Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography Vol. 34, No. 1, 21-32, 2016 http://dx.doi.org/10.7848/ksgpc.2016.34.1.21 ISSN 1598-4850(Print) ISSN 2288-260X(Online) Original article 오픈소스환경의노천광산모니터링시스템개발을위한데이터베이스고도화방안 Database Enhancement for Development of Open-pit Mine Monitoring System in Open Source Environments 김세열 1) 유지호 2) 유영걸 3) 이현직 4) Kim, Se-Yul Yu, Ji-Ho Yu, Young-Geol Lee, Hyun-Jik Abstract Open-pit mines are the critical infrastructure for acquiring natural resources. Since it could be endangered by environmental and safety problems during operations, continuous monitoring is required for this type of mine. However, the domestic level management and accumulation of present state data of the topographical alteration are incurred by the development and restoration of open-pit mines relying on digital topographic maps and site surveys. Because of it, other than an expert cannot be viewed easily examines those changes information of open-pit mines in the domestic level. If the efficient management and public access of the open-pit mine is targeted, it is easy to build a web-based three-dimensional monitoring system, utilized in the space information software of open source. Therefore, we purposed on developing an open-pit mine monitoring system to support the development and restoration of the ecology-friendly environment, which could be easily monitored by the general public for those changes within terrain and environments due to operations of the mine. Keywords: Open-pit Mine, Open Source, Monitoring System, Database, Geospatial Information Openplatform 초록 (open-pit mine).. 3,. :,,,, Received 2015. 11. 17, Revised 2016. 01. 22, Accepted 2016. 02. 18 1) Member, Dept. of Civil Engineering, Sangji University(winwopon@naver.com) 2) Member, Chung-Ang Aerosurvey CO., LTD.(sjce96@hanmail.net) 3) Member, Dept. of Civil Engineering, Sangji University(cain25@nate.com) 4) Corresponding Author, Member, Dept. of Civil Engineering, Sangji University(hjiklee@sangji.ac.kr) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 21
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, 21-32, 2016 1. 서론. Froese and Mei(2008) LiDAR(Light Detection And Ranging) InSAR(Interferometric SAR) DEM. Brown et al.(2007) 2km GNSS. Tong et al.(2015) UAV LiDAR, Point Cloud, 3D. DEM(Digital Elevation Model),.. GIS... (Lee et al., 2014(c))., GIS, (Singh et al., 2012; YIN et al., 2009; Lee et al., 2008).,.,. 3... Fig. 1. Fig. 1. Main process of this research 2. 기초지형공간정보를이용한모니터링지역의분류 (operating aspect) (environmental ecological aspect). (differential image) 22
Database Enhancement for Development of Open-pit Mine Monitoring System in Open Source Environments DEM(residual DEM) (Lee et al., 2015(a); Lee et al., 2015(b))..,.. (mining area), (ecological restoring area) (disaster restoring area).,.. (waste stowage area), (ecological restored area).,.,,. 1 2 DEM, (Kim et al., 2015). UAV LiDAR DEM. Fig. 2. Fig. 2. Classification of monitoring area and data acquisition method 2.1 영상기반의모니터링지역분류. 2007 2014 Fig. 3. Fig. 3. Classification of monitoring area using digital image 2007 2014.. 2012 8. 2007 23
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, 21-32, 2016 2014.. Fig. 4.. DEM 2007 7 2014 5 LiDAR 1m Grid DEM. DEM. DEM. 2007 DEM 2014 DEM Fig. 5. Fig. 5. Residual DEM of active mine in elapse of time (a) Subdivision of monitoring area with digital image(2007) (b) Subdivision of monitoring area with digital image(2014) Fig. 4. Detail classification of monitoring area with digital image 2.2 DEM 기반의모니터링지역분류 DEM DEM... 2012.. DEM. DEM Table. 1 50m 201,008m² 1.8%. 50m~0m 1,629,346m² 14.7%. 24
Database Enhancement for Development of Open-pit Mine Monitoring System in Open Source Environments 0m~50m 1,203,069m² 10.9% 50m 87,626m² 0.8%.. Table 1. Subdivision of the monitoring area using residual DEM of 2007 and 2014 Interval Area(m 2 ) ratio(%) -50 m below 201,008 1.816-50m ~ 0m 1,629,346 14.723 non change 7,945,998 71.799 0m~50m 1,203,069 10.871 50m above 87,626 0.792 Total 11,067,047 100.000 3. 노천광산모니터링시스템을위한데이터베이스구축 3.1 모니터링을위한데이터베이스고도화및구축방안. Fig. 6., (Daum map), USGS EarthExplorer., GSD 0.4m 1m DEM. UAV LiDAR. Client WebGL 3 Cesium. Fig. 7 (http:// gwopmms.kro.kr) (Lee et al., 2014(a); Lee et al., 2014(b)). DEM,. Cesium DEM. Fig. 8 DEM... Fig. 6. Main process of DB construction for the monitoring system Fig. 7. Main page of monitoring system 25
