Korean J. Plant Res. 31(4):283-293(2018) https://doi.org/10.7732/kjpr.2018.31.4.283 Print ISSN 1226-3591 Online ISSN 2287-8203 Original Research Article 오준석 1, 홍재희 1, 박태영 1, 윤경원 2, 강경윤 3, 진성우 4, 김경제 4, 반승언 4, 임승빈 4, 고영우 4, 서경순 4 * 1 동부생약영농조합법인, 2 순천대학교한약자원개발학과, 3 순천천연물의약소재개발연구센터, 4 ( 재 ) 장흥군버섯산업연구원 Chemical Constituents in Polygonum multiflorum Thunberg Root Based on Various Dry Methods Junseok Oh 1, Jae-Heoi Hong 1, Tae-Young Park 1, Kyeong-Won Yun 2, Kyeong-Yun Kang 3, Seong-Woo Jin 4, Kyung-Je Kim 4, Seung-Eon Ban 4, Seung-bin Im 4, Young-Woo Koh 4 and Kyoung-Sun Seo 4 * 1 Dongbu Eastern Herbal Medicine Agricultural Association Corporation, Suncheon 58019, Korea 2 Department of Oriental Medicine Resources, Sunchon Nat l University, Suncheon 57922, Korea 3 Suncheon Research Center for Natural Medicines, Suncheon 57922, Korea 4 Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Korea Abstract - This study was performed to analysis of chemical constituent in Polygonum multiflorum root (PMR) by different dry methods (hot-air dry, shade dry, and freeze dry). The results are summarized as followings; major free sugar were detected fructose, glucose, and sucrose in dried PMR based on various dry methods. The highest content of free sugars was found in freeze dried PMR. The four organic acids were detected in dried PMR by HPLC analysis. The content of oxalic acid in shade dried PMR was higher than the dried PMR by different dry methods. The content of total amino acid and essential amino acids were high in the orders of freeze drying > shade drying > hot-air drying. The potassium and magnesium levels of freeze dried PMR was significantly higher than the other drying method of PMR. Whereas the calcium and sodium levels were higher in hot-air dried PMR. The major fatty acids were determined the linoleic acid in PMR by different dry methods. Key words - Chemical constituents, Freeze dry, Hot-air dry, Polygonum multiflorum root (PMR), Shade dry 서언 고령화사회로진행됨에따라노화억제와건강유지에대한관심이높아지고있으며, 건강한삶을유지하기위한일환으로천연소재들의생리활성물질연구가광범위하게진행되고있다 (Goldberg, 1994). 특히, 식품으로사용이가능한생약과채소에대한연구들이주를이루어항산화, 항암및항진균등의생리활성및유용성분에관한결과들이다수보고되고있다 (Han et al., 1992; Cao et al., 1996; Jansen, 2002). 적하수오는다년생초본으로마디풀과 (Polygonaceae) 의다년생초본으로, 한의학에서는덩이뿌리를적하수오라하여약 * 교신저자 : E-mail astragali@daum.net Tel. +82-61-862-8877 용으로사용하며, 주산지는중국의하남, 호북, 귀주, 사천등지이며, 그외강서, 산동, 호남에서도서식한다 (Chan et al., 2003). 중국의춘추시대에하씨라는사람이이름모를풀의덩이뿌리를캐어먹고머리가까마귀처럼새까맣게되고윤기가나며정력적으로오래살았다고한구전을바탕으로하씨 ( 何 ), 머리 ( 首 ), 까마귀 ( 烏 ) 의글자를따서하수오 ( 何首烏 ) 라부르게되었다고한다 (Choi, 2009). 적하수오의성분은 anthraquinone 화합물인 chrysophanol, emodin, rhein, physcion 및 2,4,6,4'- tetrahydroxystilbene-2-ο-β-d-glucoside 를비롯한배당체등이함유된것으로알려진바있다 (Do et al., 2011). 한방에서는보익정혈 ( 補益精血 ), 해독절학 ( 解毒截瘧 ), 윤장통변 ( 潤腸通便 ) 등의용도로사용하며 (Seo et al., 2006), 적하수오에탄올추출물은혈당저하및당대사활성을갖는유효성분을 c 본학회지의저작권은 ( 사 ) 한국자원식물학회지에있으며, 이의무단전재나복제를금합니다. This is an Open-Access article distributed under the terms of the Creative Commons -283- Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Korean J. Plant Res. 31(4) : 283~293(2018) 함유하고있다고보고된바있다 (Kim, 2008). Ban and Ko (2012) 는적하수오메탄올추출물의항산화화장품천연원료개발가능성을제시하였고, Choi et al. (2012) 은고콜레스테롤이유발된시험구흰쥐에적하수오를경구투여하여한결과지질감소효과가나타났다고보고한바있으며, 하수오가 xanthine oxidase 와 hyperxanthine 에의해손상된혈관내피세포의회복및보호효과가있는것으로보고한바있다 (Lee et al., 2002). 