DBPIA-NURIMEDIA

Similar documents
DBPIA-NURIMEDIA

개최요강


한약재품질표준화연구사업단 금은화 ( 金銀花 ) Lonicerae Flos 생약연구과

한약재품질표준화연구사업단 강활 ( 羌活 ) Osterici seu Notopterygii Radix et Rhizoma 생약연구과

Statistical Data of Dementia.

한약재품질표준화연구사업단 고삼 ( 苦參 ) Sophorae Radix 생약연구과

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

歯140김광락.PDF

03-2ƯÁý -14š

한약재품질표준화연구사업단 작약 ( 芍藥 ) Paeoniae Radix 생약연구과

- 2 -

제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

(72) 발명자 이승원 강원도 고성군 죽왕면 오호리 정동호 강원도 고성군 죽왕면 오호리 이호생 강원도 고성군 죽왕면 오호리 이 발명을 지원한 국가연구개발사업 과제고유번호 PMS235A 부처명 국토해양부 연구사업명 해양자원개발 연구과제명

Lumbar spine

학술원논문집 ( 자연과학편 ) 제 50 집 2 호 (2011) 콩의식품적의의및생산수급과식용콩의자급향상 李弘䄷 * 李英豪 ** 李錫河 *** * Significance of Soybean as Food and Strategies for Self Suffici

12권2호내지합침

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

09È«¼®¿µ 5~152s

(72) 발명자 김창욱 경기 용인시 기흥구 공세로 , (공세동) 박준석 경기 용인시 기흥구 공세로 , (공세동) - 2 -

84-01.fm

03-서연옥.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

00....

한약재품질표준화연구사업단 맥문동 ( 麥門冬 ) Liriopis Tuber 생약연구과

CERIUM OXIDE Code CeO CeO 2-035A CeO 2-035B CeO REO % CeO 2 /REO % La 2 O 3 /REO %

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

139~144 ¿À°ø¾àħ

04_이근원_21~27.hwp

14.531~539(08-037).fm

06ƯÁý

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

26(1)-11(김기준).fm

인문사회과학기술융합학회

특허청구의 범위 청구항 1 Na-알지네이트(Na-alginate), 합성 제올라이트(synthetic zeolite)와 분말활성탄(powdered activated carbon) 을 혼합하여 2 ~ 6 %의 CaCl 2 용액에서 경화시켜 만들어진 직경 1 ~ 5 mm의

表紙(化学)

09김정식.PDF

DBPIA-NURIMEDIA

< C6AFC1FD28B1C7C7F5C1DF292E687770>

10 (10.1) (10.2),,

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

38(6)-01.fm

<31335FB1C7B0E6C7CABFDC2E687770>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

Æ÷Àå½Ã¼³94š

<C7D1BDC4BFAC20B1E8B5BFBCF6B9DABBE7B4D4676C75636F20C3D6C1BE5B315D2E687770>

이 발명을 지원한 국가연구개발사업 과제고유번호 G 부처명 한국환경산업기술원 연구사업명 토양지하수오염방지기술개발사업 연구과제명 시데로포아(Siderophore)의 대량생산을 통한 토양 및 지하수의 친환경 중금속 제거기술 개 발

untitled

51(2)-06.fm

DBPIA-NURIMEDIA

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

???? 1

Microsoft Word - Report_합본__도시광산.doc

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: * Review of Research

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: A study on Characte

- 1 -

(5차 편집).hwp

DBPIA-NURIMEDIA

<B3EDB9AE20BCD3C7A5C1F62E687770>

(....).hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

012임수진

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228


Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

책임연구기관

[수도권대기환경청 소식] 1. 제10차 수도권 대기환경정책 연구회 년도 1/4분기 직장교육 26 제5절 환경용어 해설 교토메카니즘(Kyoto Mechanism) 라돈(Rn) 배출가스 재순환장치(EGR, Exhaust G

09구자용(489~500)

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있


untitled

DBPIA-NURIMEDIA

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

DBPIA-NURIMEDIA

CONTENTS January 2008, VOL IP Report 59 IP Column 101 IP Information 123 IP News

< E C0E520C8ADC7D0BEE7B7D02E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

