Korean Journal of Environmental Agriculture Korean J Environ Agric. 2019;38(1):47-53. Korean Online ISSN: 2233-4173 Published online 2019 March 31. https://doi.org/10.5338/kjea.2019.38.1.6 Print ISSN: 1225-3537 Research Article Open Access 유기셀레늄 (Organic Selenium) 엽면처리에의한셀레늄강화쌀개발 원동욱, 김선주 * 충남대학교농업생명과학대학생물환경화학과 Development of Selenium Value-added Rice by Organic Selenium Foliar Spray Application Dong Wook Won and Sun Ju Kim * (Department of Bio Environmental Chemistry Chungnam National University, Daejeon 34134, Korea) Received: 20 March 2019/ Revised: 26 March 2019/ Accepted: 29 March 2019 Copyright c 2019 The Korean Society of Environmental Agriculture This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ORCID Sun Ju Kim https://orcid.org/0000 0003 4872 9637 Abstract *Corresponding author: Sun Ju Kim Phone: +82-42-821-6738; Fax: +82-42-821-7142; E-mail: kimsunju@cnu.ac.kr BACKGROUND: This experiment was conducted to examine the effects of organic Se concentration and the number of foliar applications on growth characteristics and Se content in rice. METHODS AND RESULTS: A series of multiple foliar applications were performed at 1 3 times (maximum tillering stage + booting stage + heading stage), 2 4 times I (effective tillering stage + maximum tillering stage + booting stage + heading stage), 3 4 times II (maximum tillering stage + booting stage + heading stage + grain filling stage) according to the development stage. Each set of the foliar application plots was treated with 0, 10, 20, 40, 60, 100 ppm of Se and with mixed pesticide (P* + Se 40 ppm) in which the treatment time was the same as that of the treatment 4 times II. The total cultivation period of rice was 184 days. Se contents in rice (brown rice, white rice) were analyzed by ICP. CONCLUSION: The number of grains per head tended to decrease with increasing concentrations of organic Se in all treatments. However, number of panicles per hill did not show statically significant differences between the 3 times and 4 times I treatments. The grain yield decreased with the 3 times and 4 times II, but there was no significant difference in 4 times I. Se content in brown rice was the highest at 100 ppm Se (5268.64) treatment and lowest at 10 ppm Se (1269.19 µg ㆍ kg -1 ) treatment. Se content in the polished rice was the highest at 100 ppm Se (5047.33) treatment and lowest at 10 ppm Se (885.05 µg ㆍ kg -1 ) treatment. The higher selenium was treated, the higher Se content was found in the rice (brown rice, polished rice). Key words: Brown rice, Foliar Spray, Polished rice, Selenium 서론 벼 (Oryza sativa L.) 는한국 중국 일본 동남아시아에서주식으로삼고있는곡류중하나이다. 우리나라는농경사회를시작하면서부터삼국시대부터쌀이주식량원이되었으며, 지금도주식으로서중요한자리를차지하고있다. 쌀은낟알의모양에따라서장립종, 중립종, 단립종으로나누며함유된전분의아밀로오스함량에따라찰벼와메벼로나눈다. 우리나라와일본에서재배하는쌀은단백질과아밀로오스의함량을줄여윤기있고, 찰진품질의자포니카타입 (O. sativa L. ssp. japonica) 이며동남아시아에서생산되는쌀은장립종으로아밀로오스와단백질함량이높으며밥이고슬고슬한인디카타입 (O. sativa L. ssp. indica) 이다 (Choi, 2010). 동남아시아에서생산되는쌀은장립종으로아밀로오스와단백질함량이높으며밥이고슬고슬한인디카타입이며, 쌀을하루섭취 (232 g) 하여얻을수있는무기성분의함량은칼륨 47