이와같이약리적인기능성이확보된적하수오의식품개발을위한이화학적성분및생리활성에관한연구는부족한실정이다. 본연구에서는식품원료목록에서식용으로사용이가능하게분류된적하수오덩이뿌리의식품활용및산업화를목적으로 1 차가공단계인건조과정에따른적하수오의일반성분, 유리당, 아미노산, 지방산및무기성분을분석하여최적건조조건을구명하였다. 재료및방법실험재료본실험에사용한적하수오 (Polygonum multiflorum root, PMR) 는동부생약영농조합법인부설재배단지 ( 위도 35 01 9 5, 경도127 30 25 ) 에서 2017 년 5월구입하였으며, 식품의약품안전처한약표준품기준에부합하는원료를본실험의재료로사용하였다. 건조방법을달리한적하수오를각각분쇄하여 50 mesh 체로거른후, 실온에보관하며시료로사용하였다. 추 출물은분말로만들어소분하여진공포장상태로냉장보관하며본실험에사용하였다. 시료건조방법적하수오를 60 에서열풍건조, 통풍이잘되는 20 에서음건및동결건조기를이용한동결건조방법으로 Fig. 1과같이각각건조하여사용하였다. 모든성분분석은건조된시료에함유된양 (dry basis) 으로계산하였다. 시약본실험에서사용된분석및추출, chromatography 용용매와시약은일급또는특급시약을구입하여사용하였다. 일반성분일반성분은 AOAC (1996) 방법에따라분석하였다. 수분은시료 1 g을각각칭량병에담고 105 dry oven 에서항량이될때까지건조시켜무게를측정하여구하였다. 조회분은시료 2 g을 250 에서예비회화한후 600 에서직접회화법으로, 조단백질의함량은 Kjeldahl 법 (Sin, 1987) 으로측정된질소량에질소계수 6.25 를곱하여산출하였으며, 조지방의함량은 Soxhlet 추출법 (Lee et al., 2008) 으로, 조섬유는 Henneberg Stohmann 개량법 (Kim et al., 2007) 으로구하였다. 가용성무질소물의함량은총량에서수분, 조회분, 조단백질, 조지방및조섬유의함량을뺀값으로산출하였다. Fig. 1. The drying process of PMR by different drying methods application. -284-
유리당유리당성분은 Wilson et al. (1981) 의방법에따라분석하였다. 즉시료 5 g에증류수를가하여교반시킨후 100 ml로정용하여원심분리 (50,000 rpm, 30 min) 한후상징액을취하여 0.45 μm membrane filter (Millipore Co., USA) 로여과한여액으로 HPLC (1200 Series, Agilent Technologies, USA) 를이용하여분석하였으며 (Table 1), 함량은 integrator 에의한외부표준법으로계산하였다. 유기산유기산함량은 Palmer and List (1973) 의방법에준하여분석하였다. 즉, 시료 5 g에증류수를가하여교반시킨후 100 ml로정용하여원심분리 (50,000 rpm, 30 min) 하고상징액을취하여여과 (Whatman No.2) 하였다. 여과한여액을 Sep-pak C 18 으로정제시킨다음, 0.45 μm membrane filter (Millipore Co, USA) 로여과후 HPLC 를이용하여분석하였으며, 함량은 integrator 에의한외부표준법으로계산하였다. Table 1. HPLC conditions for analysis of free sugars Items Instrument Detector Conditions 1200 Series, Agilent Technologies, USA ELSD detector Column ZORBAX Carbohydrate (4.6 mm I.D. 150 mm L.) Solvent 75% Acetonitrile Column temp. 30 Flow rate 1.4 ml /min Injection volume 5 μl 구성아미노산아미노산분석은 Strydom and Cohen (1993) 의방법에따라분해및유도체화과정을거친후 HPLC (1200 Series, Agilent Technologies, USA) 로분석하였다. 시료 0.5 g과 6 N-HCl 10 ml을시험관에넣고시험관끝을불로녹여밀봉한후, 멸균기로 110 에서 24시간가수분해시켰다. 가수분해가완료된시료는여과화면서 methanol 50 ml로정용하여감압농축한후, 20 mm HCl 5 ml로정용하였다. 0.45 μm membrane filter로여과하여얻은여액을일정량취한후 AccQ-Tag 시약을사용하여유도체화시킨후 HPLC로분석하였고함량은 integrator 에의한외부 Table 2. HPLC conditions for analysis of amino acids Item Instrument Detector Condition Agilent Technologies 1200 Series Agilent Technologies 1200 Series FLD Column AccQ-Tag (Waters Co., 150 mm L. 3.9 mm I.D.) Column temp 37 A : AccQ-Tag Eluent A (acetate-phosphate buffer) B : AccQ-Tag Eluent B (100% acetonitrile) C : DW Time A B C 0 100 0 0 0.5 99 1 0 Buffer solution 18 95 5 0 19 91 9 0 26 86.7 13.3 0 30 84 16 0 32 83 17 0 36 0 60 40 39 100 0 0 48 100 0 0 Flow rate 1.0 ml /min Injection volume 5 μl -285-
Korean J. Plant Res. 31(4) : 283~293(2018) 표준법으로계산하였다. 이동상은 AccQ-Tag eluent (A), 100% Acetonitrile (B), water (C) 를 gradient 조건으로 A:B:C 를초기 100:0:0 (%, v/v) 에서 0.5분에 99:1:0 (%, v/v), 18 분에 95:5:0 (%, v/v), 19분에 91:0:0 (%, v/v), 26 분에 86.7:13.3:0 (%, v/v), 30분에 84:16:0 (%, v/v), 32분에 83:17:0 (%, v/v), 36분에 83:17:0 (%, v/v), 36분에 0:60:40 (%, v/v), 39분에 100:0:0 (%, v/v) 로설정하였다. 유속은 1.0 ml /min 으로하였고, 주입량은 5 μl로설정하여, FLD (1200 Series, Agilent Technologies, USA) 로검출하였으며 AccQ-Tag TM column (Water Co., 3.9 mm I.D. 150 mm L.) 을이용하였다 (Table 2). 함량은적분계에의한외부표준법으로계산하였다. 