Microsoft PowerPoint - 나노 기술과 재료 -basic

Similar documents
Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

untitled

슬라이드 제목 없음

슬라이드 1

Microsoft PowerPoint - 7-Work and Energy.ppt

PowerPoint 프레젠테이션

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

00....

Intermolecular Forces ( 분자간힘 ) & Liquids and Solids ( 액체및고체 ) Chapter 11

1 n dn dt = f v = 4 π m 2kT 3/ 2 v 2 mv exp 2kT 2 f v dfv = 0 v = 0, v = /// fv = max = 0 dv 2kT v p = m 1/ 2 vfvdv 0 2 2kT = = vav = v f dv π m

PowerPoint 프레젠테이션

untitled

Precipitation prediction of numerical analysis for Mg-Al alloys

Microsoft PowerPoint - analogic_kimys_ch10.ppt

(Vacuum) Vacuum)? `Vacua` (1 ) Gas molecular/cm 3

14.fm

PowerPoint 프레젠테이션

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종


KAERIAR hwp


2 폐기물실험실

05À±Á¸µµ

歯김유성.PDF

PowerPoint 프레젠테이션

19(1) 02.fm

Electropure EDI OEM Presentation

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

untitled

Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

- 1 -

Coriolis.hwp

e hwp

13-darkenergy

슬라이드 1

歯49손욱.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

歯전용]

02_4_특집_김태호_rev4_ hwp

(163번 이희수).fm

09È«¼®¿µ 5~152s

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

67~81.HWP

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

Chapter 11 Rate of Reaction

Chapter4.hwp

1 Nov-03 CST MICROWAVE STUDIO Microstrip Parameter sweeping Tutorial Computer Simulation Technology

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

12.077~081(A12_이종국).fm

06...._......

일반화학 I 기말고사 Useful P

슬라이드 1

Microsoft PowerPoint - 19_MCM [호환 모드]

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

10 (10.1) (10.2),,

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

Chapter 4: The Structure of Crystalline Solids

6자료집최종(6.8))

step 1-1

<31345FC3E1B0E8C7D0C8B8BBF3BCF6BBF3C0DAC7C1B7CEC7CA5F F D E687770>

16(2)-03.fm

歯4.PDF

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

untitled

untitled

08.hwp

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

<4D F736F F F696E74202D20454D49A3AF454D43BAEDB7CEBCC52EBBEABEF7BFEBC6F7C7D428BBEFC8ADC0FCC0DA >

hwp

LIDAR와 영상 Data Fusion에 의한 건물 자동추출

( )-94.fm

歯이관형_WC_.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

고범석.PDF


산선생의 집입니다. 환영해요

12-17 총설.qxp

06ƯÁý

그래핀과나노패터닝 중앙대학교화학신소재공학부 김수영 그래핀의우수한전하수송특성에도불구하고그래핀의밴드갭이 kt 이상이되 지못하여전기소자로의적용이제한되고있다. [1] 즉그래핀이도체의성질을띄 기에반도체로사용하기에제한이따르는단점이있다. 이러한문제점을해결하고 자 quantum co

(72) 발명자 장종산 대전 중구 수침로 138, 103동 204호 (태평동, 유등 마을쌍용아파트) 박용기 대전 유성구 어은로 57, 119동 302호 (어은동, 한 빛아파트) 황동원 경기 안양시 만안구 양화로147번길 7, 102동 403호 (박달동, 박달동동원베네스

18211.fm

Buy one get one with discount promotional strategy

16(5)-04(61).fm

ÁÖÀçÀ² Ãâ·Â

<313920C0CCB1E2BFF82E687770>


歯전기전자공학개론

_....


LCD

CERIUM OXIDE Code CeO CeO 2-035A CeO 2-035B CeO REO % CeO 2 /REO % La 2 O 3 /REO %

<4D F736F F F696E74202D20B3AAB3EBC8ADC7D0B0F8C1A4202DB3AAB3EBB1E2BCFA2E BC8A3C8AF20B8F0B5E55D>

03 장태헌.hwp

16(5)-03(56).fm

07.051~058(345).fm

동아내지1수(A~E)-수정2

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

°ø¾÷-01V36pš

<BACEBDBAC5CD20BAEAB7CEBCC52D A2DC3D6C1BE2D312D E6169>

c04....

