CD ƒpfyr h8y tƒ y8yr & %!$%!%%$ Original Paper s 'i t ƒr!!&dr88$ &%!$% BRRG"""pBRRG % $% vst}ufp Optimization of Operation and Backwashing Condition for an Upflow Stormwater Filtration System Utilizing Ceramic Media mn n Õ* l Ð**, Yuhoon Hwang Younggyo Seo Hyowon Kim Kunwan Roh* Hyunsang Shin Dogun Kim**, }sœs vw}s} * C&C **wys vœi}s} Department of Environmental Engineering, Seoul National University of Science and Technology *C&C Inc. **Department of Civil Engineering, Kyunghee University (Received July 18, 2017; Revised August 3, 2017; Accepted August 16, 2017) Abstract : Stormwater filtration is widely used for the urban runoff treatment. However, intensive maintenance and lack of information about the performance have resulted in an increased need of proper evaluation. In this study, the performance of an upflow stormwater runoff filtration system, consisting of a supporting unit and a filtration unit filled with a ceramic media, was investigated. The maximum head loss increase was about 3 cm under the suspended solid (SS) load of 30 kg/m 2 and the SS removal was more than 96%, when the filtration velocity was 20-40 m/h. The head loss and the porosity of the media can successfully be described by a power model. It was confirmed that the a significant amount of SS can effectively be removed at supporting unit, minimizing SS load to the filter media bed. Several backwashing strategies have been tested to establish the optimum condition. It was found that the stagnant water discharge is important to minimize the SS release immediately after backwashing. Also, the filter bed loaded with 400-450 kg/m 2 SS can almost completely be washed to reduce the head loss to the that of empty bed. The results in this study indicate that the upflow ceramic media filter is an excellent alternative to stormwater treatment, with high SS removal and long lifespan. Key Words : Non-Point Source Pollution, Stormwater Runoff, Upflow Filtration System, Backwash. ÐîlvØ, m, ³áÕ køjº. ²vÐajljj, jºº kj, SS ѳÕáj, Õjº. Ð20-40 m/h Õj, lj30 kg/m 2 ²ÕмÞ3 cm, SS n96%, a³jº. Þ Èkaa³jº. dp, jºð SSa¼ÑØ, jq mjº. Õjje, ôkmj, ljìõjjþmºjº. º, nssmjk²ðnädø º. jõj, SS j400-450 kg/m 2 Ù, pa³jädºùº.., v, k, 1. j, mî ²vgjjlm q jº. BOD TP j 2012 j bb31.7 58.9%, 2020²bb72.1% 68.6% jí aj ä Ø º. 1),, h,, m, k,, p, î ² 2j¼ 1) j kjº. v²¼h, j, k jø, ºÒj, n jk²²j ² j Ù jjº. 2) زäjj q²,, Ð, î, a Øî j²lº. l ammù, îðv jj}jk Ø º. 3,4) ² qjaj ajj Corresponding author E-mail: dogun.kim@khu.ac.kr Tel: 031-201-2968 Fax: 031-202-8106
