1), Quee Daily indoor and outdoor nitrogen dioxide (NO2) concentration for 30 days were measured in 28 houses with questionnaire of housing characteri

Similar documents
(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

12(2)-04.fm

DBPIA-NURIMEDIA

1..

분석결과 Special Edition 녹색건물의 가치산정 및 탄소배출 평가 이슈 서 민간분야의 적극적인 참여 방안의 마련이 필요하다. 또한 우리나라는 녹색건축의 경제성에 대한 검증에 대 한 연구가 미흡한 실정이다. 반면, 미국, 영국, 호주 등은 민간 주도로 녹색건축물

1. 연구 개요 q 2013년 연구목표 제2-1과제명 건축물의 건강친화형 관리 및 구법 기술 연구목표 건강건축 수명예측 Lifecycle Health Assessment (LHA) 모델 개발 건축물의 비용 기반 분석기술(Cost-based Lifecycle Health


유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

17 1 ( ) J Korean Soc Occup Environ Hyg 2007;17(1):31-42 Assessment of Indoor Air Quality in Commercial Office Buildings Jee Yeon Jeong 1 Byung

인문사회과학기술융합학회

10(3)-12.fm

82-01.fm

歯49손욱.PDF

Æ÷Àå½Ã¼³94š

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

untitled

<31372DB9DABAB4C8A32E687770>

한국성인에서초기황반변성질환과 연관된위험요인연구

< B3E2BFF8BAB828C8AFB0E629312E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

년AQM보고서_Capss2Smoke-자체.hwp

[수도권대기환경청 소식] 1. 제10차 수도권 대기환경정책 연구회 년도 1/4분기 직장교육 26 제5절 환경용어 해설 교토메카니즘(Kyoto Mechanism) 라돈(Rn) 배출가스 재순환장치(EGR, Exhaust G

304.fm

14.531~539(08-037).fm

ePapyrus PDF Document

Coriolis.hwp


BSC Discussion 1

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

WHO 의새로운국제장애분류 (ICF) 에대한이해와기능적장애개념의필요성 ( 황수경 ) ꌙ 127 노동정책연구 제 4 권제 2 호 pp.127~148 c 한국노동연구원 WHO 의새로운국제장애분류 (ICF) 에대한이해와기능적장애개념의필요성황수경 *, (disabi


목차 생활용품오염물질방출시험및방출특성연구 (IV) - 전기 전자제품방출오염물질권고기준 ( 안 ) 도출 - ⅰ ⅱ ⅲ Abstract ⅳ 환경기반연구부생활환경연구과 Ⅰ,,,,,, 2010 Ⅱ i

歯1.PDF

#Ȳ¿ë¼®

歯140김광락.PDF


264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

02¿ÀÇö¹Ì(5~493s

10(3)-02.fm

10(3)-10.fm

< D3135C8A35FC3D6C1BEBCF6C1A4BABB5F E687770>

< C6AFC1FD28B1C7C7F5C1DF292E687770>

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II)

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

책임연구기관

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

Æ÷Àå82š

스포츠과학 143호 내지.indd

untitled

KAERI/RR-2245/2001 : 원전 주기적 안전성 평가기술 개발 : 방사선 안전성능 및 환경방사선 감시기술 개발

04-다시_고속철도61~80p

DBPIA-NURIMEDIA

개최요강


10(3)-09.fm

00약제부봄호c03逞풚

B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축

<5B31362E30332E31315D20C5EBC7D5B0C7B0ADC1F5C1F8BBE7BEF720BEC8B3BB2DB1DDBFAC2E687770>

012임수진

DBPIA-NURIMEDIA

<C7D1B1B9B1A4B0EDC8ABBAB8C7D0BAB85F31302D31C8A35F32C2F75F E687770>

14(4)-14(심고문2).fm

3. 클라우드 컴퓨팅 상호 운용성 기반의 서비스 평가 방법론 개발.hwp

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 19~41 석유제품브랜드의자산가치측정 : 휘발유를 중심으로 19

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: The Effect of Caree

DBPIA-NURIMEDIA

공휴일 전력 수요에 관한 산업별 분석

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

<C3D6C1BEBFCFBCBA2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D31C8A3292E687770>

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

서론

DBPIA-NURIMEDIA

03-서연옥.hwp

ePapyrus PDF Document

09이훈열ok(163-

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

Journal of Korean Society on Water Environment, Vol. 28, No. 2, pp (2012) ISSN ᆞ ᆞ ᆞ Evaluation of Forward Osmosis (FO) Membrane Per