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, 21-32, 2016 Fig. 8. Construction of combined DB for monitoring system WGS84 WGS84 OSGeo4W Shell. Geowebcache. Fig. 9 (a) Geowebcache Fig. 9 (b) Geowebcache. GeoServer GeoTiff Cesium Cesium Image Provider. Fig. 10. (a) Non-Apply to Geowebcache Fig. 10. Process of ortho image uploading on monitoring DB (b) Apply to Geowebcache Fig. 9. Apply to Geowebcache before&after GeoServer Image Pyramid Geowebcache. Image Pyramid OSGeo4W Shell GDAL(Geospatial Data Abstraction Library) gdaladdo Image Pyramid. Geoserver 2007, 2008, 2010, 2012, 2014, 2015.. Fig. 11. Fig. 11. Digital ortho image newly uploaded on Cesium 26
Database Enhancement for Development of Open-pit Mine Monitoring System in Open Source Environments.. Vector DEM Raster DEM OSGeo4W Shell WGS84. Raster DEM DEM Null DEM. DEM DEM NASA SRTM(Shuttle Rader Topography Mission) DEM. SRTM DEM DEM SRTM DEM PCI Geometica Raster DEM Vector DEM Null LiDAR Vector DEM SRTM Vector DEM Vector DEM. DEM Raster DEM GeoServer. Fig. 12 GeoServer BIL GeoServer Cesium-GeoServer Terrain Provider DEM.. Cesium-GeoServer Terrain Provider. Cesium-GeoServer Terrain Provider 4, Cesium-GeoServer Terrain Provider 36. Fig. 13. Fig. 13. Solution of DEM registration on monitoring system Fig. 12. Process of DEM uploading on monitoring DB Cesium-GeoServer Terrain Provider Raster DEM Cesium 3.2 모니터링시스템데이터베이스취득 2007 7 2014 6. 2007 Rollei AIC Pixel 9 m, Image 5,440 4,080, GSD 0.25m 2014 Intergraph DMC Pixel 12 m, Image 7,680 13,824, GSD 0.12m. Table 2. 2007 Optech ALTM 30/70 27
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, 21-32, 2016 70kHz, 3,000m. 2014 Leica ALS50-II 150kHz, 200~6,000m. Table 3. Table 2. Equipment specification of digital camera using acquisition data Equipment Pixel Size 2007 Digital Camera Rollei AIC 9 m Image Size 5,440 x 4,080 GSD 0.25m Equipment Pixel Size 2014 Digital Camera Intergraph DMC 12 m Image Size 7,680 x 13,824 GSD 0.12m 2012 10 LiDAR. LiDAR Optech ILRIS-3D. 3m~1500m 5cm. Table 4 LiDAR DEM Fig. 14. Table 4. Equipment specification of terrestrial LiDAR using acquisition data Equipment Optech ILRIS 3D Range of Point Scan 3m ~ 1500m( 800m ) Interval of Point Scan Acquisition Point 5cm 2,500 (point/sec) Ratio of Error 7 ~ 8mm (per 100m) Scanning Swath Horizontal: 360, Vertical: -90 ~ 90 Table 3. Equipment specification of airborne laser scanner using acquisition data 2007 Airborne Laser Scanner Equipment Optech ALTM 30/70 Laser Pulse 70kHz Flight Height 3,000m 2014 Airborne Laser Scanner Equipment Leica ALS50-II Laser Pulse 150kHz Flight Height 200~6,000m Fig. 14. Fusion of airborne LiDAR and terrestrial LiDAR LiDAR(terrestrial LiDAR) UAV. 80 LiDAR. LiDAR,. 2012 8 UAV SensFly ebee 45Km/h UAV. Sony WX220 4.45 44.5mm, GSD 1.5cm/ Pixel. 2015 8 80% 4 484. UAV Georeferencing. 28
Database Enhancement for Development of Open-pit Mine Monitoring System in Open Source Environments UAV. UAV 8 (GCP : Ground Control Point). Table 5. UAV Fig. 16. Table 5. Result of GCP surveying in open-pit mine No X Y Z GCP-01 549424.2404 196267.9272 752.9365 GCP-02 549458.5970 196625.2317 747.9657 GCP-03 549764.1988 196231.5376 702.0638 GCP-04 549673.9593 196361.5042 663.1052 GCP-05 549815.0014 196463.1092 618.0052 GCP-06 551359.6658 198351.8876 447.4510 GCP-07 551549.7345 198452.4635 370.5223 GCP-08 551400.4604 551400.4604 441.7731 Fig. 15. 2015 DEM using UAV Surveying UAV. Agisoft Photoscan Standard Edition UAV UAV 8.. Table 6 0.059m, 0.024m. 1:1,000 0.20m. item Geometric Processing Table 6 DEM. UAV DEM Fig. 15. Table 6. Geometric accuracy of UAV data RMSE dx(m) dy(m) dz(m) dl(m) 0.035 0.041 0.024 0.059 Fig. 16. 2015 orthophoto using UAV Surveying UAV RMSE. RMSE 0.391m. 3.3 모니터링지역의시스템개발및변화탐지 DEM. Table 7 data inventory. 29