+,PSFBO4PD&OWJSPO&OH mjklqõ 479, dpððmùða Ùº. 5,6) lq, p ¼kv l,, î¼kjñn ²ä º. 7) l³aj²d, l} Õm, ºjj jíøº. j²a, Ðm, g, m(potting soil), Œ (Coconut coir),,,, geotextile (0.15-0.18 mm, 86-87%, Þ2.3-3.2 mm) îºjjss,, Ñ íð kø º. 8~11) n j, l ØfØÞaaj qj, v²h gmù løss Ðaaj²î º. 12,13) fòj j, j²jj º. 3) j, hî j º. 14) ô, jk ¼kØ 15) k, jj/}, jj/}îø²m plmja³ jí jð n ¼j j aj º. Þ a² j² SS, aº., v Òe¼jj, ÑÒjaغ. Siriwardene îi(d 10 6.4 mm, d 50 10.5 mm, d 90 13 mm)j(d 10 115 µm, d 50 215 µm, d 90 300 µm)ù1lkjº. l, amù ²a j kfíkø²è, ² jlåø, f<6 µm k j² ä º. 16) j, Ð î ز qlºø, Ùn a n³ja²ämøº. ô m³k² l Õ m f m j ² Õ mj ja º. ²vÐajîj l a³jj q nõájº. qôll /j, ÐmôÞ SS ÑndjÕj ºjvvÐfº. v SS², dp Рز, ¼ Ð jº. Ð ºj ÐØvSS,, îùº. 17,18) Ð TOC, VS, T-N, TKN, T-P jbb 1-20%, 6-28%, 11-54%, 2,280-6,310 mg/kg, 2,080-13,200 mg/kg, 2,760-5,150 mg/kg, 19,20) f Cu, Ni, Pb, Zn, Cd, Cr j 28.7-534, 23-708, 37.3-699, 0.9-4,024, 0.44-2,665, 4.3-324 mg/kg º. 21~27) j, ÐÐ 60% ÐÑj, vjv af Ð(Event Mean Concentration, EMC) ass²78%, BOD²32%, COD²49%, T-N²31%, T-P ²35%, Cu²31%, Fe²77% qj²ä º. 28), lss Ñ ÑhÐÙädºÙ º. je, m ônmja³j Õ jº. 2. 2.1. d Table 1 Ù d º. j²l jelj, ² Table 1zº. ²2.92 mmna, 60.7% º º. j ô/pøñùä ¼Øº. 1.55² ajºjº(sps-kwwa F 101-0728 : 2009). ²0.14 cm/smj³ º(KS F 2322:2000). Table 1. $IBSBDUFSJTUJDT PG DFSBNJD GJMUFS NFEJB *UFN 6OJU.FUIPE 3FTVMUT &GGFDUJWFEJBNFUFS NN 414,88"' 6OJGPSNJUZ 414,88"'.BYJNVNEJBNFUFS NN 414,88"'.JOJNVNEJBNFUFS NN 414,88"' 4QFDJGJDXFJHIU 414,88"' 1PSPTJUZ 414,88"' 1FSNFBCJMJUZ DNT,4' p ¼jmjm 398m 20178
480 +,PSFBO4PD&OWJSPO&OH mn n Õ l Ð 2.2. l 2.2.1. l j² Fig. 1zj,, SS l,, j,,, j jº. Ù² jjø,, Ð SS lfij3-way k mjùº. mjss в168.4 ± 4.4 mg/l º. jþmjj jº. jùmj ²kØ Ùº. j²ð20-40 m/hº vða²íøñ Újq²j kjº. ²90 cm²60 cm jº., j,, g10 cmblº. ² 10 cmºpiezometerjþ a³jðjº. j º mj j 70 cm jº. Ðmjjjº. Ð jðl k ÑÐ,, Ñj, 200 µm jð jjð(ls I3 320, Beckman Counter, USA) j Ðg jº(fig. 2)., 200 µm jðf125.6 µm, n(d 10)13.2 µm, î(d 60/d 10) ²10 10.15ÐgamjäfaØ º. faø²200 µm 84% p j ädºøº. 29) 2.2.2. ²Ù² j j, Ð k ÑÙ Fig. 2. 1BSUJDMF TJ[F EJTUSJCVUJPO PG TVTQFOEFE TPMJE JO JOGMVFOU Fig. 1. 4DIFNBUJD PG GJMUSBUJPO UFTU TZTUFN Journal of KSEE Vol.39, No.8 August, 2017
+,PSFBO4PD&OWJSPO&OH mjklqõ 481 2.3. l 2.3.1. Þ Þjj jþfakjº. j j, Ða20, 30, 40 m/h Þjº. bõ30 j3mþjn, f s j Þ jº. 2.3.2. ljôþnfa Ùl(Ð)mjj ÐSS j n, j Ò, SS Ða 200 mg/laøðjº. Ð20, 30, 40 m/h bb300ej, keô Þj, j SS Ð l ô jº. SS Ñ º(1) k jº. «á Î Zœ œ à œ (1), R t²etss Ñ(%), C 0'² eòf SS Ð(mg/L), C t² e t SS Ð(mg/L) º., eô SS j²º(2)kj º. ª Z œ Z á š, Q²(m 3 /h), C 0²SS Ð(mg/L), A² (m 2 )º. (2) e, e aj, í njjaj Õ j jº. Ùjí Table 2z, nfa j³²nþm SS ájº. f Ðjj2.3.2jÕ40 ² ÐSS j, ee Þ jº. Þa10 cmðº jíøjº. n²ss(200 mg/l)j lñnfº.,, kjº. 3. 