( )-122.fm

Similar documents
12.077~081(A12_이종국).fm

10(3)-09.fm

14.fm

< DC1A4C3A5B5BFC7E22E666D>

14.531~539(08-037).fm

10(3)-10.fm

69-1(p.1-27).fm

304.fm

( )-123.fm

16(1)-3(국문)(p.40-45).fm

10(3)-12.fm

605.fm

untitled

144.fm

10(3)-02.fm

82-01.fm

<30332DB9E8B0E6BCAE2E666D>

50(1)-09.fm

3.fm

9(3)-4(p ).fm

4.fm

DBPIA-NURIMEDIA

16(5)-03(56).fm

93.fm

49(6)-06.fm

416.fm

50(5)-07.fm

8(2)-4(p ).fm

( )-113.fm

11(5)-12(09-10)p fm

07.051~058(345).fm

12(2)-04.fm

17.393~400(11-033).fm

19(1) 02.fm

( )-83.fm

12(3) 10.fm

( )-77.fm

51(4)-13.fm

32(4B)-04(7455).fm

untitled

16(5)-04(61).fm

12(4) 10.fm

fm

14(2) 02.fm

202.fm

57.fm

07.045~051(D04_신상욱).fm

15.101~109(174-하천방재).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

<312D303128C1B6BAB4BFC1292E666D>

(163번 이희수).fm

fm

13.fm

143.fm

83.fm

( )-101.fm

18(3)-10(33).fm

16(2)-7(p ).fm

82.fm

fm

38(6)-01.fm

85.fm

14(4) 09.fm

10(1)-08.fm

27(5A)-07(5806).fm

fm

41(6)-09(김창일).fm

16(4)-05.fm

10.063~070(B04_윤성식).fm

<30312DC0CCC7E2B9FC2E666D>

87.fm

415.fm

15(2)-07.fm

04-46(1)-06(조현태).fm

( )32.fm

Microsoft Word - KSR2012A038.doc

11(1)-15.fm

11(4)-03(김태림).fm

31(3B)-07(7055).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

50(4)-10.fm

06.177~184(10-079).fm

18211.fm

fm

17.fm

14(4)-14(심고문2).fm

51(2)-09.fm

PDF

03.fm

89.fm

8(3)-15(p ).fm

( )-94.fm

한 fm

(153번 김철영).fm

27(5A)-13(5735).fm

03.fm

11(5)-7(09-37)p fm

75.fm

fm

( )65(이성민).fm

Transcription:

Journal of the Korean Ceramic Society Vol. 48 No. 1 pp. 40~45 2011. DOI:10.4191/KCERS.2011.48.1.040 Approach to Compositional Effect on Properties of Aspherical Optical Glass for GMP Process with Design of Experiments Jee-hun Maeng* Hyeong-Jun Kim Ah-Reum Jung* Jong-Cheol Kim** an Sung-Churl Choi* Korea Institute of Ceramic Engineering & Technology Icheon 467-843 Korea *Division of Materials Science & Engineering Hanyang University Seoul 133-791 Korea **Eglass. Corp. Siheung 429-450 Korea (Receive November 22 2010; Revise December 14 2010; Accepte December 20 2010) x z w GMP Ÿw e z x*á½x Á *Á½ **Á * w» *w w œw **( ) (2010 11 22 ; 2010 12 14 ; 2010 12 20 ) ABSTRACT In this stuy the composition of optical glass for GMP(glass moling process) was esigne with Design of Experiments metho. All the composition batch was performe by Create Factorial Design metho. Particularly SiO 2 BaO an Al 2 were chosen major parameters for investigating the effects of components on optical an thermal properties. BaO an Al 2 strongly influence on optical an thermal properties respectively. Finally the approximate values of esire optical an thermal values were obtaine by microtuning of compositions. At the composition of BaO:Al 2 :SiO 2 =10:4:48 (molar ratio) refractive inex(n ) was 1.5833 coefficient of thermal expansion(cte) was 104 10-7 / o C. Key wors : Optical glass Refractive inex GMP Aspherical lens Design of experiments 1. (aspherical lens) t š w (spherical lens) t š w xk mew. ƒ œ xk» ù fkp. ƒ rsw w r sw r (eccentric ratio) w. 1) (spherical aberration) ƒ p ù Ÿ (paraxial ray) ƒ ù Ÿ (abaxial ray) ew x. w e Ÿw (paraxial approximation) w» w. 2) w» Corresponing author : Hyeong-Jun Kim E-mail : golbu@kicet.re.kr Tel : +82-31-645-1446 Fax : +82-31-645-1491 w ww Ÿw w š w š j v w Ÿw œw» w w ƒ. w ww Ÿw w w. r Ÿ Ÿ w». w w e w s CD/DVD v Ÿ ƒ ù x ¾ w Ÿw ƒ Ÿw w wš wš ¾ œ w ƒƒ. Koak y glass moling process(gmp) w z œ x 34) š j z ƒ. GMP ww Ÿw š š. ù» Ÿw 40