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, 21-32, 2016 Table 7. Data inventory of monitoring database Data Acquisition Methods UAV surveying (non periodic) Airborne Laser surveying (periodic) NGII Portal open data service (data collection) terrestrial LiDAR surveying (non periodic) Portal site open data service (data collection) Airborne Laser surveying (periodic) Acquisition year 2015 2014 2013 Characteristics of data Fixed-wing UAV : GSD 0.3m Digital image : GSD 0.12m DEM : LiDAR 1m X 1m DEM NGII Open data : GSD 0.5m 2012 gird size 1m X 1m DEM 2012 Daum map Open data 2010 - GSD 0.5m 2008-2 years interval 2007 Digital image : GSD 0.4m DEM : LiDAR 1m X 1m DEM DEM. Fig. 18 DEM 2007 2014 UAV 2015 3,.. GeoServer,,,.,,,. 3 Fig. 17 UML. Fig. 18. Change detection of ecological restoring area using monitoring system Fig. 17. UML diagram for open-pit mine monitoring system Fig. 19 DEM. 30
Database Enhancement for Development of Open-pit Mine Monitoring System in Open Source Environments. Fig. 20. Change detection of disaster restoring area using monitoring system Fig. 19. Change detection of ecological restoring area using monitoring system. UAV LiDAR DEM,. Fig. 20 DEM. 2012 8 154Kv. 2007. 2014 2012 2007. 2015. 4. 결론 DEM, 3,,., Client WebGL 3 Cesium., GeoServer Cesium.,.,,,. 31
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, 21-32, 2016 89.5% 50.03%..,,,,. 감사의글 2013 ( ). (NRF-2013R1A2A2A01068391). References Brown, N., Kaloustian, S., and Roeckle, M. (2007), Monitoring of open pit mines using combined GNSS satellite receivesr and robotic total stations. In: Potvin (ed.), Proceedings, 2007 International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, Perth. ACG, Perth, pp. 417-429. Froese, R. and Mei, S.(2008), Mapping and monitoring coal mine subsidence using LiDAR and InSAR, GeoEdmonton2008, Canadian Geotechnical Society, IAH- CNC, 21-24 Sept., Edomonton in Canada, pp. 1127-1133. Kim, S. Y., Lee, D. G., Lee, J. B., Jang, B. J., You, J. H., and Lee, H. J.(2015), The development of web 3D-based openpit mine monitoring system, FOSS4G Seoul 2015, OSGeo, 14-19 Sept., Seoul, pp. 97-113. Lee, H. J., Yang, S. R., and Lee, K. M.(2008), Ecological restoration monitoring of open-pit mines using airborne laser scanning, Journal of the Korean Society for Geospatial Information System, Vol. 16, No. 4, pp. 101-107. (in Korean). Lee, H. J., Kim, S. Y., Jang, B. J., and Lee, D. G.(2014(a)), Analysis of the current state of the environment for the developmnet of a monitoring system construction of an open-pit mine in gangwon, 2014 Conference of the Korean Society for Geospatial Information System, 15-16 May, Jeju, Korea, pp. 163-164.(in Korean) Lee, H. J., Kim, S. Y., Jang, B. J., and Kim, K. D.(2014(b)), Analysis and selection of ganwon-do open-pit mine monitoring target area, 2014 Conference on the Geospatial Information, The Korean Society for Geospatial Information System, 14-15 Nov., Incheon, Korea, pp. 91-92.(in Korean) Lee, H. J., Kim S. Y., and You, J. H.(2014(c)), Development environment for open-pit mine monitoring system using geospatial open platform and open source software, Journal of the Korean Society for Geospatial Information System, Vol. 22, No. 4, pp. 165-173.(in Korean) Lee, H. J., Kim, S. Y., Jang, B. J., and Lee, D. G.(2015(a)), A study of build monitoring system using open source GIS software, 2015 Conference of the Korean Society for Geospatial Information System, 28-29 May, Jeju, Korea, pp. 57-58.(in Korean) Lee, H. J., Kim, S. Y., Jang, B. J., and Kim, K. D.(2015(b)), Availability of UAV for the monitoring of open-pit mines, 2015 Conference on the Geospatial Information, The Korean Society for Geospatial Information System, 17 Sept., seoul, Korea, pp. 91-92.(in Korean) Tong, X., Liu, X., Chen, P., Luan, K., Liu, S., Liu, X., Xie, H., Jin, Y., and Hong, Z.(2015), Intergration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas, Journal of Remote Sensing, Vol. 7, No. 6, pp. 6635-6662. Singh S., Chutia, D., and Sudhakar, S.(2012), Development of a web based GIS application for spatial natural resources information system using effective open source software and standards, Journal of Geographic Information System, Vol. 4, No. 3, pp. 261-266. YIN, F. and Feng, M.(2009), A webgis framework for vector geospatial data sharing based on open source projects, Proceedings of the 2009 International Symposium on Web Information Systems and Applications (WISA 09), 22-24 May, Nanchang in China, pp. 124-127. 32