3.1. jþ Þjj, a Ð20, 30, 40 m/hù Þ j, 10e4mjfsm jº(fig. 3). Þ²aajô aj, Þ²5 cm jº. Ð20, 30, 40 m/h, f Þ²bb 3.15 ± 0.30, 4.85 ± 0.37, 5.60 ± 0.71 cmº. Ða20 m/h ² jjºþ j, Ð 40 m/h a ²j²ºÞ jº. ² в a kjºøj, Ða ajôaºòj 2.3.3. nfaõ ²¼k, mjn²k ²Õj, ºjÕ nájº(table 2). n jjõj²l Table 2. $POEJUJPOT GPS CBDLXBTIJOH TUSBUFHJFT $POEJUJPO "JSCBDLXBTIJOH %VSBUJPO NJO 'MPXWFMPDJUZ NI %SBJOBHF 8BUFSCBDLXBTIJOH %VSBUJPO NJO 'MPXWFMPDJUZ NI /P /P :FT :FT Fig. 3. )FBE MPTT DBVTFE CZ DFSBNJD GJMUFS NFEJB XJUI SFTQFDU UP GJMUSBUJPO WFMPDJUZ ¼jmjm 398m 20178
482 +,PSFBO4PD&OWJSPO&OH mn n Õ l Ð j bùº. Ða30 m/h ²ajígØ ÞaÙíj² äº. ²Ù d,, (1.55) (60.7%) (Table1), Ða a³j ä bùº. 3.2. ÐôÞSS Ñ ljn ôfj300 ejº. ÐôÞSS ÑdjjÐ 20-40 m/hº a, ²e Ù ajjº. SS в 200 mg/lj, eòl jþ Fig. 4Ðjº. e¼j lj¼j jäðaºjz eð ljabõôº º. Fig. 4(a)z, }nþ² Ða20, 30, 40 m/h, bb3.0 cm, 4.2 cm, 5.6 cmøº. jlúô Þaj²k, 300 nþ²ð20, 30, 40 m/hb b5.3, 6.5, 7.9 cmaj²äº. zþm²íðaô Þa ljaj kbùº. bð laô Þakjj, z ljð ÐÕÞaÅ j² k dj º. lj¼þ² Ð40 m/h lja30.8 kg/m 2 7.9 cm غ. ² lj 9 kg/m 2 ²ìÐÐ s¼1.0 cm Þf Ðjlä Ø, ô j (a) (b) (c) (d) Fig. 4. B )FBE MPTT EVSJOH PQFSBUJPO PG GJMUSBUJPO TZTUFN XJUI SFTQFDU UP DVNVMBUJWF 44 MPBE BOE IZESBVMJD IFBE XJUI SFTQFDU UP CFE EFQUI BU GJMUSBUJPO WFMPDJUZ PG C NI D NI BOE E NI Journal of KSEE Vol.39, No.8 August, 2017
+,PSFBO4PD&OWJSPO&OH mjklqõ 483 Table 3. "WFSBHF TVTQFOEFE TPMJE DPODFOUSBUJPO BOE SFNPWBM FGGJDJFODZ BU FBDI TUBHFT 44 NH- 3FNPWBM 'JMUSBUJPO WFMPDJUZ 4VQQPSUJOH.FEJB 4VQQPSUJOH.FEJB NI *OGMVFOU DPMVNO DPMVNO DPMVNO DPMVNO FGGMVFOU FGGMVFOU 5PUBM a a³j ä Ùº. ôþm Fig. 4(b)~(d)z, ¼Þj50 cm j²ä30 cm²þ Ñj²äº. ²j Þaº kjlø²ä, ÞalÚº. º, ÐaôÞÐØ, ² Ðôe º. eô/ SS Ð Table 3j º. SS в168.4 ± 4.3 mg/l Ð Ø, Ð20, 30, 40 m/h bb, SS в3.9, 4.0, 4.0 mg/lø, ÐaajôزSS Ðm² äº. Ñnmj² ì97.7% n, Ðô jj º. dpj jj²jjº. Table 3 Fig. 5² Ð 20 m/h, j j ز SS jùnðjº. n81.5%ø¼lj ÑÚmjº. dp, Ðaajônqj²ä vðòðjäd ºÙº. Ùìn75% j ºÐмjn º. j Ñn j ºÐ SS ÑÐ20, 30, 40 m/hbb 87.3 ± 6.8%, 88.2 ± 7.0%, 88.6 ± 3.3%, ºÐ Ð80% SS Ñ º. dp, nm²ðñjk, Õmj³ ädºøº. Þj² 97% l Ñ n º. 3.3. gmljôñ Òk ÑÒ²ljká jj, Urbonas 30) ajclark 31) ká Ø Ø ² È jº( (3)). 30,31) à á Þ š ß, v²(m/h), rlo, x²l, m/a²º¼ss j(kg/m 2 )º. Èhljaj²o Ðkajº. (3)Darcy- Weisbach ((4))j(5)zÞ jhlj, k(6)ðj, r r r' ljº( (7)). (7)(8)zllmj, l j, r x jº. (3) Fig. 5. 44SFNPWBMFBDITUBHFXJUISFTQFDUUP BUJNFBOE CJOGMVFOU44MPBE NI ¼jmjm 398m 20178