PowerPoint 프레젠테이션

83-07.fm

<5B31362E30332E31315D20C5EBC7D5B0C7B0ADC1F5C1F8BBE7BEF720BEC8B3BB2DB1DDBFAC2E687770>

歯1.PDF

19(1) 02.fm

<C8B2BCBABCF62DB8D4B0C5B8AEBFCDB0C7B0AD2E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

< C6AFC1FD28C3E0B1B8292E687770>

ePapyrus PDF Document

DBPIA-NURIMEDIA

(JH)

82-01.fm

Transcription:

Original Article Journal of Apiculture 33(1) : 43~53 (2018) DOI: 10.17519/apiculture.2018.04.33.1.43 Studies on the Organic Compounds and Mineral Constituents of Acanthopanax (Acanthopanax senticosus) and Acacia (Robinia pseudo-acacia) Honey Produced in Korea Weon Ki Paik*, Ae Kyung Kwak, Keun Hong Kim, Myeong Lyeol Lee 1, Yong Soo Choi 1 and Hye Kyung Kim 1 Division of Life Science & Chemistry, Daejin University 1 Department of Agricultural Biology, National Institute of Agricultural Science, RDA (Received 26 March 2018; Revised 25 April 2018; Accepted 26 April 2018) Abstract In order to use as a new functional food material, we analyzed the chemical components including the organic compounds, minerals and Vitamin C of acanthopanax and acacia honey which were produced in South Korea. The condensed rate of methanol extraction in honey was 85.5% of acanthopanax honey and it was 93.06% of acacia honey. In the case of acanthopanax honey, main organic compounds that extract by organic solvents in GC-MS analysis were trichloromethane, phosphine, superpalite, carbon tetrachloride, methyclolpropane, cyclopentane etc. and main aromatic compounds that extract by organic solvents in SPME analysis were dibutyl phthalate, pelargonaldehyde, cyclopentasiloxane, hexasiloxane, pyrrolidine, lauros tearic acid, vulvic acid etc. Also, in case of acacia honey, main organic compounds were trichloromethan, acetoxyethane, hexanaphthene, acetidin etc. and main aromatic compounds were hydrazomethan, azulene, cyclotrisiloxane, hydrazine etc. Proximate composition was crude protein 0.43%, crude fat 0.36%, crude ash 0.04% in acanthopanax honey and crude protein 0.10%, crude fat 0.29%, crude ash 0.06% in acacia honey. Free sugar that analyze by HPLC was fructose 32.38%, glucose 25.25%, total sugars 57.63% in acanthopanax honey and fructose 48.52%, glucose 24.29%, total sugars 72.81% in acacia honey. Vitamin C was not detected in two sample honeys. Minerals by ICP analysis were detected total 23 kinds in acanthopanax honey, K 14.230ppm > Na 6.234ppm > Si 4.206ppm > B 3.461ppm > Ca 2.235ppm > Mg 0.742ppm etc. and total 22 kinds in acacia honey, Na 4.527ppm > Si 3.420ppm > K 3.091ppm > Zn 1.482ppm etc. Key words: Acanthopanax honey, Acacia honey, Organic compounds, Minerals, GC-MS, SPME, ICP *Corresponding author. E-mail: 100@daejin.ac.kr 43

44,. ( ) ( ) (Honey Plants),, (, 2003;, 2007;, 2011),.,,,, (Honey),, (, 2007). (330kcal/100g),, (Ferreres et al., 1991; Sabatier et al., 1992; Chen et al., 2000) (Blaser, 1990; Willix et al., 1992; Molan, 1992, 2001, 2002; Shin and Ustunol, 2005), (, 1994)., hydroxy methyl furfur(hmf), (Kushnir, 1979; White et al., 1962, 1963, 1967, 1979, 1980; Davies, 1975), (1971), (1972) royal jelly, (1984) HMF, diastatic activity,,, (1991), diastase HMF. (2001), (2005), (, 1995;, 2001, 2002;, 2002;, 2003;, 2003;, 2003;, 2008; 2013).,., (Rural Development Administrate RDA, 2015). (Acanthopanax senticosus) (Robinia pseudo-acacia),,,,,, (Leptospermum scoparium). 2012 8 2012 5.