48 Won et al. (K) 261.20, 마그네슘 (Mg) 72.58, 칼슘 (Ca) 10.74, 소듐 (Na) 1.47, 아연 (Zn) 3.22, 철 (Fe) 0.81, 구리 (Cu) 0.37 mg, 셀레늄 (Se) 9.5 μg이다. 최근엔쌀의영양학적인면을재조명하면서쌀의기호성뿐만아니라기능성에대한연구가활발히진행되고있다. 감자나식빵보다쌀밥섭취시혈당및인슐린분비가낮으며, 쌀밥의형태가가루나죽, 떡등가공형태보다혈당량의급격한증가나인슐린분비를억제하고, 돌연변이억제활성이있으며가공형태인밥, 백설기, 미숫가루등도억제활성이소실되지않아항돌연변이활성이있다. 최근에는서구화된식습관으로국내쌀소비시장은점차감소되고있으며, 무역시장개방으로쌀가격경쟁력이약화되고있어, 기능성쌀개발에대한관심이필요하다 (Park et al., 2010). Se은우리몸에필수적인미량원소 ( 무기질 ) 이다. Se에는식물체에서오는무기성 Se(selenate, selenite) 과유기성 Se (selenomethionine, selenocysteine) 모두포함하고있다. 사람등의동물체내에서는주로셀레노시스테인 (Selenocysteine) 과셀레노메티오닌 (selenomethionine) 등의셀레노아미노산형태로존재하며 (Fig. 1). 많은연구에서 Se은종양질환을억제하는효과가있는것으로알려져있는데이는암환자에게혈청내 Se 농도가비정상적으로낮게나타나는것과연관이있다. 또한 Se은암세포의성장을억제하면서암세포의자살을유도해서여러발암물질의활성화를막고, 각종바이러스성질병에도상당한방지효과가있다고밝혀졌다. 작물체내에서 Se은무기형태와유기형태의두가지구조로존재하는데인체에유익한 Se은유기결합된 Se이무기결합된 Se에비해인체이용률및지속성이더큰것으로알려져있다 (Choi et al., 2010). Se은세계보건기구 (WHO) 와유엔식량농업기구 (FAO) 로부터인간이반드시섭취해야할필수영양소로공식인정받게되었으며, 이후 1978년세계보건기구 (WHO) 에서는 Se을동물필수영양소로인정하고, 1일권장량을 50 200 μg으로결정하였다. 최근에는이러한 Se의약리효과를농업분야에응용하여 Se을함유한농작물을재배하여생산자는기능성농산물로차별화하여고소득을올리고, 소비자는 Se의약리효과를가장안전한식물성유기 Se으로식품을통해섭취하고자하는시도가이루어지고있다 (Kim, 2011). 현재우리나라의 Se 섭취량은우리나라국민의 Se 평균섭취량 68.6 μg/person/day와상한섭취량 400 μg/person/day를 HI UL( 식 1.1) 에대입하여계산하면 0.068 mg/day/0.40 mg/day=0.17로 HI값이 1이하였다 ( 한국인영양권장량 8차개정, 2005). Fig. 1. Basic structure of selenomethionine, selenocysteine (adapted Kim, 2008). HI = Daily Intake of Selenium(mg/day)/Tolerable Upper Intake Level of Selenium, UL(mg/day) (1) 이와같이국민 Se 섭취량은권장섭취량을밑돌고있다 (Department of Health & Human Service of Korea, 2001). 중국에서는토양속의 Se 함량이낮아서 (0.125 mg/kg 이하 ) 케샨병 (KSD: Keshan disease) 이나케신백병 (KBD: Kaschin Beck disease) 이발병하는곳도있으며, 북한에서도 Se의부족으로케신백병이발생한예가보고되어있다 (Choi, 2008). 국내에서연구중인기능성쌀은본실험과유사한무기성분인게르마늄의토양시비나엽면시비를이용한기능성쌀개발이나베타카로틴을이용한유전자변형쌀, 오미자추출물이코팅된기능성쌀등이있다 (Song et al., 2006). 매년이와같은연구동향을보았을때, 국내환경에적합하며섭취하기편리한 Se 강화쌀을연구, 개발하여국내외쌀시장에서의경쟁력을키울필요성이있다. 중국에서는 2011년부터수입량이수출량을초과하였으며수입량은계속증가하여 2015년에는 4%(532만톤 ) 을수입하였고, 2003년국내 554종류의브랜드에서판매중인 1,034개의쌀중기능성쌀은 14 개로 (NAQS: 국립농산품질관리원, 2004) 기능성쌀소비량이점차늘고있다. 따라서본실험은유기 Se을벼의생장단계에따라농도및처리횟수별로엽면시비처리하여 Se 강화쌀을개발하는것이다. 엽면시비는토양관주나뿌리흡수처럼특정무기물이나양분의흡수가제한적이지가않고빠른시일내에작물의생육을정상적으로회복시키는데능률적이며, 효과적인방법으로알려져있다 (Song et al., 2006). 또한이연구결과를통하여 Se 함유최적의기능성쌀을개발하기위한벼의재배방법을제시하는것이다. 