유리아미노산유리아미노산분석은유리당정량과같은방법으로얻은여액을 Ohara and Ariyoshi (1979) 의방법으로분석하였다. 즉시료 5 g을유리당전처리방법과같이처리한여액 10 ml에 sulfasalicylic acid 25 mg을첨가하여 4 에서 4시간동안방치시킨후원심분리 (50,000 rpm, 30 min) 하여단백질등을제거하고, 상징액을 0.45 μm membrane filter 로여과하여얻은여액을일정량취하여 AccQ-Tag 시약을사용하여유도체화시킨후 HPLC로분석하였다 (Table 2). 함량은 integrator 에의한외부표준법으로계산하였다. 무기성분분석무기성분은건식분해법 (Park, 2016) 으로전처리하여분석 하였다. 즉시료 0.5 g을 600 에서회화시켜백색회분을얻은후, 2배희석한진한염산 10 ml를가해여과하여수욕상에서증발건고시킨후 4배희석한염산 10 ml를가한후, 증류수를이용하여 100 ml로정용한여액을분석시료로사용하였다. 각무기성분의정량은원자흡광광도계 (AAnalyst 400, Perkin Elmer, USA) 로각원소의표준용액농도를 0.1, 0.5 및 1.0 ppm 으로조제하여표준검량곡선을작성하여분석하였다 (Table 3). 지방산분석 시료의지방산은 Morrison and Smith (1964) 의방법에따라 GC (7890A, Agilent, USA) 와 MSD (5975C, Agilent, USA) 를이용하여분석하였다 (Table 4). 시료 1 g을 100 ml의 ether를가하여 100 의 hot-plate 에서끓고 30분간환류추출한다. 추출물을여과하여 60 항온수조에서증발건고시킨후 0.5 N methanolic sodium hydroxide 2 ml를넣고 5분간환류추출한 Table 3. Atomic absorption spectrophotometer conditions for mineral analysis Content Analysis condition Instrument Atomic Absorption Spectrophotometer (Perkin Elmer AAnalyst 400) Fuel flow C 2 H 2, 2.0 ml /min Oxidant flow Air, 10.0 ml /min Wavelength (nm) K: 766.49, mg : 285.51, Na: 589.00, Ca: 422.67 Table 4. GC-MS condition for the analysis of fatty acids Instrument Detector Column Column temp Item Condition EI ionization voltage Carrier gas Agilent 7890A GC (Agilent, Palo Alto, CA, USA) Agilent 5975C MSD (Agilent, Palo Alto, CA, USA) DB-WAX column (250 mm L. 0.25 mm I.D., Agilent Co., USA) Rate /min Value Hold time min Initial 50 10 Ramp 1 10 180 10 Ramp 2 20 250 4 70 ev Helium, 1.0 ml /min -286-
다. 추출후 14% BF3-methanol 2 ml를가해 30분간환류추출한다. 위의수기에 n-hexane 4 ml를넣고 2분간환류추출후포화 sodium chloride 를가하여층이분리되면윗층을취하여 0.45 μm membrane filter로여과하여분석시료로사용하였다. 지방산은 GC-MS 를이용하여분석하며, 표준품으로는 EC 10A-Kit (Supelco, USA) 를사용하여각 peak 의 retention time 을확인하였고 GC-MS 의 Wiley library 의 spectrum 을이용하여동정하였다. 통계분석모든실험은 3회반복하였으며, 실험결과를 SPSS 통계프로그램 (ver. 12.0, SPSS Inc., USA) 을이용하여평균값과표준편차를산출하였으며 Duncan's multiple test 를통해그유의성 (p <0.05) 을확인하였다. 0.57%, 1.11% 및 0.91% 로나타났으며, 이는같은마디풀과식물인소리쟁이뿌리의조지방함량 2.58% 에비하여다소낮은함량을보였다 (Jeong, 2011). 조회분함량은각각 4.62%, 4.91% 및 5.28% 로나타났다. 열풍건조적하수오, 음건적하수오및동결건조적하수오의조섬유함량은각각 3.38%, 3.26% 및 2.92% 로나타났다. 가용성무질소물함량은동결건조적하수오 (80.58%) 와열풍건조적하수오 (79.79%) 가음건적하수오 (76.83%) 에비하여높은함량을나타내었다. 가용성무질소물은 soluble sugar, starch, 일부 cellulose, hemicellulose 및 lignin 등으로, 탄수화물은가용성무질소물과조섬유의합으로표현할수있다고보고한바있다 (Yoon et al., 2009). 건조방법에따른적하수오의탄수화물함량은동결건조와열풍건조에서높게나타나, 건조시간이짧은두가지건조방법의가용성무질소물손실이적은것으로나타났다. 결과및고찰일반성분건조방법에따른적하수오의일반성분분석결과는 Table 5 와같다. 열풍건조적하수오, 음건적하수오및동결건조적하수오의수분함량은각각 7.35%, 8.25% 및 3.18% 로동결건조적하수오의수분함량이가장낮게나타났다. 이는 Lee et al. (2016) 이건조방법별아로니아의수분함량은진공동결건조시험구가가장적은수분함량을나타낸다고보고한연구결과와동일한경향을나타내었다. 조단백질함량은동결건조적하수오가 7.13% 로열풍건조적하수오 4.29% 및음건적하수오 5.64% 에비하여높은함량을나타내었다. 열풍건조적하수오, 음건적하수오및동결건조적하수오의조지방함량은각각 유리당건조방법을달리한적하수오의유리당은 Table 6과같이 fructose, glucose 및 sucrose 가검출되었으며, 총유리당함량은동결건조적하수오, 음건적하수오및열풍건조적하수오순으로열을적게가한적하수오의총유리당함량이높게나타났다. 열풍건조적하수오에서유리당함량은 sucrose 가 7.06%, glucose 와 fructose 가각각 0.58% 와 0.57% 로나타났으며, 음건적하수오의유리당함량은 sucrose 가 9.83%, glucose 와 fructose 가각각 0.67% 와 0.99% 로나타났다. 동결건조적하수오의유리당함량은 sucrose 가 12.06%, glucose 와 fructose 가각각 0.99% 와 1.47% 로나타났다. Kim and Joo (1989) 는인삼의유리당을추출할때, glucose 는온도가증가할수록감소하고, fructose 는온도가증가할수록증가하며, sucrose 는 80 이하 Table 5. Proximate compositions of PMR based on various dry method Compositions Contents (dry basis, %) Moisture 7.35±0.02 z b y 8.25±0.31c 3.18±0.02a Crude protein 4.29±0.06a 5.64±0.09b 7.13±0.05c Crude fat 0.57±0.05a 1.11±0.06c 0.91±0.12b Crude ash 4.62±0.22a 4.91±0.29ab 5.28±0.33b Crude fiber 3.38±0.11b 3.26±0.21ab 2.92±0.19a Nitrogen free extract 79.79±0.14b 76.83±0.37a 80.58±0.67b z Values are presented mean ± SD (n=3). y Means with the same letter within the row are not significantly different at P<0.05 determined through DMRT. -287-