Transcription:

Nano Materials 김기범 서울대학교재료공학부 1

Contents Introduction Basics Synthesis of Nano Materials Fabrication of Nano Structure Nano Characterization Properties and Applications 2

Basics Crystal structure Surface Kinetics Surface chemistry Consolidation Quantum confinement 3

Basics- Crystal structure Crystalline vs. amorphous Crystalline SiO 2 Amorphous SiO 2 Crystalline Au Long range order Short range order Matrix Amorphous SiO 2 Crystalline Si 4 10nm

Basics- Crystal structure Definition of Crystal A crystal is an anisotropic, homogeneous body consisting of a three-dimensional periodic ordering of atoms, ions or molecules Definition of Lattice A lattice means a three-dimensional array of points coinciding with atom positions (the space arrangement of equivalent sites in a crystal ) Lattice Parameters 5

Basics- Crystal structure Crystal Structure Crystal structure = Lattice + Basis 6

Basics- Crystal structure Definition of Crystallographic direction Crystallographic direction is defined as a line between two points, or a vector. Note that the direction of [uvw] describes not only a line through the origin and the point uvw, but the infinite set of lines which are parallel to it. 7

Basics- Crystal structure Definition of Crystallographic plane The values ( h k l ) are called Miller indices, and they are defined as the smallest integral multiples of the reciprocals of the plane intercepts of axis. 8

Basics- Crystal structure Seven Crystal Systems 9

Basics- Crystal structure 14 Bravais Lattice 10

Basics- Crystal structure Close Packed Structure- FCC 11

Basics- Crystal structure Close Packed Structure- HCP 12

Diamond Basics- Crystal structure 1 2 tet. sites by cations 13 8 atoms/unit cell coordination #: 4:4 FCC with two atoms per lattice Si, Ge 1 1 1 point, (0,0,0) and (,, ) 4 4 4 two interwoven FCC lattices

Basics- Crystal structure Zinc Blende 1 2 tet. sites by cations 4 molecules/unit cell coordination #: 4:4 FCC with two different atoms 14 GaAs per lattice point, (0,0,0) (,, ) 1 1 1 4 4 4 two interwoven FCC lattices

Wutzite Basics- Crystal structure 15

Carbon -diamond - graphite Basics- Crystal structure 16 covalent/van der Waals o 1.48/3.4 A 4 atoms/unit cell coordination #: 3 www.spmtips.com/products/hopg/

Basics- Crystal structure Carbon - graphene - fullerenes (C 60 ) - nanotube A.K.Geim, Nature Mater., 6, 183 (2007)

Basics- Crystal structure Carbon-Classification of carbon nanotubes - Single-wall CNT, double-wall CNT, multi-wall CNTs - Zigzag and armchair nanotubes, achiral nanotube SWCNT DWCNT Thin-MWCNT MWNCT

Basics- Crystal structure Carbon-Classification of carbon nanotubes - Zigzag and armchair nanotubes, achiral nanotube

Basics- Defects Point Defect - Vacancy - Interstitial - Impurities (Dopants) P. Ebert, Materials Today, 6, 36 (2003)

Basics- Defects ' oxygen vacancy: V +2e O

Basics- Defects

Basics- Defects Line Defect (dislocation) - edge - screw Dislocation line Burgers vector, b a)

Basics- Defects Line Defect (dislocation) -mixed Mixed Edge 24 Screw

Basics- Defects Line Defect (dislocation) - observation of dislocation high resolution transmission electron microscope image electron beam incident along an <011> zone of Si r b= 1 2 [011] 25

Basics- Defects Line Defect (dislocation) - lattice fringe image of dislocation narrow edge dislocation wide edge dislocation 26

Basics- Defects Line Defect (dislocation) - diffraction contrast transmitted beam-bright field image-dislocation-dark 27 diffracted beam-dark field image -dislocation-bright

28 Basics- Surface Surface Energy dg = -SdT + VdP + μ dn + γda G -2 γ = : surface energy [Jm ] A PT,, ni Estimation of surface energy Anisotropy FCC 1 2 γ {100} = 4ε = 2 2 a 1 γ = Nbερa Nb ρa i i i 2 : # of broken bonds, : surface atomic density 4ε 2 a a ε 5 ε γ { 111} = 2 3 γ 2 {110} = 2 a 2 a

Basics- Surface Anisotropy of Surface Energy 1 cm 2 1 cm 2 1 cm 2 (4x0.32x250)+(4x0.59x225) =851 erg 4x1x250=1000 erg 4x1x225=900 erg Equilibrium shape - total surface energy minimization 29 A.W. Adamson, Physical Chemistry of Surfaces (1982)

Basics- Surface Wulff plot - γ-plot- curved outer line γ = Ch i i - crystal shape- inner envelope NaCl Ag Ag Au 30 G. CaO, Nanostructures & (2004) Negative crystal UO 2 Y.-M Chiang, Physical Ceramics (1997)

Basics- Surface Surface Energy Surface Energy vs. size 31 Y.-M Chiang, Physical Ceramics (1997) G. CaO, Nanostructures & (2004)