재료및방법 시약 Chelate Se( 이하유기 Se, 2,000 mg L 1 ) 은펩타이드와유기 Se을결합한미량요소복합비료로 (Bionel Co., Ltd, Nonsan, Korea) 에서제공되었다. Nitric acid (HNO 3 ) 은 Se 추출용액으로 Samchun Pure Chemical Co., Ltd. (Pyeongtaek, Korea) 것을사용하였다. 농약은제초제인론스타 (Kyung nong co., Ltd, Seoul, Korea) 를사용하였다. 벼재배및 Chelate Se 처리벼 (O. sativa L. ssp. japonica) 는농업기술원에서보급하는볍씨 ( 벼 삼광 ) 를비닐하우스 ( 충남대학교농업생명과학대학교 ) 에서 2016년 4월 27일모판 (30 50 10 cm 3 ) 에파종하였다. 파종후 33일 (day after sowing, DAS) 에어린모를가로 15 cm, 세로 30 cm의재식간격으로부속농장실험포장에이앙기로이앙하였다. 벼의생장단계는유효분얼기 (effective tillering stage, 63 DAS, 6월 28일 ), 최고분얼기 (maximum tillering stage, 78 DAS, 7월 13일 ), 수잉기 (booting stage,
Development of Functional Rice by Organic Selenium Foliar Spray Application 49 108 DAS, 8 월 12 일 ), 출수기 (heading stage, 116 DAS, 8 월 20일 ), 등숙기 (grain filling stage, 130 DAS, 9월 3일 ) 로구분하였다. 이에따라처리시기및횟수별처리구를 1 3회처리구 ( 최고분얼기 + 수잉기 + 출수기 ), 2 4회처리구 I ( 유효 분얼기 + 최고분얼기 + 수잉기 + 출수기 ) 와 3 4회처리구 II ( 최고분얼기 + 수잉기 + 출수기 + 등숙기 ) 로나누어수행하였다 (Fig. 2). 각시기및횟수별처리구는유기 Se 2,000 mgㆍ L 1 제제 ( 농도 ) 을 10, 20, 40, 60, 100 ppm( 식 2.1 ~ 2.5) 으로희석해서엽면처리하였고, 구체적인농도는다음과같다. 각농도에따른희석배율 10 ppm = 10 mg ㆍ 1 L 1 = 30 mg ㆍ 3 L 1 30 mg ㆍ 18 m 2 = 1.17 mg ㆍ m 2 (2.1) 20 ppm = 20 mg ㆍ 1 L 1 = 60 mg ㆍ 3 L 1 60 mg ㆍ 18 m 2 = 3.33 mg ㆍ m 2 (2.2) 40 ppm = 40 mg ㆍ 1 L 1 = 120 mg ㆍ 3 L 1 120 mg ㆍ 18 m 2 = 6.67 mg ㆍ m 2 (2.3) 60 ppm = 60 mg ㆍ 1 L 1 = 180 mg ㆍ 3 L 1 180 mg ㆍ 18 m 2 = 10.00 mg ㆍ m 2 (2.4) 100 ppm = 100 mg ㆍ 1 L 1 = 300 mg ㆍ 3 L 1 300 mg ㆍ 18 m 2 = 16.67 mg ㆍ m 2 (2.5) 유기 Se 엽면처리는처리제제를농업용수로농도에따라농업용수로희석하여, 3 L씩전자동분무기 (Kwangsung Co., Deajeon, Korea) 로수행하였다. 벼재배면적은총 17개구획으로나누어, 한처리구당 18 m 2 (6 m 3 m, 5.45평 ) 이고, 비실험구포함총 924 m 2 (22 m 42 m, 280평 ) 이다 (Fig. 3). 각처리구배치는분할구배치법으로하며, 처리구상호간영향이적도록구획간전후좌우 2 m 무처리간격을두었다. 처리구간사이에는렉산골판 (Koem Co., Paju, Korea) 을논물을통해 Se 제제의확산을차단하기위한차단막으로서설치하였다. 벼수확은 184 DAS(10월 27일 ) 에수행하였고, 총재배기간은 184일이었다. 재배기간동안기상환경은기상청자료를참고하였다. 생육조사처리구별생육조사용벼 5주를선택하여천립중, 유효분얼수, 영화수를조사하였다. 수확량은생육조사결과를바탕으 로 10 a 당수확량공식 ( 식 3.1) 에대입하였다. 각처리구의벼는콤바인으로탈곡하여 61일간비닐하우스에서자연건조후정미기 (Dongyang CO., Daegu, Korea) 로현미 (3분도, 2 kg), 백미 (8분도) 로도정하고, 65 C 열풍건조한후분말 (100 g) 하였다. 1 m 2 당포기수 주당유효분얼수 완전낟알수 천립중 1000 (3.1) 식물체 Se 추출및분석쌀분도별 ( 현미, 백미 ) 분말시료는 1 g을 50 ml Digi tube에넣어 HNO 3 10 ml와혼합하였다. 혼합액을실온에서 17시간정치후산분해기 (DigiPREP MS, SCP Science Inc., Quebec, Canada) 에서 150 170 C로 5시간분해하였다. 분해액이투명해지면분해가완료된것으로판단하고분해시킨여액을 7 9 ml 될때까지같은온도에서계속가열한다 (1 2시간). 자연냉각을서서히시킨후 50 ml Digi tube 벽에있는잔여물을초순수로닦아내며여과지 (No. 6) 로여과하여 15 ml Falcon tube에 10 ml로정용한다. ICP로분석할때 Se 표준용액을필요한농도로희석하여농도와흡광도의검량선을작성하고분석결과를대입하여정량화 (mgㆍkg 1 dry wt.) 하였다. 쌀내 Se 분석 ICP의기기분석조건은다음과같다 (Table 1). Table 1. ICP Analysis conditions for measurement of Se content in brown and polished rice Operating condition Value Power (kw) 1.20 Plasma flow (L/min) 15.00 Auxiliary flow 1.50 Nebulizer flow 0.70 Replicate read time (s) 5.00 Instrument stabilization delay (s) 25.00 Sample uptake delay (s) 50.00 Pump rate (rpm) 15.00 Element wavelength (nm) Se 196.03 Fig. 2. Foliar application time and times in rice plant with organic Se. DAS, days after sowing.