Korean J. Plant Res. 31(4) : 283~293(2018) Table 6. The contents of free sugars in the PMR based on various dry method Free sugars Contents (dry basis, %) Fructose 0.57±0.09 z a y 0.99±0.03b 1.47±0.11c Glucose 0.58±0.07a 0.67±0.03b 0.99±0.09c Sucrose 7.06±0.09a 9.83±0.32b 12.06±0.29c Total free sugars 1.15a 1.66b 2.46c z Values are presented mean ± SD (n=3). y Means with the same letter within the row are not significantly different at P<0.05 determined through DMRT. Table 7. The contents of organic acid in the PMR based on various dry method Composition Contents (dry basis, mg %) Oxalic acid 524.45±1.15 z b y 1,482.32±4.61c 377.00±1.62a Tartaric acid 84.70±4.46a 143.66±1.02b 156.38±7.01c Malic acid 95.75±5.49b 63.92±2.21a 242.24±2.82c Malonic acid 12.38±3.83a 31.46±1.15b 59.57±1.36c Total organic acids 0a 0c 0b z Values are presented mean ± SD (n=3). y Means with the same letter within the row are not significantly different at P<0.05 determined through DMRT. 에서는함량의변화를나타내지않는다고보고한바있다. 건조방법에따른적하수오에함유된 glucose 는건조온도가증가할수록감소하는동일한결과를나타내었으나 fructose 와 sucrose 는동결건조 > 음건 > 열풍건조순으로높게나타났다. 본연구에서 3종의유리당과총당의함량은동결건조시에가장높게나타났는데, 이는건조방법에따른온도의영향이큰것으로보인다. 유기산건조방법에따른적하수오의유기산분석결과는 Table 7과같다. 적하수오의유기산분석결과 oxalic acid, tartaric acid, malic acid 및 malonic acid 총 4종의유기산이검출되었으며, 그중 oxalic acid 가모든건조방법에서가장높게나타났다. 이는적하수오와같이지하부를이용하는야콘연구에서 Kim et al. (2010) 은유기산중에서 oxalic acid 함량이가장높게나타난것과유사한결과이다. 열풍건조적하수오의유기산함량은 oxalic acid 가 524.45 mg % 로나타났으며, tartaric acid, malic acid 및 malonic acid 는각각 84.70 mg %, 95.75 mg % 및 12.38 mg % 로나타났다. 음건적하수오의유기산함량은 oxalic acid 가 1,482.32 mg % 로나타났으며, tartaric acid, malic acid 및 malonic acid 가각각 143.66 mg %, 63.92 mg % 및 31.46 mg % 로나타났다. 본연구에서가장많이검출된유기산인 oxalic acid 는체내에서축척되어무기질과불용성염을형성하여무기질의생체내이용도를낮추는것으로알려져있다 (Lee et al., 2007). 본연구결과건조방법을달리한적하수오에함유된 oxalic acid 는동결건조적하수오, 열풍건조적하수오및음건적하수오순으로낮게나타났다. 이는 Kim et al. (2012) 이대부분의유기산이데치기과정중조리수에용출되어손실된다고보고한연구결과를미루어볼때건조후수분함량이다른시험구에비하여동결건조적하수오에서낮은함유량을보였으며, 음건과열풍건조에서는수분을포함한절단적하수오덩이뿌리가지속적인열풍건조과정중수분으로용출된것으로판단된다. 따라서 oxalic acid 의함량이낮은유기산을활용하고자할경우동결건조또는열풍건조방법을적용하는것이효율적으로판단된다. 구성아미노산건조방법에따른적하수오의구성아미노산분석결과는 Table 8과같다. 총 16종의아미노산이검출되었으며, 열풍건조, 음건 -288-
Table 8. Contents of total amino acids in the PMR based on various dry method Total amino acids Contents (dry basis, mg %) Aspartic acid 260.84±6.57 z a v 418.73±5.53b 414.36±4.83b Serine 232.12±11.07a 417.09±5.21b 462.87±5.49c Glutamic acid 503.30±5.25a 727.02±14.30b 820.97±11.76c Glycine 155.42±8.31a 236.90±8.37b 260.67±2.97c Histidine 158.91±0.78a 240.33±4.23b 285.81±1.66c Arginine 586.67±6.11a 1,091.06±12.92b 1,258.01±7.28c Threonine 179.01±7.46a 298.36±4.57b 338.30±7.78c Alanine 179.35±10.12a 296.74±5.64b 306.58±3.63b Proline 283.78±5.09a 358.77±9.90b 577.41±7.70c Tyrosine 98.51±2.85a 154.69±1.98b 159.47±3.15b Valine 178.74±1.38a 285.39±5.82b 290.36±6.02b Methionine 29.15±1.16a 63.93±0.76b 61.91±2.63b Lysine 268.00±9.67a 455.25±8.08b 426.09±5.31c Isoleucine 145.15±5.89a 245.25±6.94b 253.70±3.78b Leucine 161.06±4.44a 241.50±1.26b 238.78±6.81b Phenylalanine 79.03±2.56a 99.83±3.49b 101.25±0.50b TAA y 3,469.03 5,630.84 6,256.54 EAA x 1,169.05 1,929.83 1,996.19 EAA/TAA (%) w 33.70 34.27 31.91 z All values are mean ± SD (n=3). y TAA, total amino acid. x EAA, total essential amino acid (Thr.