歯5-2-13(전미희외).PDF

09È«¼®¿µ 5~152s

Journal of Educational Innovation Research 2018, Vol. 28, No. 2, pp DOI: IPA * Analysis of Perc

내지무인화_

DBPIA-NURIMEDIA

44-4대지.07이영희532~

<B8F1C2F72E687770>

68 JOURNAL OF RADIATION PROTECTION, VOL.33 NO.2 JUNE 2008

<31372DB9CCB7A1C1F6C7E22E687770>

untitled


27 2, 1-16, * **,,,,. KS,,,., PC,.,,.,,. :,,, : 2009/08/12 : 2009/09/03 : 2009/09/30 * ** ( :

DBPIA-NURIMEDIA

untitled

보고서(겉표지).PDF

PJTROHMPCJPS.hwp

Transcription:

1), Quee Daily indoor and outdoor nitrogen dioxide (NO2) concentration for 30 days were measured in 28 houses with questionnaire of housing characteristics in Brisbane, Australia. Using mass balance equation and regression analysis, penetration factors and source strength factors were calculated. T he penetration factors of 27 houses except one house were between zero and 1, though penetration factor should be between zero and 1 by means of mass balance equation. Relationship between indoor and outdoor concentrations in each 27 house was calculated using regression analysis. According to the obtained linear regression equation, the slope means penetration factor and the intercept means source strength factor. Calculated mean and standard deviation of coefficients of determination (R2) in electric and gas range houses were 0.70 0.13 and 0.57 0.21, respectively. T he source strength factors were more than zero in 27 houses. Mean and standard deviation of slopes in electric and gas range houses were 0.65 0.18 and 0.56 0.12, respectively. Mean and standard deviation of intercepts in electric and gas range houses were 1.49 1.25 and 5.77 3.55, respectively. Air exchange rate and source strength were calculated from penetration factor and source strength factor, respectively. Geometric mean and standard deviation of calculated air exchange rates in 27 houses were 1.1/hr 1.5. Presence of gas range was the most significant factor contributing to indoor NO2 level in house characteristics (p= 0.003). In gas range houses, source strengths ranged from 4.1 to 33.1cm3/hr m3 with a mean 12.7cm3/hr m3 and a standard deviation 9.8. T he source strengths of gas range houses were significantly different from those of electric range houses by t- test (p< 0.001). Key Words : Indoor air quality, Nitrogen dioxide, Mass balance, Air exchange rate, Source strength

I. 90% (indoor air quality) (Levy et al., 1998).,.., (SBS: sick building syndrome) (Wood, 1991).,,,,.,,,. (infiltration), (natural ventilation) (mechanical ventilation) (Esmen, 1985).,.,.,.. (NO2) (Moschanddreas Relwani, 1987).,, (Relwani, 1986).,,. (Spicer, 1989). NO2 SO2. (Yamanka, 1984). NO2,., (kerosene),. NO2 (air exchange rate) (Sexton et al., 1983). NO2 NO2 (WHO, 1987). NO2 (Bauer et al., 1986; Mohensin, 1987). (Brisbane) 30 NO2.. 30 NO2.. 1. NO2,

NO2 1999 4 6 30.. 2. NO2 (passive sampler). (diffusion) (infiltration) NO2. (5 4 1cm) (15g). triethanolamine NO2 (Yanagisawa Nishmura, 1982). (mass transfer coefficient) 0.10cm/sec (Lee et al., 1992), NO2 photospectrometer (Beckman DU 640). (badge case, spacer) Queensland University of Technology. 30 (protocol) (data- logger), 30. 1. (duplicate measurement)., 3m 2m. 1m,,. 3. (mass balance). (Nazaroff Cass, 1986).,,,.,. dc i dt, = IC o + S - IC i - R V Ci= indoor concentration (ppm), Co= outdoor concentration (ppm), I= air exchange rate (1/hr), S= source strength (cm3/hr m3), R= removal rate (cm3/hr), V= volume of the space (m3). (1) (1) (R) (K, hr-1) (VCi). R = K V C i (2) (2) (1), (1). dc i dt = IC o + S - IC i - K C i (3) ( dc i /dt=0 ), (4).