484 +,PSFBO4PD&OWJSPO&OH mn n Õ l Ð á Ï (4) Ï Ï Þ ß íò à á Þ š ß (5) à íò á Þ š ß (6) íò á Þ Ï ß (7) Þ ßá Ï ÞßàÏ Þ š ß (8), f²(0.11615, Re/64, Re 551, ìh ), L(m), g²að(9.81 cm/sec 2 ), D ² bl di j (m), Þ º. l, Ða20-40 m/h, (4) Reynolds (Re) ² 551-1100, hì, f²º(9)j0.11615 j jº. ÓÑ á «Table 4 È, Fig. 6 Ð Ù r x º. e(300) Þ j j, Ð 20-40 m/h (r 2 )² 0.817-0.806, ÈÞÑÒ hlj²äº. Þq nþaaj²eþ ¼ j ², Ð 20, 30, 40 m/h r 2 a bb 0.886, 0.924, 0.896, ajº. ²eaÞj jåòj² j, ² Ù Þ kj² È 31) Å jj m bùº. jf, Ðr', e, Table 4. 1PXFS NPEFM 1BSBNFUFST GPS UIF TUPSNXBUFS SVOPGG GJMUSBUJPO TZTUFN JO UIJT TUVEZ 'JMUSBUJPOWFMPDJUZ NS 1FSJPE NJO S Y S (9) Fig. 6. $PSSFMBUJPOT CFUXFFO UIF DPOTUBOUT PG QPXFS NPEFM BOE GJMUSBUJPO WFMPDJUZ la²ä, Ð x² a ² e l º(Fig. 6). ² gmù l j j Þj²Èk Ð Ù jº. Þk² j² Hazen Kozeny-Carmen î Ø, 32) gmù l j j Þj² È Ø º. Wu 33) l, l, jèj, Wu 34), j(riverbed) j j È jº. 34) ² Ù l j j, d(î), k Þ ÑÒ k a³j º. 3.4. lñþ, Ñ, ² l gmø qjlñ ajº. l Ñ(10)hlÙ, 35) j, ÞgmÙl ájº. œ œ á ŒŸ à Ð Ï ÞÎ à ß (10) œ, C²SS Ð(mg/L), C0² SS Ð(mg/L), L(m), ², DC²gmز, S², ² Journal of KSEE Vol.39, No.8 August, 2017
+,PSFBO4PD&OWJSPO&OH mjklqõ 485 ºgÑjº. (10), d, SSd, aj, DC, S,, LjXhljº((11)). 11) œ œ á ŒŸ Ð à ±ÞÎ à ß Ï (11) ² gmù SS Þ áj j, C² SS j(kg/m 2, CL)C0² SS j (kg/m 2, CL,0)j, (11)º(12)(13) j jº. œ œ ì Þ á ŒŸ Ð à ±ÞÎ à ß (12) Ï œ œ ì ß áà Ï Ð ±ÞÎ à ß (13) (13)j, ()ln(cl/cl,0)² l a, ln(cl/cl,0) Þ k, Þ ájº. Ð 20, 30, 40 m/h, ln(cl/cl,0) Þ l (r 2 )² bb 0.898, 0.901, 0.206, Pearson ²bb-0.94755, -0.9491, 0.4538º(Fig. 7). ² Ð 20 30 m/hùþa a º. Ð40 m/h aä, Ðk, Òjmj bùº. Ða40 m/h, algm jajìaj j²e60-300², ln(cl/cl,0)þ r 2 Pearson abb0.951-0.9751, º. ² Þa ÐjíÙ º. 3.5. ÕÐ j mj k²õmj²ä jjº. ÕÐj j, e ôkfº. nfa²þ mss faj kjº. SS f ä okôkj jº. k j jºða º. jåljíø, ²oôºÒjº. n jjkòjíø ì ²jºÙº. zk ¼ lºù ²Ù m j² ä jjº dºø jº. o¼ j ² ôkjjº. oz²n anòjíø, j²jjº, j ºkjjo¼ jº. j, Ò¼kj ²Ø²ja ³j, ºjnj j² l jº. 3.4.1. Þm jzõj²è ajänþam Fig. 7. Ssp h ƒƒpwf t y gp ˆppy wy $$ fyi sp spfi w q xpitf h w xy ز ¼jfaº. Þ H 0 j, nþah 0, m100% jajõùäº. ²jÅ2(50 m/h) + 2(40 m/h) + Õ( Õ 1) eq, ºaj ô² Þ m ¼jfajº(Fig. 8). Þ²3.8 cm, Õ( -1)kj ²Þ ¼jmjm 398m 20178
486 +,PSFBO4PD&OWJSPO&OH mn n Õ l Ð Table 5. #BDLXBTIJOH QFSGPSNBODF JO UFSNT PG DPOUSPMJOH FGGM VFOU 44 DPODFOUSBUJPO #BDLXBTIJOH %SBJOBHF TUSBUFHZ 3FDPWFSZPG.BYJNVN44JO "WFSBHF44 JOJUJBMIFBE CBDLXBTIJOH SFNPWBM MPTT FGGMVFOU NH- /P /P :FT :FT qj, qj²gðõ( -1)j Fig. 8. 