+Val.+Met.+Ile.+Leu.+Phe.+His.+Lys.). w EAA/TAA (%), total amino acid/total essential amino acid. v Means with the same letter within the row are not significantly different at P<0.05 determined through DMRT. 및동결건조적하수오의총아미노산함량은각각 3,469.03 mg %, 5,630.84 mg % 및 6,256.54 mg % 로동결건조적하수오가열풍건조와음건적하수오에비하여높은함량을보였다. 이는 Son et al. (2011) 이보고한건조방법에따른매생이의총아미노산함량이동결건조매생이에서높았다는결과와유사하였다. 필수아미노산함량또한음건적하수오와동결건조적하수오가각각 1,929.83 mg % 및 1,996.191 mg % 로열풍건조적하수오 (1,169.05 mg %) 에비하여높게나타났다. 총구성아미노산중필수아미노산의비율은열풍건조적하수오, 음건적하수오및동결건조적하수오가각각 33.70%, 34.27% 및 31.91% 로큰차이를보이지않았다. Rho and Lee (2006) 의연구에서가열처리한팥의아미노산함량이가열온도에비례하여감소된다는결과를바탕으로건조온도가높아짐에따라아미노산함량감소가발 생함을보고한바있으며, 본연구에서도동일한경향을확인하였다. 열풍건조적하수오의경우구성아미노산중 arginine이 586.67 mg % 로가장높았고, 다음으로는 glutamic acid, proline, aspartic acid 순으로나타났다. 음건적하수오도 arginine이 1,091.06 mg % 로가장높았고, 다음으로는 glutamic acid, lysine, aspartic acid 순으로높은함량을나타내었다. 가장높은아미노산을함유하고있는동결건조적하수오는 arginine이 1,258.01 mg % 로다른건조방법시료에비하여가장많은함량을보였고, 다음으로는 glutamic acid, proline, serine 순으로높게나타났다. Kim et al. (1999) 은 arginine과 histidine이성장에관여하는필수아미노산으로보고한바있다. 본연구결과적하수오에는다량의아미노산이함유되어있으며그중모든건조방법에서 -289-
Korean J. Plant Res. 31(4) : 283~293(2018) 다른아미노산에비해 arginine이높은함량을확인하였으며, 그중동결건조적하수오에서가장높은반면열풍건조적하수오는가장낮은함량을보였다. 총아미노산함량과필수아미노산함량도열풍건조적하수오가가장낮은함량을나타내었다. 따라서적하수오의아미노산을활용할경우동결건조또는음건의방법을택하는것이높은아미노산함량을유지할수있는방법으로사료된다. 유리아미노산건조방법에따른적하수오의유리아미노산분석결과는 Table 9와같다. 총 16종의아미노산이검출되었으며, 구성아미노산과동일하게 arginine이가장높게나타났다. 건조방법에따른적하수오의유리아미노산함량은 arginine과 proline 이높게나타났다. 열풍건조적하수오, 음건적하수오및동결건조적하수오에함유된 arginine은각각 210.48 mg %, 170.44 mg % 및 258.51 mg % 로동결건조방법이가장높게나타났으며, proline 은각각 135.11 mg %, 56.48 mg % 및 119.18 mg % 로열풍건조방법에서높게나타났다. 총유리아미노산의함량은열풍건조적하수오, 음건적하수오및동결건조적하수오에서각각 487.75 mg %, 312.64 mg % 및 694.68 mg % 로나타났으며, 필수아미노산은동결건조적하수오가 154.59 mg % 로가장높게나타났다. Jeong (2011) 은적하수오와같이덩이뿌리를사용하는백합과청미래덩굴과뿌리를활용하는쇠무릎뿌리의총아미노산함량중필수아미노산함량이각각 17.7% 와 19.09% 로보고한바있다. 이는열풍건조적하수오와음건적하수오보다는높은비중이지만동결건조적하수 Table 9. Contents of free amino acids in the PMR based on various dry method Total amino acids Contents (dry basis, mg %) Aspartic acid 9.92±0.11 z a v 11.06±0.60a 30.05±1.18b Serine 8.80±0.40b -a 16.29±1.57c Glutamic acid 34.17±1.65b 21.41±0.73a 69.27±0.66c Glycine - - - Histidine 28.23±0.20a 21.96±2.60a 92.22±6.48b Arginine 210.48±1.70b 170.44±10.05a 258.51±0.98c Threonine 14.65±0.81b 6.98±0.70a 28.26±2.27c Alanine 17.78±0.45b 13.84±1.77a 26.54±0.53c Proline 135.11±0.98c 56.48±7.47a 119.18±9.35b Tyrosine 9.87±0.25b 4.13±0.27a 20.26±0.87c Valine 6.87±0.62b 2.09±0.09a 7.04±0.15b Methionine 5.22±0.20b 3.68±0.87a 7.24±0.32c Lysine -a -a 10.05±0.19b Isoleucine 2.04±0.01b -a 3.17±0.54c Leucine 2.09±0.02b -a 2.95±0.42c Phenylalanine 2.51±0.27b 0.57±0.31a 3.66±0.33c TAA y 487.75 312.64 694.68 EAA x 61.61 35.29 154.59 EAA/TAA (%) w 12.63 11.29 22.25 z All values are mean ± SD (n=3). y TAA, total amino acid. x EAA, total essential amino acid (Thr.+Val.+Met.+Ile.+Leu.+Phe.+His.+Lys.). w EAA/TAA (%), total amino acid/total essential amino acid. v Means with the same letter within the row are not significantly different at P<0.05 determined through DMRT. -290-