C i = C o I I + K + S I + K (4). (4) (5). C i = ( I I + K ) C o+ S ( I + K ) (5) I/(I+K) A, S/(I+K) B, (5) (6). C i = A C o + B (6) (6) (A) (B). (5), (A) I K 0 0 1. (B) S 0 0.,, (6). 30 Ci Co (6). 1. 30. Queensland University of T echnology. NO2 30 2 28 (T able 1). 3.4, 3.4. ( 10 ) (plaster: 11 ). 12, Pilot light (Spengler et al., 1994). 30 64%,. 93%. 2. (duplicate measurement) T able 1. House characteristics in 28 houses House type (single detached house) Number of bedroom (=1 or 2) Attached garage Smoker Gas range Gas water heater Window open Number of house with the house characteristic 21 7 17 2 16 8 26 Number of house without the house characteristic 7 21 11 26 12 20 2

.. NO2 8.5%. 7.1% 11.3%. 3. 28 NO2 30 12.6ppb, 8.2. 0.2 60.2ppb. NO2 30 15.5ppb, 8.5. 0.1 58.8. 0.85, 0.41 (T able 2). NO2,,, (Spengler et al., 1994). NO2 (T able 3). NO2 17.0ppb, NO2 9.6ppb. NO2 0.7 0.3 0.9 0.3. 4., NO2. (6). 28 1 0 1., 28 0., T able 2. Mean and standard deviation of NO2 concentrations, and ratio of indoor to outdoor concentration for 30 days in total 28 houses Mean (ppb) Standard deviation Minimum Maximum Indoor 12.66 8.26 0.26 60.26 Outdoor 15.56 8.56 0.16 58.86 Indoor/outdoor ratio 0.85 0.41 0.15 64.06 T able 3. House characteristic associated with indoor NO2 concentration Mean indoor NO2 with characteristics (ppb) Mean indoor NO2 without characteristics (ppb) p- value Gas range 17.0 7.4 9.6 4.5 0.003 Attached garage 16.1 8.9 10.6 4.3 0.038 Gas water heater 16.8 8.0 11.1 5.9 0.047

. 0.65 0.18 0.56 0.12. 1.49 1.25 5.77 3.55. (A: ) (B: ) Fig. 1., 0 1 1 27 30 NO2. (R2) 0.70 0.13 0.57 0.21. Fig. 2. Figure 1. Relationship between penetration factor and source strength factor. Figure 2. Relationship between coefficient of determination and source strength.

5. 27 (5) (6). (5) K 0.8/hr (Wikes et al., 1996; Wade III et al., 1975; Ryan et al., 1983; T raynor et al., 1982). (5) 27 30 1.1/hr 1.5. 27 Lognormal (Wilson et al., 1996). 30 NO2 6.9cm3/hr m3 8.1., NO2 12.7cm3/hr m3, 9.8. 2.8cm3/hr m3, 2.6 (T able 4). NO2 (p< 0.001).. (Brisbane) 30 NO2 (Boston) (Ryan et al., 1988). (autoregression)., NO2. (Levy et al., 1998), 93%. NO2. NO2., NO2. Sexton (1983) NO2 NO2 60% 40%. NO2 65% 56%.,. (Fig. 2). Fig. 2,.,.. T able 4. Calculated source strengths for 30 days in each electric and gas range house Mean (cm3/hr m3) Standard deviation Minimum Maximum Electronic (16 houses) 2.8 2.6 0.3 9.6 Gas (11 houses) 12.7 9.8 4.1 33.1

(5) K( ). K, I K @Risk (Monte Carlo) (Smith, 1994)., I 0.5ACH 3ACH, K 0.8/h 3/h., K (5) I.,, NO2 0.8/hr. NO2,.. (5), 0 1 0. 1 27., NO2,.. V. 28 30 NO2.,,,.,.,, NO2.. 1. (duplicate measurement). NO2 8.5%. 7.1% 11.3% 2. 28 NO2 30 12.6ppb, 8.2. 0.2 60.2ppb. NO2 30 15.5ppb, 8.5. 0.1 58.8ppb. 0.85, 0.41 3. NO2 (p=0.003). NO2 17.0ppb, 9.6ppb. 4. (R2).,. 5.,. 0 1, 0. 27 0 1. 28 0.,