3FDPWFSZ PG IFBE MPTT CZ EJGGFSFOU CBDLXBTIJOH TUSB UFHJFT a4.2 cmm93.5%º. e 1/2j -2 Õ²Þa4.9 cmm 82.3%qjº. ÒjÕ kj ²Õ( -1)zm 95.1% mø, 1/2jÕ( -4)²Þa4.3 cm 91.9% mº. s2 ÅÕ( -3)jÞa0.1 cm dºùº. jj, ² e2(40 m/h Õ)j lpñj kj 1 Ðjk j, 1/2q гm²j ² Õ4(1/2)Õj²äjº dºùº. 3.4.2. SS Þm Å f k njø² SS к. lp Ñزkoj løss Ð200 mg/l º í Ùa³, ²nj² Ùº. zlðdj, SS j²j4 a Õ lj, Fig. 9 º. Õ( -1) j, SS в37.0 mg/l, 3n¼163.5 mg/l j, nqjº. e1/2j ( -2)² ÐaÅ aj 125.3 mg/laùn3n¼292.9 mg/laø º. j -3 Õ² 92.8 mg/líqj²k5n² 10 mg/l jsss, 1/2 q -4 Õ² Ða343.9 mg/l º íøíqj5n ² 10 mg/l j SSs º. ij60e SS j, SS j ef nðj Table 5 º. ì 91% n, ajõ34²bb99.1% 98.5% Ñnº. ôj, ljjðss ²j², j ajõ3, 4 j² äjºdºùº. zjj, n SS ônqjð mjº. º, Ø ²ÙSSaÙa³ ônq 10 j²ä Fig. 9. &GGMVFOU 44 DPODFOUSBUJPO JO JOJUJBM QIBTF PG PQFSBUJPO BGUFS EJGGFSFOU CBDLXBTIJOH TUSBUFHJFT Journal of KSEE Vol.39, No.8 August, 2017
+,PSFBO4PD&OWJSPO&OH mjklqõ 487 Fig. 10. 7BSJBUJPO PG IFBE MPTT XJUI SFTQFDU UP DVNVMBUJWF 44 MPBE CBDLXBTIJOH TUSBUFHZ jmjº. Ø ² SSjaj, 1/2q ºÐ98.5% f na³jädºùº. d põl²fj m 2 ¼400 kg SSj²ºÕ jðj²aðø, ² Å ³ ¼j ädºùº. 3.4.3. Õájl ÙÕ(Õ -4) ÐÙájj, 3m / j Fig. 10 Ð jº. 3m/ kj, nþasñjíqø²äm j, dp3mðþa j²kíøº. 1mf j² SS j²400-450 kg/m 2 m, jjpa³ j ädºùº. jajnñùm jº. gmùlþ ²ÈkhlÙº. Ða 20-40 m/haòjmø, ÈíÐ l (r 2 0.886-0.924), l Ñ Þ (r 2 0.898-0.951), kn ³ a³j ädºùº. Õ j j e, ô k mj, lj ì Õ j j Þm(> 82%)lÑn(> 91%) mjº. º, nl mj k² Ð n ä døº. jõj a³jmj, kj 1m400-450 kg/m 2 l a a³j p a³j ädºùº. j n k jä, jºk j q, d Ðgamjj jº. dpkjn мjÐkj j mjº. Acknowledgement ²j¼j kø º. 4. jmjk nfaõ kjº. jº º kð20-40 m/h Õ j, l30 kg/m 2 ² ÕмÞ3 cm a³jº. Ò l 96% l jñønv aa³jº. dp, jº80% SSaÑØÐl References 1. Korea Office of Prime Minister, Korea Ministry for Food, Agriculture, Forestry and Fisheries, Korea Ministry of Knowledge Economy, Korea Ministry of Environment, Korea Ministry of Land, Korea Transport and Maritime Affairs, Korea National Emergency Management Agency, Korea Rural Development Administration, Korea Forest Service, Comprehensive Measures for Non-point Source Pollution Management in the Four Major Rivers(2012). 2. Yi, S.-J. and Kim, Y.-I., Improvement on management of mon-point source pollution for reasonable implementation of TMDL - Focusing on selection of non-point source pollution management region and management of non-point source ¼jmjm 398m 20178
488 +,PSFBO4PD&OWJSPO&OH mn n Õ l Ð pollutant -, J. Korean Soc. Environ. Eng., 36(10), 719~723 (2014). 3. Siriwardene, N. R., Deletic, A. and Fletcher, T. D., Clogging of stormwater gravel infiltration systems and filters: Insights from laboratory study, Water Res., 41, 1433~1440(2007). 4. Choi, W. S., Song, C. S. and Kim, S. K., A study on the headloss of filter media for treatment of road runoff, J. Korean Soc. Water Wastewater, 22(6), 697~704(2008). 