Basics- Surface Curved Surface Δ PdV = γ da dv = r dr da = rdr 1 2 2 4 π 8 π for sphere da 2γ Δ P = γ = dv r 1 1 Laplace equation Δ P = γ ( + ) r r 1 2 r, r: principal radii of curvature 32

Basics- Surface Curved Surface - pressure difference across a curved surface a change in solubility or vapor pressure - at constant T, P, n i, transfer one mole from plat to curved μ = μo + RT ln a = μo + RT ln c = μo + RT ln P Pr () 4 Δ μ = RT ln = γda = γ8 πrdr, Vm = πr Pr ( = ) 3 2γVm 1 Pr () = Pr ( = )exp[ ( )] RT r : Kelvin equation 3 33

Basics- Surface Solubility Vapor Pressure 34 G. CaO, Nanostructures & (2004)

Basics- Surface Melting Point - melting point particle size Transition Temperature T 2/3 ρ = Δ ρ 2T b s b Tm γs γl Hρsrs l Au PbTiO 3 35 Ph. Buffat, Phys. Rew., A13 (1976) 2287 K. Ishikawa, Phys. Rew., B37 (1976) 5852

Basics- Surface Melting Point of nano-wire - Ge nano-wire - Rayleigh instability 36 Y. Wu, Adv. Mater., 13 (2001) 520 D. Quere, Science, 249 (1990)1256.

Basics- Surface Melting Point & Lattice Parameter - CdS nanocrystal 37 A.N.Goldenstein, Science, 256 (1992)1425.

Basics- Surface Ostwald Ripening C r 2σVm 1 = Co(1 + ) RT r 38 J. B. Hannon, Phys. Rev. Lett., 79 (1997) 2506

Basics- Surface Capillary Rise 2 2cosθ Δ P = γ = γ = ρgh γ = r Rc Rρgh 2cosθ 0 < θ < 90 90< θ<180 θ 39

Basics- Surface Wetting & Spreading - contact angle γ SV =γ SL +γ LV cos θ θ: contact angle Young equation - wetting 40 nonwetting θ > 90 wetting θ < 90 spreading θ = 90 W. D. Kingery, Introduction to Ceramics (1976)

Basics- Surface Wetting - grain boundary 41 φ: dihedral angle W. D. Kingery, Introduction to Ceramics (1976)

Basics- Kinetics Homogeneous Nucleation - supersaturation (ΔGv) - surface spherical nuclei 4π r 2 γ Δ G = πr Δ G + 4πr γ 4 3 2 3 V critical radius r * d( ΔG) * 2γ = 0 r = dr * ΔG r= r barrier height ΔG * V 42 π r ΔG 4 3 3 V 16π r 3 * Δ G = 3 Δ GV W. D. Callister, Materials Science and Engineering

Basics- Kinetics Homogeneous Nucleation ex) supersaturated solution kt kt ΔGv = ln( C / Co) = ln(1 + σ ) Ω Ω σ = ( C C ) / C o o For nanoparticles - ΔG σ T v - γ 43 T>T>T>T E 1 2 3

Basics- Kinetics Nucleation Rate. N n v * ~ (# of stable nuclei) d (collision frequency) * ΔG Qd ~ K1exp( ) K2exp( ) kt kt 44 W. D. Callister, Materials Science and Engineering

Basics- Kinetics Mono-dispersed Particle - Lamar diagram How to achieve the uniformity in size? 1. High rate of nucleation 2. Quick down to the minimum concentration. prevent further nucleation 45 T. Sugimoto, Adv. Colloid Interface Sci., 28 (1987) 65

Basics- Kinetics Homogeneous Nucleation - subsequent growth 46 (1) diffusion controlled (2) interface controlled dr dt r r 2 2 = δr = = D( C = 2D( C k r D o t + r ( δr r o C 2 o ) S C = V ) r S ) V r k o m ( δr D m t + r o ) t + r 2 o 2 o (2-1) monolayer growth 1 1 dr 2 = kr m ; = kt dt m r ro δ r δ r 2 o = r 2 ro (2-2) multilayer growth dr = k ; r = k t+ r dt δr = δr p p o o

Basics- Kinetics Homogeneous Nucleation - for the uniformity in size diffusion controlled process is desired δr r (2-1) (2-2) r (or t) - how to achieve it extremely low concentration of growth species high viscosity, diffusion barrier, controlled supply of growth 47 species (1)

Basics- Kinetics Homogeneous Nucleation ex) ZnS diffusion of the HS- ion to the growing particle is the rate-limiting process 48 R.Williams et al., J. Colloid Interface Sci. 106, 388 (1985).