45 Fig. 1. Schematic diagram of solvent extraction of each honey., honeynz (www. honeynz.co.nz) 2013 UMF(Unique Manuka Factor) 15+. 100g 500ml(MeOH 4 : H 2 O 1) 24 Fig. 1 Haxane, Chloroform, Ethyl acetate, Butanol. (SPME) Gas Chromatography SCAN ( : Agilent 6890GC/5973iMSD). ( 2013-203 ). 105 C, Kjeltec 8400 Analyzer unit Foss(Denmark), FOSS Drive unit 2050(Sweden), 500 C. 100g,,,. C Table 1. 5 (fructose, glucose, sucrose, lactose, maltose) (St.Lois, MO, USA) 50% 30 3,590 g 20 (CR-22N, Hitachi, Tokyo, Japan) 0.2µm membrane filter(minisart RC, Sartorious). HPLC(Nanospace SI-2, Shiseido, Tokyo, Japan) (RI-201H, Shodex, Tokyo, Japan). Imtakt Unison UK-Amino(250 3.0mm, 3µm), 60 C, 10µl,

46 Table 1. HPLC operation condition for free sugars and vitamin C Free sugars Vitamin C Instrument Nanospace SI-2, Shiseido, Tokyo, Japan Detector RID(RI-201H,Shodex, Tokyo, Japan) PDA(Thermo Fisher, USA) Wave length Refrative Index 254nm Analytical Column Imtakt Unison Uk-Amino Shiseido Capcellpak MG120 (3.0mm 250mm, 3um) (4.6mm 250mm, 5um) Column Oven Temp. 60 C 40 C Flow rate 0.4ml/min 0.5ml/min Injection vol. 10ul 5ul Mobile Phase 90% ACN, 100 0.05 M KH 2 PO 4 : ACN, 98 : 2 90% 0.4ml 40. C 1g 5% (Metaphosphoric acid, Wako) 20mL (Ultra- Turrax T25, IKA Labo, Germany) 50mL, refrigerated centrifuge(5804r, Eppendorf, Germany) 12,500 g 10 HPLC(Nanospace SI-2, Shiseido, Tokyo, Japan). Shiseido Capcellpak MG 120(250 4.6mm, 5um), 0.05 M KH 2 PO 4 acetonitrile 98:2, 254nm, 5µl, 40 C, 0.5ml/min. (, 2003) 100mL ICP(Inductively coupled plasma) Optical Emission Spectrometer(Model Name: Optima 2000DV, PerkinElmer, USA), forward RF power; 1,300W, pump flow rate; 1.5ml/min, plasma flow; 15L/min, auxiliary flow; 0.2L/min, nebulizer flow; 0.65L/min. 100g (MeOH) 85.50%, 93.06%, H 2 O 75.84g, 83.26g, Butanol 5.74g, 5.01g. Hexane Ethyl acetate Chloroform 0.64g, 2.07g, 1.21g, 1.04g, 3.6g. 0.35g. Haxane, Chloroform, Ethyl acetate, Butanol H 2 O. 87.02% H 2 O 77.63g (, 2014),, (Kim and Rhee, 1996) H 2 O. (MeOH) 91.00%, H 2 O 78.32g Butanol, Hexane, Ethyl acetate Chloroform 7.06g, 0.67g, 4.60g 0.35g (Fig. 2). Fig. 3. GC-MS Chloroform