5. USEPA, Storm Water Technology Fact Sheet: Sand Filters, EP 832-F-99-007, (1999). 6. Ballard, B. W. and Kellgher, R., The SUDS Manul. Construction Industry Research & Information Association (CI- RIA), (2007). 7. Hsieh, C. and Davis, P., Evaluation and optimization of bioretention media for treatment of urban storm water runoff, J. Environ. Eng., 131(11), 1521~1531(2005). 8. Ahn, T.-W., Choi, I.-S. and Oh, J.-M., Evaluation of the water purification efficiency of waste LCD glass media by using foaming technology, J. Korean Soc. Water Wastewater, 24(4), 369~375(2010). 9. Kim, S., Oh, H. and Ahn, J., Road runoff treatment using pilot scale-nps treatment plant filling up expended polypropylene media, J. Korean Soc. Environ. Eng., 36(10), 711~718 (2014). 10. Lim, H. S., Lim, W., Hu, J. Y., Ziegler, A. and Ong, S. L., Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems, J. Environ. Manage., 147, 24~33(2015). 11. Franks, C., Davis, A. P. and Aydilek, A. H., Geosynthetic filters for water quality improvement of urban storm water runoff, J. Environ. Eng.-ASCE, 138(10), 1018~1028(2012). 12. Rodgers, M., Mulqueen, J. and Healy, M. G., Surface clogging in an intermittent stratified sand filter, Soil. Sci. Soc. Am. J., 68, 1827~1832(2004). 13. Pratap, M. R., Khambahmmettu, U., Clark, S. E. and Pitt, R., Stormwater polishing: Upflow vs. downflow filters in Proceedings of World Environmental and Water Resources Congress 2007, Tmp, Florid, United States(2007). 14. Boller, M. A. and Kavanaugh, M. C., Particle Characteristics and Headloss Increase in Granular Media Filtration, Water Res., 29(4), 1139~1149(1995). 15. Kang, S., Kim, S., Lee, S. and Lee, T., An Upflow-Type Filtration Device Using Expanded Polypropylene Media (EPM) to Treat First Flush of Rainwter, Water Environ. Res., 88 (3), 195~200(2016). 16. Siriwardene, N. R., Deletic, A. and Fletcher, T. D., Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study, Water Res., 41, 1433~1440(2007). 17. Herngren, L., Goonetilleke, A. and Ayoko, G. A., Analysis of heavy metals in road-deposited sediments, Anal. Chim. Acta., 571, 270~278(2006). 18. Brydon, J., Oh, I., Wilson, J., Hall, K. and Schreier, H., Evaluation of Mitigation Methods to Manage Contaminant Transfer in Urban Watersheds, Water. Qual. Res. J. Can., 44, 1~15(2009). 19. Bian, B. and Zhu, W., Particle size distribution and pollutants in road-deposited sediments in different areas of Zhenjiang, China, Environ. Geochem. Hlth., 31, 511~520(2009). 20. Seattle Public Utilities and Herrera Consultants, Seattle Street Sweeping Pilot Study - Monitoring Report, (2009). 