50 Won et al. Fig. 3. Disposition of experimental plot for rice cultivation and organic Se treatment in paddy field. Those treatments are referred to Fig. 2. 통계분석 ICP분석결과 (n=3) 는 Microsoft Office Excel 2016을이용하여생육및 Se 함량에대한평균값과반복 (n=3) 의표준편차 (SD, standard deviation) 를구하였다. 통계프로그램은 IBM SPSS R version 21 프로그램을사용하여일원배치분산분석 (one way ANOVA) 과반복측정다변량분산분석 (repeated measures (ANOVA) 을실시하였고, 유의수준 (P) 은 0.05 이하로설정하여사후분석 (post hoc analysis) 은 Tukey 검정법을사용하였다. 결과및고찰 벼의생장벼의단위면적당수량요소 ( 영화수, 천립중, 유효분얼수 ) 중영화수는모든시험구에서유기 Se의처리농도증가에따라감소하는경향이있었지만천립중과유효분얼수는 3회처리구와 4회처리구 I에서는유의차가없었다. 처리시기및횟수별에서는영화수, 천립중, 유효분얼수모두유의차가없었다. 쌀의단위면적당수량은처리농도가증가함에따라감소하였다 (Table 2). 유기 Se엽면처리농도에따른쌀분도별 Se 함량현미내 Se 함량은 Se 100 (5268.64) > Se 60 (3726.22) > P ( 농약 )+Se 40 (3109.65) > Se 40 (2800.14) > Se 20 (2007.09) > Se 10 ppm (1269.19 μgㆍkg 1 ) 순이었다 (Fig. 4a). 현미내 Se 함량은처리농도가높을수록증가하였다 (Table 3). 백미내 Se 함량은 Se 100 (5047.33) > Se 60 (3249.24) > P+Se 40 (2431.67) > Se 40 (2125.59) > Se 20 (1482.35) > Se 10 ppm(885.05 μgㆍkg 1 ) 순이었다. 백미내 Se 함량은현미와마찬가지로농도가높을수록증가하였다. 즉유기 Se 처리농도별모든시험구의평균 Se 함량을보면, 현미내 Se 함량은 Se 100 ppm (5268.64) 처리농도일때가장높았고, Se 10 ppm(1269.19 μgㆍkg 1 ) 처리농도에서가장낮았다. 백미내 Se 함량은 Se 100 ppm(5047.33) 처리농도일때가장높았고, Se 10 ppm(885.05 μgㆍkg 1 ) 처리농도에서가장낮았다 (Table 3). 백미와현미간 Se 평균함량은 10 ppm에서현미가백미보다 1.4배, 20 ppm에서 1.3배, 40 ppm에서 1.3배, 60 ppm에서 1.1배, 100 ppm에서 1.0배그리고농약혼합 P+Se 40 ppm 에서는 1.3배높았다. Seo (2010) 등은흡수된게르마늄은대부분쌀겨에분포되어있고, 현미의게르마늄함량이전반적으로백미에비해높다고보고되어있다. 흡수된 Se도대부분쌀겨에분포되어있을것으로예상되었고 Se 처리농도가높을수록현미및백미에서 Se 함량이증가하였고, 현미가백미에비해 Se 함량이높았다. 유기 Se 엽면처리시기및횟수에따른쌀분도별 Se 함량현미내모든처리농도의 Se 평균함량은처리구간유의차가있었다 (Table 3). 현미내 Se 함량은 4회처리구 I가가장높았다 (Fig. 4b). 백미내 Se 평균함량은현미와마찬가지로유의차가있었으며백미내 Se 함량은 4회처리구 II가가장높았다. 현미와백미간 Se 평균함량은무처리구에비해 3회처리구에서 1.1배, 4회처리구 I에서 1.2배, 4회처리구 II에서 1.2배높았다. 본실험에서백미 100 ppm 처리구를제외하고 4회처리구가 3회처리구보다현미및백미내에서 Se 함량이높았으며, P+Se 40 ppm과 Se 40 ppm 간의유의차는없었다. 따라서농약을따로처리하는과정은생
Development of Functional Rice by Organic Selenium Foliar Spray Application 51 Table 2. Grain yield including No. of grain per head, 1,000 grain and No. of panicle per hill treated by foliar application with organic Se Treatment 1) No. of grain 1,000 No. of Grain yield 2) Grain yield 3) The number of Se concentration per grain panicle (kg 10 a -1 ) (kg 18 m -2 ) foliar application (ppm) head (g) per hill 0 1,917±67a 4) 24.42±1.00a 