47 90 80 70 Condensed mass (g) 60 50 40 30 20 Acanthopanax honey Acacia honey Manuka honey 10 0 Hexane Fraction Chloroform Fraction Ethyl acetate Fraction Butanol Fraction H 2 O Fraction Fig. 2. Condensed mass (g) of solvent extractions of acanthopanax (Acanthopanax senticosus), acacia (Robinia pseudo-acacia) and manuka (Leptospermum scoparium) honey 100 (g). Trichloromethane(peak abundance: 5,800, 000), Formyl trichloride, Methenyl trichloride, Superpalite, Carbon Tetrachloride, Butanol Methyclolpropane(peak : 3,200,000), Acetidin, Acetoxyethane, 2- Propenoic acid, Propylcarbinol, Phosphine, Haxane Cyclopentane(peak : 5,800,000), Trimethylene oxide, 3-Methylpentane, Triptane, Hexyl hydride Ethyl acetate Trichloromethane(peak : 5,800,000), Trimethylene oxide, Propanoic acid, 1-Acetoxypropane, 1-Propyl acetate. SPME Dibutyl phthalate(peak : 4,000,000) Pelargonaldehyde, Cyclopentasiloxane, Hexasiloxane, Cycloheptasiloxane, Pyrrolidine, Dodecanoic acid, Lauros tearic acid, Vulvic acid, Dodecylic acid. Fig. 4. GC-MS Chloroform Trichloromethane(peak abundance: 11,000,000), Hexyl hydride, Gettysolve-B, Butanol Propyl carbinol(peak :5,200,000), Acetoxyethane, Acetidin, Haxane Hexanaphthene(peak : 11,600,000), Cyclohexane Ethyl acetate Methane trichloride(peak : 6,000,000), Propanoic acid. SPME Hexyl hydride(peak :31,0000), Hydrazomethan, Cyclotrisiloxane, Cyclopentasiloxane, Hydrazine, Cyclotrisiloxane, Azulene, Dioctyl adipate. (2014) GC-MS Formyl trichloride, Methenyl trichloride, Cyclopentane, Ethyl ethanoate, Trichloromethan, Butyl hydroxide, Butyraldehyde, Methylolpropan, Propyl carbinol, Propanoic acid, Acetoxyethane, Triptane, SPME 1,2-Benzenedicarboxylic acid, Benzaldehyde, Octacosane, Hexatriacontane, Cyclopentasiloxane, Pentanoic acid, Naphthalene, Nonanaldehyde, Cyclopentasiloxane, Pelargonaldehyde, Aldehyde, 3-Pyridinecarbonitrile, Nicotinonitrile, Pyrobenzol, Cyclotrisiloxane, Cyclohexatriene. 100g 21.22%, 0.43%, 0.36%, 0.04%, 77.95%, 18.75%, 0.10%, 0.44%, 0.06%, 80.65%

48 Chloroform Butanol Hexane Ethyl acetate SPME Fig. 3. Organic compound composition spectra of acanthopanax honey by each solvent (Analyzed by Agilent 6890GC/5973iMSD model).

49 Chloroform Butanol Hexane Ethyl acetate SPME Fig. 4. Organic compound composition spectra of acacia honey by each solvent (Analyzed by Agilent 6890GC/5973iMSD model).

50 Table 2. Proximate chemical composition of acanthopanax, acacia and manuka honey (unit: %) Sample Components Moisture Crude protein Crude fat Crude ash Carbohydrate Acanthopanax honey 21.22 0.18 0.43 0.01 0.36 0.02 0.04 0.00 77.95 0.15 Acacia honey 18.75 0.42 0.10 0.01 0.44 0.01 0.06 0.01 80.65 0.39 Manuka honey 19.79 0.07 0.23 0.00 0.34 0.09 0.24 0.00 79.30 0.03 Results are expressed as Mean S.D. Table 3. Contents of free sugars and vitamin C on acanthopanax, acacia and manuka honey Contents Sample Acanthopanax honey Acacia honey Manuka honey Vitamin C (mg/100g) 0.00 0.00 0.00 0.00 0.00 0.00 Total sugars 57.63 3.25 72.81 2.19 70.23 1.53 Fructose 32.38 1.77 48.52 1.85 39.07 2.40 Free sugars (%) Results are expressed as Mean S.D. Glucose 25.25 1.47 24.29 0.33 31.16 0.86 Sucrose 0.00 0.00 0.00 0.00 0.00 0.00 Lactose 0.00 0.00 0.00 0.00 0.00 0.00 Maltose 0.00 0.00 0.00 0.00 0.00 0.00 (Table 2). (2013) (0.28%), (0.57%). (2013)., (1994) 0.26%. (2003) ( 2.71%, 1.06%, 86.41%). 19.79%, 0.23%, 0.34%, 0.24%, 79.30%.,. (1984) 0.02%, 0.57%, 0.10%, 0.12%, 0.0%.. HPLC Table 3. fructose, glucose sucrose, lactose, maltose, 57.63% fructose 32.38%, glucose 25.25%. (2013) (62.27), (35.31%) (26.96%). 72.81% fructose 48.52%, glucose 24.29%, 70.23% fructose 39.07%, glucose 31.16%., C 3. (2003) sucrose 152mg%, glucose 114mg%, fructose 6mg%, Kim Rhee(1996),.