21. Lee, C. S.-L., Li, X., Shi, W., Cheung, S. C.-N. and Thornton, I., Metal contamination in urban, suburban and country park soils of Hong Kong: a study based on GIS and multivariate statistics, Sci. Total. Environ., 356, 45~61(2006). 22. Kartal, S., Aydin, Z. and Tokalioglu, S., Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data, J. Hazard. Mater., 132(1), 80~89(2006). 23. Zhang, M. and Wang, H., Concentrations and chemical forms of potentially toxic metals in road-deposited sediments from different zones of Hangzhou, China, J. Environ. Sci., 21, 625~631(2009). 24. Shi, G., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C. and Teng, J., Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China, Environ. Pollut., 156 (2), 251~260(2008). 25. Tanner, P. A., Ma, H. and Yu, P. K. N., Fingerprinting metals in urban street dust of Beijing, Shanghai, and Hong Kong, Environ. Sci. Technol., 42, 7111~7117(2008). 26. Wei, B. and Yang, L., A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China, Microchem. J., 94(2), 99~107(2010). 27. Hu, X., Zhang, Y., Luo, J., Wang, T. and Lian, H., Total concentrations and fractionation of heavy metals in roaddeposited sediments collected from different land use zones in a large city (Nanjing), China, Chem. Spec. Bioavailab., 23(1), 46~52(2011). 28. Kim, D.-G., Jeong, K. and Ko, S.-O., Removal of road deposited sediments by sweeping and its contribution to highway runoff quality in Korea, Environ. Technol., 35, 2546~ 2555(2014). 29. Korea Ministry of Environment, Manual for installation and management of non-point pollution reduction facilities, (2014). 30. Urbonas, B. R., Design of sand filter for stormwater quality enhancement, Water Environ. Res., 71(1), 102~113(1999). 31. Clark, S. E. and Pitt, R., Solids removal in storm-wter filters modeled using power equation, J. Environ. Eng., 135 (9), 896~899(2009). 32. Indraratna, B., Nguyen, V. T. and Rujikiatkamjorn, C., Hydraulic conductivity of saturated granular soils determined using constriction-based technique, Can. Geotech. J., 49, 607~613(2012). 33. Wu, F.-C., Stochastic modeling of sediment intrusion into gravel beds, PhD thesis, University of California, Berkeley (1993). 34. Wu, F.-C. and Hung, H.-T., Hydraulic resistance induced by deposition of sediment in porous medium, J. Hydraul. Eng., 126(7), 547~551(2000). 35. American Water Works Association (AWWA), Water quality and treatment, 5th Ed., McGraw-Hill, New York(1999). Journal of KSEE Vol.39, No.8 August, 2017