오가 22.25% 로비교적유사한비중을나타내고있다. 본연구결과와구성아미노산의결과를바탕으로미루어볼때아미노산의손실을낮추기위해서는최종적으로동결건조방법을활용하는것이적합한것으로판단된다. 무기성분건조방법에따른적하수오의무기성분분석결과는 Table 10 과같다. 적하수오의무기성분분석결과 potassium, calcium, magnesium 및 sodium 이검출되었다. 열풍건조적하수오의무기성분함량은 potassium 이 1,077.18 mg % 로가장높았으며, 다음으로는 calcium, magnesium 및 sodium 의함량이각각 125.89 mg %, 110.36 mg % 및 8.14 mg % 순으로높게나타났다. 음건과동결건조적하수오도 potassium 이각각 1,392.02 mg %, 1,515.01 mg % 로가장높게나타났다. 다음으로는 magnesium, calcium 및 sodium 의순으로확인되었다. Potassium, calcium, magnesium 등무기성분은신경전달및신체의생리작용에관계하고있는것으로아려져있으며 (Kim et al., 1999), 적하수오의 potassium 함량은산약 (3,698.7 mg %) 과우슬 (4,665.7 mg %) 보다적지만, 동결건조적하수오는감초등약초 87종의평균값인 1,649.7 mg % 와비슷한함량을보였다 (Hwang et al., 1997). 본연구결과적하수오에함유된무기성분중 potassium 함량이 월등히높게나타났으며, 건조방법에따라무기성분의종류와함량은차이를보였다. 또한총무기성분의함량은동결건조, 음건, 및열풍건조순으로높게나타났다. 지방산건조방법에따른적하수오의지방산분석결과는 Table 11 과같다. 적하수오에함유된지방산은포화지방산 1종, 불포화지방산 2종으로총 3종이검출되었다. 건조방법별적하수오에서모두 linoleic acid 함량이가장높게나타났다. Kang (1987) 은동물실험에서영양상중요한불포화지방산인 linoleic acid 는결핍될경우 mouse 의성장이저하되고피부염, 피부건조등의증상이발생함을보고한바있다. 건조방법에따른포화지방산 palmitic acid 와단일불포화지방산 oleic acid 는열풍건조적하수오가가장높게나타났으며, 다가불포화지방산인 linoleic acid 는동결건조적하수오가가장높게나타났다. Son et al. (2011) 은매생이의지방산분석에서 palmitic acid 를포함한포화지방산은열에안정적이지만 oleic acid 와 linoleic acid 를포함한불포화지방산은열에불안정적이므로열풍건조시감소되어본연구의건조방법에따른지방산조성과는차이를나타내었다. 식물의덩이뿌리를사용하는돼지감자의지방산함량측정에서 Kim et al. (2014) 은 linoleic acid, palmitic acid, ɤ Table 10. The contents of mineral in the PMR based on various dry method Compositions Contents (dry basis, mg %) K 1,077.18±5.88 z a y 1,392.02±2.86b 1,515.01±3.13c Ca 125.89±1.66c 114.67±0.57b 104.36±0.90a Mg 110.36±1.06a 137.09±0.61b 139.66±0.06c Na 8.14±0.22c 6.40±0.34a 7.18±0.08b z Values are presented mean ± SD (n=3). y Means with the same letter within the row are not significantly different at P<0.05 determined through DMRT. Table 11. The contents of fatty acids in the PMR based on various dry method Compositions Contents (dry basis, area%) Palmitic acid 18.53±0.50 z c y 12.95±0.19b 3.47±0.10a Oleic acid 25.46±0.54c 18.98±0.40b 10.50±0.27a Linoleic acid 54.51±0.98a 66.45±1.84b 84.52±1.40c z Values are presented mean ± SD (n=3). y Means with the same letter within the row are not significantly different at P<0.05 determined through DMRT. -291-
Korean J. Plant Res. 31(4) : 283~293(2018) linolenic acid 및 oleic acid 의검출을보고한바있다. 또한수미, 세풍및조미감자의연구에서도지방산중 linoleic acid 가가장높은지방산조성을보여 (Kwon et al., 2006) 적하수오의주요지방산인 linoleic acid 가높게검출된것과유사한경향을보였다. 본연구결과포화지방산의함량이낮으며, linoleic acid 의함량이높은적하수오를활용하기위해서는동결건조가적합할것으로판단된다. 적요본연구는생산과수요가늘고있는마디풀과하수오의최적건조방법구명을통한식품소재화및산업화를목적으로수행하였다. 하수오의최적건조방법을구명하기위해열풍건조, 음건및동결건조적하수오의일반성분, 유리당, 아미노산및지방산등을비교분석하였다. 건물량을기준으로건조방법에따른적하수오의일반성분함량을비교하였을때, 수분함량은동결건조적하수오가유의적으로낮게나타났다. 유리당분석에서총유리당함량은동결건조적하수오에서높게나타났으며, fructose, glucose 및 sucrose의함량역시동결건조적하수오, 음건적하수오, 열풍건조적하수오순으로높게나타났다. 유기산은총 5종이검출되었으며, oxalic acid 가가장높게나타났다. 적하수오의주요구성아미노산은 arginine, glutamic acid, proline, serine, lysine 등이며, 총아미노산함량, 필수아미노산함량은모두동결건조적하수오에서높게나타났다. 총구성아미노산중필수아미노산함량비율은음건적하수오에서높게나타났다. 유리아미노산은세가지건조방법모두에서 arginine과 proline이함량이높게나타났으며, 총아미노산함량, 필수아미노산함량및총구성아미노산중필수아미노산함량비율은모두동결건조적하수가가장높게나타났다. 적하수오의무기성분은총 4종이검출되었으며, potassium 이가장많았으며, sodium 이가장낮게나타났다. 