21.00±1.00a 985.87±114.42a 6.93 10 1,839±93ab 23.60±0.63a 21.20±2.17a 923.97±416.72a 11.00 3 times 20 1,783±57ab 24.02±0.50a 21.20±2.17a 904.90±55.00a 11.10 40 1,760±92abc 24.44±0.50a 20.60±1.67a 886.95±98.50a 9.80 60 1,745±88bc 24.57±0.45a 19.40±1.14a 830.93±46.50ab 10.40 100 1,599±108c 23.92±0.58a 18.00±1.22a 690.05±83.68b 12.50 0 1,917±67a 24.42±1.00a 21.00±1.00a 985.87±114.42a 6.93 10 1,803±97ab 24.31±0.32a 20.80±2.49a 913.41±137.13a 13.30 4 times I 20 1,791±87ab 24.34±0.48a 20.60±1.34a 899.57±95.41a 13.30 40 1,796±79ab 23.53±0.76a 20.20±1.64a 851.18±32.90a 13.20 60 1,710±104b 23.83±0.45a 19.20±1.48a 782.81±79.80a 13.30 100 1,630±101b 23.70±0.39a 19.20±1.48a 743.87±92.72a 12.90 0 1,917±67a 24.42±1.00a 21.00±1.00a 985.87±114.42a 6.93 10 1,821±101ab 23.93±0.30ab 19.80±1.64ab 846.69±110.40ab 13.50 20 1,912±93ab 23.90±0.55ab 20.60±1.52ab 943.59±113.74a 14.80 4 times II 40 1,815±175a 24.15±0.49ab 21.00±1.58ab 926.92±166.35ab 12.20 60 1,685±99b 24.27±0.69ab 19.00±1.58ab 776.12±71.36ab 13.10 100 1,719±126ab 23.10±1.00b 18.20±1.10b 720.75±44.10b 13.10 P*+Se 40 5) 1,844±146ab 24.5±0.37a 21.40±1.52a 968.98±121.65a 12.20 1) Those treatments are referred to Fig. 2. 2) Calculation of grain yield: number of head per 1 m 2 No. grain per head No. panicle per hill 1,000 grain 1000 3) grain yield: substantive harvested grain yield. 4) Within each column, values follow by the same small letters are not significantly different at P < 0.05, 5) P*+Se 40: The mixture of pesticide (10 ml) and organic Se 40 ppm. Fig. 4. Se contents in various part of the rice. a), Se concentrations (mean, n=9) represent the average of sum Se contents with all the number of application(3 times, 4 times I, 4 times II); b), the number of application (mean, n=9) represent of average of sum Se contents with all concentrations (10, 20, 40, 60, 100 ppm). These data are recalculated from Table 3. 략하여도무방할것으로사료된다. 유기 Se 엽면처리농도와시기및횟수에따른 Se 섭취량계산식품의약품안전처 (2010) 에서공시한사람의일일 Se 권장섭취량은 50 200 μgㆍkg 1 이며상한섭취량은 400 μgㆍkg 1 로정해져있다. 950 μgㆍkg 1 이상섭취할경우, 중추신경계, 간, 심장, 폐등에독성을나타내게된다고명시되어있다. 따라서밥한공기당함유된 Se 함량을추산하는것은매우중요하다. 한국식품영양학회에따르면, 밥한공기의용량은보통 210 g이고, 이는쌀 70 g이므로 Se 정량단위 μgㆍkg 1 를이용하여계수값을계산하면실제섭취가능한밥한공기
52 Won et al. Table 3. Se content (µg kg 1 ) in polished rice and brown rice treated with different organic Se solutions concentrations and time and times Part of rice Se concentration Se contents (µg kg -1 ) The number of foliar application (ppm) 3 times 1) 4 times I 4 times II Average 0 722.81±75.57e 722.81±75.57d 722.81±75.57f 722.81±75.57e 10 1186.67±25.31de 2) B 3) 1076.90±16.44dB 1543.99±102.52eA 1269.19±218.16e 20 1970.13±132.58cdAB 1797.52±163.07cB 