009 he MGraw-Hill Companies, In. All rights reserved. Fifth SI Edition CHAPER 3 MECHANICS OF MAERIALS Ferdinand P. eer E. Russell ohnston, r. ohn. DeWolf David F. Mazurek Leture Notes:. Walt Oler exas eh University 비틀림 (orsion)
목차 (Contents) 서론 ( Introdution) 원형축의비틀림하중 (orsional Loads on Cirular Shafts) 내부응력에의한실제토크 (Net orque Due to Internal Stresses) 축방향전단성분 (Axial Shear Components) 축변형 (Shaft Deformations) 전단변형률 (Shearing Strain) 탄성한계내의응력 (Stresses in Elasti Range) 수직응력 (Normal Stresses) 비틀림파손모드 (orsional Failure Modes) 견본문제3.1 (Sample Problem 3.1) 탄성영역내의비틀림각 (Angle of wist in Elasti Range) 부정정축 (Statially Indeterminate Shafts) 견본문제 3.4 (Sample Problem 3.4) 전동축설계 (Design of ransmission Shafts) 응력집중 (Stress Conentrations) 소성변형 (Plasti Deformations) 탄소성재료 (Elastoplasti Materials) 잔류응력 (Residual Stresses) 예제 3.08/3.09(Example 3.08/3.09) 비원형축부재의비틀림 (orsion of Nonirular Members) 얇은벽두께중공축 (hin-walled Hollow Shafts) 예제 3.10(Example 3.10) 5-
원형축의비틀림하중 (orsional Loads on Cirular Shafts) 비틀림우력 (twisting ouples) 혹은토크 와 ' 를받는원형단면부재의응력과변형률해석 터빈은축에비틀림우력혹은토크 를발생 축이다시발전기에같은토크를전달 발전기는크기가같고방향이반대인토크 ' 을전동축에전달 5-3
내부응력에의한토크 (Net orque Due to Internal Stresses) 평형조건은이미소힘계가 ' 과크기가같고방향이반대인내부토크 와같아야함 ( ) ρ df ρ da 임의단면상에분포하는전단응력에의해만족되어야하는평형조건을나타내지만이응력이축의단면상에어떻게분포되고있는가는표시하고있지않음 주어진하중하의실제응력분포는부정정상태 - 축변형을고려해야함. 중심축하중에의한수직응력이균일하게분포한다고가정하였으나, 탄성축의전단응력분포에대해서는같은가정이적용될수없음. 5-4
축방향전단성분 (Axial Shear Components) 축에작용하는토크는축선에수직한전단응력을발생. 평형조건은축선을포함하고있는두평면에의해형성된면상에도동일한응력을필요. 비틀림에서발생되는이와같은전단응력은그림과같이분리한많은얇은판조각 (slat) 을양단에서원판 (disk) 에핀으로고정하여만든 축 으로생각하여설명할수있음. 축의양단에크기가같고방향이반대인토크가작용할때이들판조각들은서로미끄러짐. 5-5
축변형 (Shaft Deformations) 의어떤범위내에서는비틀림각 φ 는작용된토크 와길이 L 에비례. φ φ L 평형단면축이비틀림을받을때모든단면은평면을유지하며뒤틀리지않음. 원형단면축의단면이평면을유지하며, 평면이뒤틀리지않는이유는단면이축대칭 (axisymmetri) 이기때문임. 축대칭이아닌비원형단면축은비틀림을받으면각단면들은뒤틀어지고평면을유지하지못함. 5-6
전단변형률 (Shearing Strain) 축이비틀림하중을받으면이미소요소는마름모형 (rhombus) 으로변형. 고려된요소의두변을정의하는원은변화하지않기때문에전단변형률은비틀림각과동일. 위의관계로부터 전단변형률은비틀림과반지름에비례 γ Lγ ρφ or γ φ L and ρφ L γ ρ γ 5-7
탄성영역내의응력 (Stresses in Elasti Range) π 1 4 π 4 4 ( ) 1 1 위의관계식에전단탄성계수를곱하면, G γ ρ G γ 훅법칙으로부터 ρ 축단면에작용한모멘트의합은축에작용한토크 와같아야한다는결과로부터, da ρ ρ da ρ and Gγ, 그러므로 축의전단응력이축심으로부터에따라선형적으로변화 탄성비틀림공식 (elasti torsion formulas) 5-8
수직응력 (Normal Stresses) 면에평행하고축선에직각인요소 a 는단지전단응력만존재. 축선과임의각을이루는요소 b의변은수직응력과전단응력을동시에받음. 45 ( A ) 0 축선과 45 를이루는요소 F σ o F A os45 A 0 A 요소 a 는순수전단 0 요소 는두면에인장응력, 다른두면에압축응력을받음. 이요소들에생기는모든응력은같은크기 / 를갖는다. A 0 5-9