x z w GMP Ÿw e z 41 Table 1. Composition Designe by Design of Experiments Metho an Properties BaO (mol%) SiO 2 (mol%) Al 2 (mol%) CTE ( 10-7 / o C) T g ( o C) T sp ( o C) n (stanar error) DOE1 5 48 0 108 472 508 1.5810 (±0.0005) DOE2 15 48 0 115 469 503 1.6095 (±0.0003) DOE3 5 58 0 101 482 521 1.5616 (±0.0006) DOE4 15 58 0 108 489 522 1.6025 (±0.0006) DOE5 5 48 5 96 478 510 1.5647 (±0.0001) DOE6 15 48 5 101 473 507 1.6038 (±0.0001) DOE7 5 58 5 88 483 530 1.5686 (±0.0010) DOE8 15 58 5 102 487 526 1.5898 (±0.0005) w w ù» wš» w. w px x 5-7) ù x x. ƒ w. w s x e ƒ Ÿw (n =1.583 v=59.38) ƒ ƒwš w y x w x.» p Ÿw w w x z (esign of experiments) w. e (factorial esign) w» w š y Ÿ p p y w z w. m w Ÿp p w. 2. x x z w Ÿw wš w e w w š w.»k Schott OHARA HOYA Ÿw 5-7) w š š ƒw Li 2 O Na 2 O K 2 O B 2 ZnO kw. ƒƒ w (mol%) Table 1 ùkü DOE1-DOE8 w š w. x z x w z w w wš w w x wš l w w m w xz ƒ zw š w. ƒ š ƒ yw w y Ÿw 3 2 x z w w. (factor) SiO 2 BaO Al 2 w š ƒ (level) 2 y g Table 1 ùkü. w š Na 2 O B 2 K 2 O ZnO Li 2 Oƒ. SiO 2 BaC Al(OH) 3 NaC H 3 B K 2 C ZnO LiC w. ³ w yw w 3Dturbulant mixer 1 yww. ƒ ƒ w š» w 1450 o C 2 w. 475 o C ƒ q p š þw. š ùkü ù r strain viewer (striae). 15 15 3(mm 3 ) j» r ƒ (4 w) Precision refractometer (KALNEW KPR-2) w sƒw. T g T sp q Dilatometer (Linseis L7501250) w w. 3. š 3.1. y z Ÿw» Ÿ l n w rw(eflection) j. n w rw x (refraction)p. w (refractive inex) Ÿw p ƒ ù. w ƒ j š. w j Ÿw q (CTE coefficient of thermal expansion)ƒ û w. q ƒ j þ (annealing) x w q ƒ w». Schott OHARA HOYA t 5-7) Ÿw Ÿw t w. t n =1.583 v=59.38 q a (100-300) =100 10-7 / o C T g =506 o C. x mw w Ÿw y w. 5-7) ù ƒ w e w w». 48«1y(2011)