적하수오에서지방산은포화지방산인 palmitic acid 1종과불포화지방산인 oleic acid 와 linoleic acid 2종이검출되었다. 이상의결과로볼때하수오의유용성분손실이가장적은건조방법은동결건조로생각되며, 산업적인측면에서비용을고려한건조방법은건조온도를조절한열품건조방법의고안이필요할것으로생각된다. 사사본결과물은농림축산식품부의재원으로농림수산식품기술 기획평가원의고부가가치식품기술개발사업의지원을받아연구되었으며, 이에감사드립니다 (116031-2). References AOAC. 1996. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists. Washington DC (USA). pp. 210-219. Ban, H.J. and K.S. Ko. 2012. Antioxidant activity of methanol extracts from the Polygoni mulitiflori radix. J. Korean Soc. Beauty Cultural Arts. 1:47-55 (in Korean). Cao, G., E. Sofic and R.L. Prior. 1996. Antioxidant capacity of tea and common vegetables. J. Agric. Food Chem. 44:3426-3431. Chan, Y.C., M.F. Wang and H.C. Chang. 2003. Polygonum multiflorum extracts improve cognitive performance in senescence accelerated mice. Am. J. Chin. Med. 31:171-179. Choi, S.K. 2009. Particulars Oriental Medicine Product. Shinkwang Publishing Co., Seoul, Korea. pp. 300-301 (in Korean). Choi, J.H., H.S. Lee, Y.G. Kim, B.M. Kim, I.H. Kim and C.H. Lee. 2012. Effect of Polygonum multiflorum Thunberg extract on lipid metabolism in rats fed high-cholesterol diet. J. Korean Soc. Food Sci. Nutr. 41:957-962 (in Korean). Do, Y.J., S.K. Ku, H.T. Kim, T.H. Oh, Y.M. Cho, S.W. Kim, I.S. Ryu and K.W. Lee. 2011. Antiosteoporotic effects of Polygoni multiflori radix (PMR) in ovariectomized (OVX)- induced osteoporosis ddy Mice. J. Vet. Clin. 28:375-386 (in Korean). Goldberg, I. 1994. Functional Foods, Chapman & Hall Press, New York (USA). pp. 3-550. Han, K.S., S.S. Ham, E.H. Jeong and H.K. Lee. 1992. Antimutagenic effects of the edible mountain herb juices against Trp-P-1 and 2AF. Korean J. Food Hygiene. 7:161-168 (in Korean). Hwang, J.B., M.O. Yang and H.K. Shin. 1997. Survey for approximate composition and mineral content of medicinal herbs. Korean J. Food Sci. Technol. 29:671-679 (in Korean). Jansen, S. 2002. Anticancer and health protective properties of citrus fruit components. J. Asia Pacific Clinical Nutrition 11:79-84. Jeong, K.S. 2011. Extraction characteristics of soluble solid from Rumex crispus (Curled Dock) roots. J. Environmental Sci. 20:1265-1272 (in Korean).. 2011. A study on physicochemical properties -292-
of Achyranthes japonica and Smilax china extracts. J. Korea Academia Industrial Cooperation Soc. 12:3317-3326 (in Korean). Kang, S.J. 1987. Nutrition science. Hyongsul Publishing Co., Seoul, Korea. p. 69 (in Korean). Kim, A.R., J.J. Lee, H.O. Jung and M.Y. Lee. 2010. Physicochemical composition and antioxidative effects of yacon (Polymnia Sonchifolia). J. Life Sci. 20:40-48 (in Korean). Kim, H.J. and H.K. Joo. 1989. Change in sugar composition of ginseng extract during heat treatment. Korean J. Ginseng Sci. 23:56-59 (in Korean). Kim, H.N., S.Y. Yu, W.B. Yoon, S.M. Jang, Y.J. Jang and O.H. Lee. 2014. Analysis of nutritional components and physicochemical properties of hot-air dried Jerusalem artichoke (Helianthus tuberosus L.) powder. Korean J. Food Sci. Technol. 46:73-78 (in Korean). Kim, H.R., J.H. Lee, Y.S. Kim and K.M. Kim. 2007. Chemical characteristics and enzyme activities of Icheon Ge-Geol radish, Gangwha turnip, and Korean radish. Korean J. Food Sci. Technol. 