2253.60±121.51dA 2007.09±233.46d Brown rice 40 2449.96±202.87cB 2637.80±200.23bB 3312.65±238.80cA 2800.14±434.67c 60 3981.30±647.53bA 2793.20±188.70bB 4404.17±310.85bA 3726.22±813.07b 100 4974.70±325.77aB 5774.54±200.58aA 5056.68±326.51aAB 5268.64±456.61a P*+Se 40 4) ND ND 3109.65±81.40c 3109.65±81.40c 0 610.81±68.50d 610.81±68.50e 610.81±68.50c 610.81±68.50f 10 823.52±104.32cdAB 776.49±137.33eB 1055.13±73.76cA 885.05±159.64ef 20 1563.94±54.06cdA 1434.23±225.15dA 1448.88±4.67cA 1482.35±131.13de Polished rice 40 1777.03±97.15bcA 2214.54±229.88cA 2385.21±389.62bA 2125.59±356.83cd 60 2791.99±543.98bB 2816.39±72.05bB 4139.34±406.03aA 3249.24±749.87b 100 5963.85±830.50aA 4477.75±234.78aB 4700.41±553.44aAB 5047.33±862.89a P*+Se 40 ND ND 2431.67±83.86b 2431.67±83.86c 1) Those treatments are referred to Fig. 2. 2) Within each column, values follow by the same small letters are not significantly different at P < 0.05, 3) Within line column, values follow by the same capital letters are not significantly different at P < 0.05, 4) P*+Se 40: The mixture of pesticide (10 ml) and organic Se 40 ppm. 5) ND: not detected. Table 4. Se contents in un cooked rice (µg 70g 1 ) re calculated from the raw data (Table 3) for one meal of bowl Part of rice Se contents in un-cooked rice (µg 70 g -1 ) 1) Se concentration The number of foliar application (ppm) 3 times 2) 4 times I 4 times II Average 0 50.54±5.28e 50.54±5.28d 50.54±5.28f 50.54±5.28e 10 82.98±1.77de 3) B 4) 75.31±1.15dB 107.97±7.17eA 88.85±15.27e 20 137.77±9.27cdAB 125.7±11.40cB 157.60±8.50dA 140.50±16.34d Brown rice 40 171.33±14.19cB 184.41±14.00bB 231.65±16.69cA 196.02±30.43c 60 278.39±45.28bA 195.33±13.20bB 307.98±21.74bA 260.85±56.92b 100 347.88±22.78aB 403.81±14.03aA 353.61±22.83aAB 368.82±31.96a P*+Se 40 5) ND ND 217.46±5.69c 217.46±5.69c 0 42.71±4.80d 42.71±4.80e 42.71±4.80c 42.71±4.80f 10 57.59±7.30cdAB 54.30±9.60eB 73.79±5.16cA 61.96±11.18ef 20 109.37±3.78cdA 100.30±15.74dA 101.32±0.33cA 103.77±9.18de Polished rice 40 124.27±6.49bcA 154.86±16.08cA 166.80±27.25bA 148.80±24.98cd 60 195.24±38.04bB 196.95±5.04bB 289.46±28.39aA 227.46±52.49b 100 417.05±58.08aA 313.13±16.42aB 328.70±38.70aAB 353.33±60.41a P*+Se 40 ND ND 170.05±5.86b 170.05±5.86c 1) Uncooked rice 70 g = cooked rice 210 g in a bowl. 2) Those treatments are referred to Fig. 2. 3) Within each column, values follow by the same small letters are not significantly different at P < 0.05, 4) Within line column, values follow by the same capital letters are not significantly different at P < 0.05, 5) P*+Se 40: The mixture of pesticide (10 ml) and organic Se 40 ppm. 6) ND: not detected.