비틀림파손형태 (orsional Failure Modes) 연성재료는일반적으로전단응력에의해서파손. 취성재료로만든시험편은인장응력이최대가되는방향에수직한면을따라파단 연성재료로만든시험편이비틀림을받으면그시험편은축선에수직한면에따라파단 (break) 취성재료로만든시험편은인장응력이최대가되는방향에수직한면을따라파단되려고한다. 즉, 시험편의축선과 45 를이루는면으로파단. 5-10
견본문제 3.1 (Sample Problem 3.1) 축 C 는안지름 90 mm, 바깥지름 10 mm 인중공축이며축 A 와 CD 는지름 d 인중실축이다. 그림과같은하중을받을때다음을구하여라. (a) 축 C 에서의최대및최소전단응력, (b) 축의허용전단응력이 65 MPa 일때축 A 와 CD 의필요한지름. 풀이 : 축 A와 C사이의단면을절다, 이들구간에대한평형식으로부터비틀림하중을계산. 탄성비틀림공식을적용하여축 C 의최대및최소응력을구한다. 주어진허용전단응력과가해진토크로부터, 탄성비틀림공식을이용하여필요로하는지름을계산. 5-11
견본문제 3.1 (Sample Problem 3.1) 풀이 : 축 A 와 C 사이의단면을절다, 이들구간에대한평형식으로부터비틀림하중을계산. M A x 0 ( 6kN m) M 0 ( 6kN m) + ( 14kN m) 6kN m CD A C x 0kN m C 5-1
견본문제 (Sample Problem 3.1) 탄성비틀림공식을적용하여축 C 의최대및최소응력을계산 π 4 4 π 4 4 ( ) [( 0.060) ( 0.045) ] 1 13.9 10 min min 6 86.MPa 1 m C 64.7 MPa 4 min 86.MPa ( 0kN m)( 0.060 m) 13.9 10 45mm 60mm 6 m 4 86.MPa 64.7 MPa min 주어진허용전단응력과가해진토크로부터, 탄성비틀림공식을이용하여필요로하는지름을계산. 38.9 10 π 3 m 4 65MPa d 6kN m 3 π 77.8mm 5-13
탄성한계내에서비틀림각 (Angle of wist in Elasti Range) 비틀림각과최대전단변형률사이의관계로부터, φ γ L 탄성한계내에서는훅법칙을적용하면, γ G G 전단변형률에관한식을등식으로놓고비틀림각에대해서풀면, φ L G 축단면이균일하지않거나혹은몇가지의다른재료로만들어진축일경우, 동일한조건의몇구간으로나누어서전체비틀림각을계산. il φ i G i i i 5-14
부정정축 (Statially Indeterminate Shafts) 주어진축칫수와가해진토크로부터 A 와 에서반력토크를계산. 축의자유물체도로부터 A + 10 N m 위의식으로두값을계산할수없으므로이문제는부정정 (statially indeterminate). AC 부와 C 부가서로반대방향으로같이비틀어지므로, φ φ φ A 1 1 + 0 1G G 본래의평형방정식에대입하면, L 1 10 N m L A + A 1 L L L1 L 1 A 5-15
견본문제 3.4 (Sample Problem 3.4) 두개의강재중실축이기어로연결, 각축의 G 77 Gpa, 허용전단응력은 55 Mpa. 다음사항을계산. (a) 축 A 의끝단 A 에작용할수있는최대토크 0, (b) 축 A 의끝단 A 가회전할수있는회전각 풀이 : 두개의축에평형방정식으로부터 CD 와 0 의관계식을구한다. 운동학 (kinemati) 으로부터기어의원주운동관계식을세운다. 각축에서최대허용토크를구한후, 작은값을선택. 각축에서상응하는비틀림각과끝단 A 의비틀림각계산. 5-16
Sample Problem 3.4 풀이 : 두개의축에평형방정식으로부터 CD 와 0 의관계식을구한다. CD M M C 0 F 0 F.73 0 ( mm) ( 60 mm) 0 CD 운동학 (kinemati) 으로부터기어의원주운동관계식을세운다. r φ φ r φ r r C C φ C C φ.73φ 60mm φc 0mm C 5-17
견본문제 3.4 (Sample Problem 3.4) 각축에서최대허용토크를구한후, 작은값을선택. 0 0 74.1Nm A A CD CD 61.8 Nm 55 10 55 10 6 Pa 6 Pa π 3 0( 9.5 10 m) 3 4 ( 9.5 10 m).8 π 3 0 ( 1.5 10 m) 3 4 ( 1.5 10 m) 0 61.8 Nm φ φ 각축에서상응하는비틀림각과끝단 A 의비틀림각계산. A/ C / D A A/ π 0.0376 rad.15 CD CD π 0.0514 rad.95 A A L G L G C ( 61.8 Nm)( 0.6m) 4 9 ( 0.0095 m) ( 77 10 Pa).73 φ.73φ.73 φ φ + φ ( 61.8 Nm)( 0.6m) 4 9 ( 0.015 m) ( 77 10 psi) 8.05 o (.95 ) o o o +.15 8.05 o o φ A o 10. 5-18