. 6.. 27 30 1.1/hr 1.5. 27 NO2 6.9cm3/hr m3 8.1. 11 NO2 12.7 cm3/hr m3, 9.8. NO2 (p< 0.001). Korea- Australia Fellowship,. RE FE RE NCE S Levy JI, Lee K, Spengler JD, Yanagisawa Y, Bischof W, Braathen O, Chung Y, Coward S, Gutschmidt K, Jin K, Korenaga T, Ohkoda Y, Pastuszka J, Patil RS, Qing X, Raizenne M, Romieu I, Salonen R, Sega K, Seifert B, Shah S, T orres E, Yoon D, Zhang X. Impact of residential nitrogen dioxide exposure on personal exposure: An international study. Journal of the Air & Waste Management Association 1998; 48: 553-560. Wood JE. An Engineering approach to controlling indoor air quality. Environmental Health Perspectives 1991; 95: 15-21. Sexton K, Letz R, Spengler D. Estimating human exposure to nitrogen dioxide: an indoor/outdoor medeling approach. Environmental Research 1983; 32: 151-166. World Health Organization (WHO), Air Quality Guidelines for Europe. European Series No. 23. WHO: Copenhagen, Denmark:WHO;p.1987; 297-310. Bauer MA, Utell MJ, Morrow PE, Speers DM, Gibb HP Inhalation of 0.3 ppm nitrogen dioxide potentiates exercise- induced bronchospasm in asthmatics. Am Rev Respir Dis 1986; 134: 1203-1208. Mohensin V. Airway responses to nitrogen dioxide in asthmatic subjects. J T oxicol & Environ Health 1987; 22: 371-380. Esmen NA. T he status of indoor air pollution. Environmental Health Perspectives 1985; 62: 259-265. Moschandreas DJ and Relwani SM. Emission rates from range top- burner assessment of measurement methods. Atmospheric Environment 1987; 21: 285-289. Relwani SM, Moschandreas DJ, Billick IH Effects of operational factors on pollutant emission rates from residential gas appliances. Journal of the Air Pollution Control Association 1986; 36: 1233-1237. Spicer CW, Coutant RW, Ward GF, Joseph DW. Rates and mechanisms of NO2 removal from indoor air by residential materials. Environmental International 1989; 15: 634-654. Yamanaka S. Decay rates of nitrogen oxides in a typical Japanese living room. Environ Sci T ech 1984; 18: 566-570. Yanagisawa Y and Nishmura H. A badge- type personal sampler for measurement of personal exposures to NO2 and NO in ambient air. Environment International 1982; 8: 235-242. Lee K, Yanagisawa Y, Spengler JD, Billick IH Wind velocity effects of sampling rate of NO2 badge. J Expos Anal Environ Epi 1992; 2: 207-219. Nazaroff WW and Cass GR. Mathematical

modeling of chemically reactive pollutants in indoor air. Environ Sci T echnol 1986; 20: 924-934. Spengler JD, Schwab M, Ryan PB, Colome S, Wilson AL, Billick IH, Becker EJ. Personal exposure to nitrogen- dioxide in the Los- Angeles basin. Journal of the Air & Waste Management Association 1994; 39-47. Smith RL. Use of Monte Carlo simulation for human exposure assessment at a Superfund site. Risk Analysis 1994; 14(4): 433-439. Wikes CR, Koontz MD, Billick IH. Analysis of sampling strategies for estimating annual average indoor NO2 concentrations in residence with gas appliance. Journal of the Air & Waste Management Association 1996; 46: 853-860. Wade III WA, Cote WA, Yocom JE. A study of indoor air quality. Journal of the Air Pollution Control Association 1975; 25(9): 933-939. Ryan PB, Spengler JD. Letz R. T he effects of kerosene heaters on indoor pollutant concentrations: a monitoring and modeling study. Atmospheric Environment 1983; 17: 1339-1345. T raynor GW, Apte MG, Dillworth JF, Hollowell CD, Sterling EM. T he effects of ventilation on residential air pollution due to emissions from a gas- fired range. Environment International 1982; 8: 447-452. Wilson AL, Colome SD, T ian Y, Becker EW, Baker PE, Behrens DW, Billick IH, Garrison CA California residential air exchange rates and residence volumes. J Expos Anal Environ Epi 1996; 6(3): 311-326. Ryan PB, Soczek ML, Spengler JD, Billick IH. T he Boston residential NO2 characterization study I. Preliminary evaluation of the survey methodology. Journal of the Air Pollution Control Association 1988; 38: 22-27.