Development of Functional Rice by Organic Selenium Foliar Spray Application 53 당 Se 섭취량을알수있다 (Table 4). 일반적으로우리나라국민이음식을통하여섭취하는 Se 평균은 68.6 μgㆍkg 1 이므로백미는 20 ppm 처리구 (103.77 μgㆍ70g 1 ), 현미는일반쌀과 4 : 1로혼합하여섭취한다면 100 ppm 처리구 (368.82 μgㆍ70g 1 ) 가가장적합하다. 백미 40, 60, 100 ppm 처리구는 Se 섭취권장기준을초과하므로다른일반쌀 ( 무처리 ) 과혼합하여섭취하는것이적합한것으로사료된다. Note The authors declare no conflict of interest. Acknowledgement This work was supported by research fund of Chungnam National University. References Cheong, Y. H., Han, M. J., Sung, S. J., Seo, D. C., Kang, J. G., Sohn, B. K., Heo, J. S., & Cho, J. S. (2009). Effects of selenium supplement on germination, sprout growth and selenium uptake in four vegetables. Korean Journal of Environmental Agriculture, 28(2), 179 185. Choi, H. S., Kim, W. S., Kim, H. J., Choi, K. J., & Lee, Y. (2010). Variation of soil and leaf in a 'Wonhwang' pear orchard applied by selenium solution. Korean Journal of Organic Agriculture, 18(4), 541 548. Choi, I. D. (2010). Physicochemical properties of rice cultivars with different amylose contents. Journal of the Korean Society of Food Science and Nutrition, 39(9), 1313 1319. Jang, B. C. (1997). Absorption and accumulation of Sr 85 by rice (Oryza sativa L.) and its transfer factor from soil to plant. Journal of Korean Society of Soil Sciences and Fertilizer, 30(2), 184 188. Lee, M. H. (2003). Selenium in human nutrition and health. Journal of Korean Association of Cancer Prevention, 8(1), 36 44. Park, J. H., Nam, S. H., Kim, Y. O., Kwon, O. D., & An, K. N. (2010). Comparison of quality, physiochemical and functional property between organic and conventional rice. Journal of the Korean Society of Food Science and Nutrition, 39(5), 725 730. Song, S. J., Kim, Y. R., Han, S. G., & Kang, Y. G. (2006). Foliar absorption rates of 45 Ca labeled calcium compounds applied on tomato and citrus leaves. Korean Journal of Soil Science and Fertilizer, 39(2), 80 85. Yun, H. K., Seo, T. C., Zhang, C. H., & Huang, H. Z. (2005). Effect of selenium application on growth and quality of Chinese Cabbage (Brassica campestris L.) grown hydroponically in Perlite media. Korean Journal of Horticultural Science & Technology, 23(4), 363 366. Yun, H. K., Zhang, C. H., Seo, T. C., & Lee, J. W. (2006). Effect of selenium application concentration and periods on growth in garlic. Journal of Bio Environment Control, 15(4), 346 351. Yun. H. K., Zhang, C.H., Seo, T. C., & Huang, H. Z. (2007). Development of techniques for the production of selenium and germanium enriched Chinese cabbage and pepper. Journal of Bio Environment Control, 16(3), 180 185.