51 Table 4. Mineral contents of acanthopanax, acacia and manuka honey Minerals (ppm) Kind of honey Acanthopanax Acacia Manuka Minerals (ppm) Kind of honey Acanthopanax Acacia Manuka Macrominarals K 14.230 0.764 3.091 0.152 11.865 0.346 Na 6.234 0.302 4.527 0.366 5.573 0.308 Ca 2.235 0.053 0.294 0.013 2.223 0.161 Mg 0.742 0.017 0.492 0.025 0.605 0.006 Microminarals Other microminarals B 3.461 0.624 1.319 0.521 1.754 0.158 Si 4.206 0.024 3.420 0.569 4.487 0.004 Fe 0.465 0.024 0.226 0.005 0.165 0.020 Sb 0.212 0.000 0.107 0.006 0.217 0.000 Se 0.290 0.001 0.017 0.024 0.290 0.000 Ti 0.159 0.000 0.195 0.001 0.236 0.032 Co 0.267 0.000 0.250 0.001 0.269 0.001 Al 0.194 0.003 0.154 0.017 0.220 0.028 Cr 0.266 0.000 0.000 0.000 0.273 0.001 As 0.092 0.002 0.000 0.000 0.064 0.006 Zn 0.239 0.047 1.482 0.197 0.267 0.036 Cd 0.041 0.000 0.058 0.000 0.040 0.000 Cu 0.084 0.008 0.119 0.018 0.035 0.001 Sr 0.026 0.001 0.019 0.001 0.013 0.001 V 0.024 0.001 0.000 0.000 0.024 0.001 Ba 0.017 0.001 0.039 0.009 0.010 0.003 Mo 0.016 0.001 0.056 0.004 0.017 0.001 Li 0.006 0.000 0.099 0.000 0.005 0.000 Ni 0.000 0.000 0.057 0.000 0.000 0.000 Pb 0.003 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.011 0.001 0.000 0.000 Be 0.000 0.000 0.118 0.001 0.000 0.000 Results are expressed as Mean S.D. ICP 23 K 14.230ppm > Na 6.234ppm > Si 4.206ppm > B 3.461ppm > Ca 2.235ppm > Mg 0.742ppm, 22 Na 4.527ppm > Si 3.420ppm > K 3.091ppm > Zn 1.482ppm (Table 4). (macrominerals) Mg, Ca, Na, K, (microminerals) Mo, Zn, Cu. K 11.865ppm > Na 5.573ppm > Si 4.487ppm > Ca 2.223ppm. K 4.60, 3.84 Na. (2011) K. Ca 7.60, 7.56 Mg 1.50, 1.23.. WHO, Cd (0.041ppm), (0.058ppm), (0.040ppm) (WHO : 0.3ppm ). (Rashed and Soltan, 2004).

52. 85.50%, 93.06%, GC-MS Trichloromethane, Phosphine, Superpalite, Carbon Tetrachloride, Methyclolpropane, Cyclopentane Trichloromethan, Hexyl hydride, Propyl carbinol, Acetoxyethane, Acetidin, Hexanaphthene, Methane trichloride. SPME Dibutyl phthalate, Pelargonaldehyde, Cyclopentasiloxane, Hexasiloxane, Pyrrolidine, Dodecanoic acid, Lauros tearic acid, Vulvic acid Hexyl hydride, Hydrazomethan, Azulene, Cyclotrisiloxane, Hydrazine. 21.22%, 0.43%, 0.36%, 0.04%, 77.95% 18.75%, 0.10%, 0.44%, 0.06%, 80.65%, (0.23%) (0.34%). HPLC 57.63%, fructose 32.38%, glucose 25.25% 72.81%, fructose 48.52%, glucose 24.29%, 70.23%, fructose 39.07%, glucose 31.16% C 3. ICP 23 K 14.230ppm > Na 6.234ppm > Si 4.206ppm > B 3.461ppm > Ca 2.235ppm > Mg 0.742ppm, 22 Na 4.527ppm > Si 3.420ppm > K 3.091ppm > Zn 1.482ppm. K 11.865ppm > Na 5.573ppm > Si 4.487ppm > Ca 2.223ppm, K 4.6, 3.84 K Na. ( : PJ009378).,,. 1994., HMF. 23: 675-679.,,. 2008.. 21: 15-21.,,,. 1995.. 18: 53-56.,. 1972. free amino acid. 6: 7.,,,,. 2013. ( ). 28: 345-354.,,,. 2014.. 29: 125-135.. 2003.. J. Fd Hyg. Safety 18: 184-194.,,,,,. 2003... pp. 178-184.. 2003.., 2003.. 3p.,,,,,,. 2007.. 22: 147-152.,,,,. 1971.. 3: 168.,,. 2001.. 21: 383-388.,,. 2002.. 22: 66-71.,,,,,,. 2002.. 31: 899-904.,,,,. 2011., Hydroxy Methyl Furfural. 31: 241-249.. 2005.. 34: 162-166.