맹지헌 김형준 정아름 김종철 최성철 42 Fig. 1. (a) Pareto chart of the refractive inex(n ) (b) main effects plot for refractive inex(n ) (c) interaction plot for refractive inex(n ). Fig. 2. 에서 제시된 조성에서 유리형성제(network former)로서 가 장 많은 비율을 차지하는 주요 성분 SiO 의 굴절률(n )은 1.458(Appen에 의함)로 목표 값보다 매우 낮다. 따라서 굴절률(n ) 증진 효과가 큰 것으로 잘 알려진 BaO(굴절률 2 8) 한국세라믹학회지 (a) Pareto chart of the coefficient of thermal expansion (b) main effects plot for CTE (c) interaction plot for CTE. n =1.880 Appen에 의함)를 주요 성분으로 선택 하였다. 또한 열팽창계수를 조절하기 위하여 Al O 를 주요 성분 으로 선택 하였다. 우선 BaO의 함량 변화에 따른 물성 변화를 관찰하기 위하여 Table 1의 DOE1-DOE4와 같이 89) 2 10) 3

x z w GMP Ÿw e z 43 Table 2. Micro Tuning of Optical an Thermal Properties by Composition Exchanging BaO SiO 2 Al 2 n v F n n C CTE T (mol%) (mol%) (mol%) (stanar error) (stanar error) (stanar error) ( 10-7 g T sp / o C) ( o C) ( o C) 10 48 0 58.28 1.5957 (±0.0001) 1.5887 (±0.0001) 1.5856 (±0.0001) 114 492 527 10 48 2 59.13 1.5922 (±0.0001) 1.5854 (±0.0001) 1.5824 (±0.0001) 111 498 537 10 48 4 58.92 1.5901 (±0.0002) 1.5833 (±0.0002) 1.5802 (±0.0001) 104 495 532 10 48 5 58.23 1.5893 (±0.0001) 1.5823 (±0.0001) 1.5793 (±0.0002) 98 498 546 SiO 2 w 48 mol% 58 mol% 2 ewš ƒƒ w BaO w 5mol% 15 mol% 2 w. w Al 2 ƒ y w» w Table 1 DOE5-DOE8 DOE1-DOE4 Al 2 ƒƒ 5mol% ƒ w. DOE1-DOE8 (n ) q (CTE) w z Figs. 1 2 ƒƒ ùkü. Table 1 (n ) ƒ r 4 w s³ t w ùkü. Fig. 1 (a) (n ) w w Pareto chart ùkü. 0.05 m w ƒ ùkû ù BaO w (n ) j w eš. Fig. 1 (b) (n ) w z. SiO 2 Al 2 w ƒw (n ) w w. SiO 2 w ƒw ƒ ƒ ƒw» š 14) Al 2 w ƒw w». 14) BaO w ƒw (n ) ƒw w. Fig. 1 (c) SiO 2 Al 2 BaO y z. SiO 2 -BaO SiO 2 -Al 2 BaO-Al 2 ƒƒ w y w w»» ƒ y. BaO PbO w 2ƒ(bivalent) y (n ) ƒ z ƒ ƒ w. j (heavy element) w Baƒ ƒ ƒ j» 911). p BaO PbO (n) ƒ j (ispersion) ƒ j La 2 w p» Ÿ 911) w w. Fig. 2 (a) Pareto chart q (CTE) y w w. ù Al 2 q w eš. Fig. 2 (b) z v Al 2 SiO 2 w ƒ w BaO w w q w w. Fig. 2 (c) y z (n ) ƒ y y w. Al 2 ƒ q ƒ w Al-O w (boning strength) ƒ w». w x w tetrahera [SiO 4 ] w x w network w j» 10). Table 1 y (T g ) m l y (T sp ) y ùkü. t 506 C w û o ùkû.» Ÿw w GMP w w w. SiO 2 w ƒw T g T sp j ƒw w. SiO 2 w ƒw w w tetrahera [SiO 4 ] network wì ƒw» 12). BaO Al 2 w y w w w. 3.2. q w t w» w DOE56 w q x ww. DOE56 kw t (n ) DOE5 (n ) DOE6 (n ) w w wš q t w». BaO w DOE56 10 mol% w (n ) t w 1.582. q a (100-300) =98 10-7 / o C. x Al 2 ƒ ƒ (n ) w w. Al 2 w 4 2 0 mol% g (n ) w. Table 2 Figs. 3 4 ƒƒ ùkü. Table 2 (n ) ƒ r 4 w s³ t w ùkü. x r (striae)ƒ» 0.0001~0.0002 ü w. Fig. 3 Al 2 w y (n n F n C ) Appen w 14) w n ùkü. n. 48«1y(2011)