Basics- Kinetics Heterogeneous Nucleation 2 * * sin θ cosθ + 2 cosθ 2 heter = rhomo 3 r 2 3cosθ + cos Δ G =ΔG f( θ ) * * heter homo f ( θ ) = 2 3cosθ + cos 4 3 θ θ 49 W. D. Callister, Materials Science and Engineering

Basics- Surface chemistry Dispersion - a high solids homogeneous suspension with a well-defined rheological behavior Dispersion in liquid - wetting - interparticle interaction 50 R. J. Pugh, Surface and Colloid Chemistry in Advanced Ceramic Processing

Basics- Surface chemistry Stabilization 51 R. J. Pugh, Surface and Colloid Chemistry in Advanced Ceramic Processing

Basics- Surface chemistry Electrostatic Stabilization electrical repulsion van der waals attraction Electrical double layer - surface charge (Ψ o ) - stern potential (Ψ d ) specific adsorption of counter-ion - electrockinetic or ζ(zeta) potential at plane of shear (slipping plane) - double layer thickness (κ -1 ) 52 M i : molar concentration D.J.Shaw, Introduction to colloid and surface chemistry, 1992

Basics- Surface chemistry Van der Waals attraction induced dipole- induced dipole (London) ~ x -6 permanent dipole- induced dipole (Debye) ~ x -6 permanent dipole- permanent dipole (Keesom) ~ x -6 Attraction between two spheres Φ = A Ar 12S A: Hamaker constant 53 G. CaO, Nanostructures & (2004)

Basics- Surface chemistry Example- CdTe nanowire dipole-dipole interaction between nano-particles produce nanowires with self assembling modes intermediate stage nano-wire 54 Z. Tang, Science, 297 (2002)237

Basics- Surface chemistry DLVO theory Φ =Φ +Φ R A kinetic barrier primary minima secondary minima 55 http://www.zeta-meter.com/ P. C. Hiemenz, Principles of colloid and surface chemistry (1986)

Basics- Surface chemistry DLVO theory - effect of Hamaker constant surface potential electrolyte conc. 10-3 M 10-2 M P. C. Hiemenz, Principles of colloid and surface chemistry (1986)

Basics- Surface chemistry Steric Stabilization Steric stabilizer : amphipathic block or graft copolymer D. H. Napper, Polymeric Stabilization of Colloidal Dispersions (1983)

Basics- Stability of Nanoparticle Metal oxide nanoparticles in aqueous suspensions - kinetic stability- energy barrier (DLVO theory) - dispersion, aggregation, flocculation - thermodyamic stability- surface energy minimization - Ostwald ripening (dissolution-reprecipitation) * Is it possible to avoid the ripening of nanoparticles in suspension and to control their dimension by monitoring the precipitation conditions? ex) thermodynamically stable dispersed system- microemulsion answer) possible When the ph of precipitation is sufficiently far from the point of zero charge and the ionic strength sufficiently high, the ripening of nanoparticles is avoided. The stability condition, defined by a 'zero' interfacial tension, corresponds to the chemical and electrostatic saturation of the water-oxide interface. In such a condition, the density of charged surface groups reaches its maximum, the interfacial tension its minimum and further adsorption forces the surface area to expand and consequently, the size of nanoparticles to decrease. L. Vayssieres, Int. J. Nanotech. 2, 411 (2005)

Basics- Stability of Nanoparticle Microemulsion - clear, stable, isotropic liquid mixtures of oil, water, and surfactant, frequently in combination with a co-surfactant. - aqueous phase may contain salt(s) and/or other ingredients, and the oil may actually be a complex mixture of different hydrocarbons and olefins. - thermodynamically stable - interfacial tension is very low (10-2 ~10-3 mn/m) E. Ruckenstein, Chem. Phys. Lett. 57, 517 (1978) B.K. Paul, Current Science 80, 990 (2001)

Basics- Stability of Nanoparticle Metal oxide nanoparticles in aqueous suspensions point of zero interfacial tension γ decreases as ph increases unstable -ripening stable - no growth S.M.Ahmed, J. Phys. Chem. 73, 3546 (1969) L. Vayssieres, Int. J. Nanotech. 2, 411 (2005)

Basics- Consolidation Consolidation (sintering) processes involved in the heat treatment of powder compacts at elevated temperatures, usually at T > 0.5Tm [K], in the temperature range where diffusional mass transport is appreciable resulting in a dense polycrystalline solid. - pore removal densification 61 MgO-doped Al 2 O 3 J. P. Schaffer et al, The Science and Design of Engineering Materials

Basics- Consolidation Solid state sintering final intermediate 62 initial

Basics- Consolidation Densification vs. Grain Growth 500μm TiO 2 & SiO 2 -doped Al 2 O 3 63 O. S. Kwon, Acta Mater., 50 (2002) 4865-4872