53,,,. 1984.. 16: 17.,,,. 2003.. 32: 501-504.,,,,,. 2013.. 28: 75-78.,,,. 1991. diastase hydroxymethylfurfural. 17: 155. Blaser, M. J. 1990. Helicobacter pylori and the pathogenesis of gastroduodenal inflammation. J. Infect. Dis. 161: 626-633. Chen, L, A. Mehta, M. Berenbaum. A. R. Zangerl and N J. Engeseth. 2000. Honeys from different floral sources as inhibitors of enzymatic browning in fruit and vegetable homogenates. J. Agric. Food Chem. 48: 4997-5000. Davies, A. M. C. 1975. Amino acid analysis of from Eleun Countries. J. Apicultural Res. 4: 29. Ferreres, F. A., Tomas-Barberan, B. I. Gil and F. Tomas-Lorents. 1991. An HPLC technique for flavonoid analysis in honey. J. Sci. Food Afric. 56: 49-56. Kim, E. S. and Rhee, C. O. 1996. Comparison of quality attributes of Korean native bee honey and foreign bee by K/Na ratio. J. Kor. Sic. Food Nutr. 25: 672-679. Kushnir, I. 1979. Sugar and sugar products; Sensitive thin layer chromatographic detection of high fructose corn syrup and other adulterants in honey. J. Assoc. Anal. Chem. 62: 917. Molan, P. C. 1992. The antibacterial activity of honey. Bee world 73: 5-28. Molan, P. 2001. Why honey is effective as a medicine. Bee world 82: 22-40. Molan, P. 2002. Not all honeys are the same for wound healing Bull. Eur. Tissue Rep. Soc. 9: 5-6. Rashed, M. N. and Soltan, M. E. 2004. Major and trace elements in different types of Egyptian mono-floral and non-floral bee honeys. J. Food. Comp. Anal. 17:725-735. Rural Development Administration. 2015. Agricultural Technology Report http://www.rda.go.kr/board accessed on 30, 9. 2015. Sabatier S., M. J. Amiot, M. Tacchini and S. Aubert. 1992. Identification of falvonoids in sunflower honey. J. Food Sci. 57: 773-777. Shin, H. and Z. Ustunol. 2005. Carbohydrate composition of honey from different floral sources and their influence on growth of selected intestina bacteria. Food Res. Int. 38: 721-728. White, J. W. Jr., Riethof, M. L., Subers, M. H. and Kushnir, I. 1962. Composition of American honey. 1261p. Technical Bull., U.S. Dept. Agr., Washington, D.C. White, J. W. Jr. 1963. Determination of acidity, nitrogen and ash in honey. J. Assoc. Anal. Chem. 45: 548. White, J. W. Jr. and Kushnir, I. 1967. Composition of American honey; Protein. J. Apicultural Res. 4: 29. White, J. W. Jr. 1979. Methods for determining carbohydrates, hydroxyfurfural and proline in honey; Collaborative study. J. Assoc. Ana. Chem. 62: 515. White, J. W. Jr. 1980. Detection of honey adultration by carbohydrate anylysis. J. Assoc. Anal. Chem. 63: 11. Wilix, D. J., P. C. Molan and C. G. Harfoot. 1992. A comparison of the sensitivity of wound-infecting species of bacteria to the antibacterial activity of manuka honey and other honeys. J. Appl. Bacteriol. 73: 338-394.