39:255-259 (in Korean). Kim, M.H., H.L. Jang and K.Y. Yoon. 2012. Changes in physicochemical properties of haetsun vegetables by blanching. J. Korean Soc. Food Sci. Nutr. 41: 647-654 (in Korean). Kim, O.K. 2008. Antidiabetic effect of Ha-Su-O (polygoni radix). J. Korean Oil Chem. Soc. 25:347-354 (in Korean). Kim, Y.S., Y.H. Lim, S.G. Wang, S.J. and C.R. Park. 1999. The physicochemical properties and antioxidation effect of Samul Chol Pyon. J. Korean Soc. Food Sci. Nutr. 28:990-996 (in Korean). Kwon, O.Y., H.J. Kim, S.H. Oh, J.H. Lee, H.C. Kim, W.K. Yoon, H.M. Kim, C.S. Park and M.R. Kim. 2006. Nutrient composition of domestic potato cultivars. J. East Asian Soc. Dietary Life 16:740-746 (in Korean). Lee, K.B., J.B. Yang and M.S. Ko. 2008. Food Analysis. Yoohan Publishing Co., Seoul, Korea. pp. 160-171 (in Korean). Lee, J.S., Y.S. Ahn, H.S. Kim, M.N. Chung and H.O. Boo. 2007. Proximate composition and minerals, phenolics, anthocyanins pigment characteristics on the parts of sweet potato. Korean J. Intl. Agri. 19:196-204 (in Korean). Lee, S., H.K. Moon, S.W. Lee, J.N. Moon and J.K. Kim. 2016. Biological activities in Aronia melanocarpa depending on drying methods. J. Korean Food Preserv. 23:1018-1025. Lee, Y.S., H.S. Kim, Y.W. Son, K.S. Yoo and J.H. Lee. 2002. Effect of radix Polygoni multiflori on cultured vascular endotherial cells damaged by xanthine oxidase and hypoxanthine. Korean J. Oriental Physiology Pathology 16:720-723. Morrison, W.R. and L.M. Smith. 1964. Preparation of fatty acid methylesters and dimethylacetals from lipid with boron fluoride methanol. J. Lipid Res. 5:600-608. Ohara, I. and S. Ariyoshi. 1979. Comparison of protein precipitants for the determination of free amino acid in plasma. Agric. Biol. Chem. 43:1473-1478. Palmer, J.K. and D.M. List. 1973. Determination of organic acids in foods by liquid chromatography. J. Agric. Food Chem. 21:903-909. Park, Y.J, G.Y. Cheon, H.W. Song, C.S. Shin, Y.G. Ku, N.R. Kang and Buk-Gu Heo. 2016. Mineral composition and physiological activities of methanol extract from the seeds of Persicaria tinctoria. Korean J. Plant Res. 29:32-38 (in Korean). Rho, M.W. and T.K. Lee. 2006. Monitoring of free sugar and amino acid of red bean paste by corn syrup concentration and heating treatment conditions. Korean J. Food Preserv. 13: 581-588 (in Korean). Seo, B.I., J.H. Lee, H.Y. Choi, D.Y. Kwon and Y.M. Bu. 2006. Oriental Herbal Medicine. Younglimsa Publishing Co., Seoul, Korea. pp. 865-868 (in Korean). Sin, H.S. 1987. Food Analysis. Shinkwang Publishing Co., Seoul, Korea. pp. 70-83 (in Korean). Son, S.M., H.O. Kwon and J.H. Lee. 2011. Physicochemical composition of Capsosiphon fulvescens according to drying methods. J. Korean Soc. Food Sci. Nutr. 40:1582-1588 (in Korean). Strydom, D.J. and S.A. Cohen. 1993. Sensitive analysis of cystine/cysteine using 6-aminoquinolyl-N-hydroxysuccinimidy carbamate (AQC) derivatives. Tech. Prot. Chem. 4:299-306. Wilson, A.M., T.M. Work, A.A. Bushway and R.J. Bushway 1981. HPLC determination of fructose, glucose and sucrose in potatoes. J. Food Sci. 46:300-301. Yoon, J.A., S.W. Hahm and Y.S. Son 2009. Nutrients contents in different parts of pickly pear (Opuntia humifusa) and possible anti-breast cancer effect. Korean J. Food Nutr. 22:485-491 (in Korean). (Received 11 January 2018 ; Revised 24 April 2018 ; Accepted 31 May 2018) -293-