44 xá½x Á Á½ Á Fig. 3. Refractive inex(average value) change by exchanging the amount of Al 2. w ù Al 2 ƒw w. q Al 2 w 4mol% t ƒ w (104 10-7 / o C). x ƒ y T g T sp y w. t ƒ w mol% BaO:Al 2 :SiO 2 =10:4:48. q t e w ù z»k (p B 2 ZnO) w mw w xw q. w (stirring) w þ ³ e w w ƒ. 4. GMP Ÿw w 3 2 x z w. SiO 2 BaO Al 2 ƒ e w w š w. BaO w ƒw (n ) ƒ w w š q yƒ. SiO 2 Al 2 w ƒw q ƒ û w š (n ) w e. SiO 2 BaO Al 2 w y T g T sp y w. BaO Al 2 w mw (n ) q w. BaO:Al 2 :SiO 2 =10:4:48 (mol%) t w (n )=1.5833 (v)=58.92 q a (100-300)=104 10-7 / o C. Acknowlegment Fig. 4. CTE change by exchanging the amount of Al 2. Al 2 w w (n ) ƒw w. Al 2 w 4mol% t ƒ w 1.5833 ùkü. Ÿw n (ispersion) w. j (Abbe number v)ƒ (chromatic aberration)ƒ f» 13). ƒ» w n F n C wš n n F n C s ³ w Table 2 ùkü. n t ƒ w Al 2 4mol% 58.92 t 59.38 û. Al 2 w 2mol% ƒ w 59.13. Al 2 w w ƒw»» x. REFERENCES 1. C.W. Lee Easy Optical Story(in Korean) pp. 154-155 MJ Meia Dae-gu 2004. 2. Y.S. Lee Optics(in Korean) pp. 51-52 Chung Mun Gak Paju 2006. 3. S.D. Kang K.S. Lee K.h. Yang H.s. Kim B. S. Park an S.j. Baek Glass Moling Press Apparatus for Manufacturing Multi Coupling Ring Lens Korean Patent 10-0883801-0000 2009. 4. H.-J. Kim D.-H. Cha S.-S. Kim an J.-H. Kim Stuy on Pressing Conitions in the Moling of Aspheric Glass Lenses for Phone Camera Moule Using Design of Experiments Proceeings of SPIE-the International Society for Optical Engineering 6717 [671709] 1-9 (2007). 5. W. Silke S. Goran an W. Ute Optical Glass U.S. patent 7598192B2 2009. w wz

x z w GMP Ÿw e z 45 6. FU JIE Optical Glass JP patent JP-0149521 2009. 7. F. Yasuhiro M. Shuhei an T. Hiroki Optical Glass Preform for Precision Press Moling an Optical Element WO patent WO-0090014 2010. 8. Y.Masayuki Glass-for Beginner(in Korean) pp. 68-69 Chung Mun Gak Paju 2000. 9. Volf M.B. Chemical Approach to Glass pp. 272-279 Elsevier New York 1984. 10. Volf M.B. Chemical Approach to Glass pp. 280-302 Elsevier New York 1984. 11. H. Bach an N. Neuroth The Properties of Optical Glass pp. 66-71 Springer-Verlag New York 1995. 12. Volf M.B. Chemical Approach to Glass pp. 141-157 Elsevier New York 1984. 13. C.W. Lee Easy Optical Story(in Korean) pp. 66-69 MJ Meia Dae-gu 2004. 14. Horst Scholze Translate by J.H. Lee Glass(in Korean) pp. 180-192 Chung Mun Gak Paju 1989. 48«1y(2011)