The human ARH1 tumor suppressor gene inhibits lactation and growth in transgenic mice. Cancer Res. 60, 4913-4920. Yancopoulos, G., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., and Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature 407, 242-248. Yeh, W. C., Shahinian, A., Speiser, D., Kraunus, J., Billia, F., Wakeham, A., de la Pompa, J. L., Ferrick, D., Hum, B., Iscove, N., Ohashi, P., Rothe, M., Goeddel, D. V., and Mak, T. W. (1997). Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7, 715-725. Yu, Y., Xu, F., Peng, H., Fang, X., Zhao, S., Li, Y., Cuevas, B., Kuo, W. L., Gray, J. W., Siciliano, M., Mills, G. B., and Bast, Jr. R. C. (1999). NOEY2 (ARH1), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc. Natl. Acad. Sci USA 96, 214-219.