82-08.fm

Similar documents
DBPIA-NURIMEDIA

605.fm

82-01.fm

10(3)-12.fm

12(2)-04.fm

304.fm

9(3)-4(p ).fm

14.531~539(08-037).fm

10(3)-09.fm

10(1)-08.fm

10(3)-10.fm

10(3)-02.fm

12(3) 10.fm

84-01.fm

69-1(p.1-27).fm

16(1)-3(국문)(p.40-45).fm

untitled

19(1) 02.fm

50(1)-09.fm

untitled

14(4) 09.fm

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

<30332DB9E8B0E6BCAE2E666D>

11(1)-15.fm

38(6)-01.fm

416.fm

04.fm

12.077~081(A12_이종국).fm

16(2)-7(p ).fm

03-서연옥.hwp

83-07.fm

82.fm

< DC1A4C3A5B5BFC7E22E666D>

07.051~058(345).fm

17.393~400(11-033).fm

02.fm

fm

50(5)-07.fm

11(5)-12(09-10)p fm

31(3B)-07(7055).fm

49(6)-06.fm

14(2) 02.fm

15.101~109(174-하천방재).fm

32(4B)-04(7455).fm

8(2)-4(p ).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

14.fm

16(4)-05.fm

(2)-02(최경자).fm

Microsoft Word - KSR2012A038.doc

7(4)-07.fm

14(4)-14(심고문2).fm

DBPIA-NURIMEDIA

<30312DC0CCC7E2B9FC2E666D>

04-46(1)-06(조현태).fm

<312D303128C1B6BAB4BFC1292E666D>

16(5)-03(56).fm

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

202.fm

12(4) 10.fm

16(5)-04(61).fm

책임연구기관

26(3D)-17.fm

27(5A)-07(5806).fm

fm

16(5)-06(58).fm

15(2)-07.fm

8(3)-15(p ).fm

433대지05박창용

07.045~051(D04_신상욱).fm

06.177~184(10-079).fm

21(4)-02.fm

26(1)-11(김기준).fm

82-02.fm

10.063~070(B04_윤성식).fm

51(2)-09.fm

012임수진

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

DBPIA-NURIMEDIA

51(4)-13.fm

93-09.fm

415.fm

8(3)-01.fm

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

fm

50(6)-03.fm

43(5)-1.fm

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

[수도권대기환경청 소식] 1. 제10차 수도권 대기환경정책 연구회 년도 1/4분기 직장교육 26 제5절 환경용어 해설 교토메카니즘(Kyoto Mechanism) 라돈(Rn) 배출가스 재순환장치(EGR, Exhaust G

歯49손욱.PDF

93.fm

23(2) 71.fm

01.01~08(유왕진).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

fm

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

03이경미(237~248)ok

64.fm

143.fm

11(4)-03(김태림).fm

Transcription:

w y wz 8«( 2y) 95~108, 2005 J. of the Korean Society for Environmental Analysis VOC p : w 2000-2004 ½»x Á Á w y w, w y œw The Composition and Emission Characteristics of VOC from Major Waste Landfill Sites in Korea: a Comprehensive Report on a Four-year Study of LF Emission Inventory from 2000 to 2004 Ki-Hyun Kim, Ye-Jin ChoiG and Young Sunwoo Dept. of Earth & Environmental Sciences, Sejong University Dept. of Environmental Engineering, Konkuk University In order to accurately evaluate the distribution and emission characteristics of volatile organic compounds (VOC) produced in the landfill environment, we conducted a series of field campaign to measure VOC emissions from a total of eight landfill sites located all across the Korean Peninsula. During the field measurements made from Sept. 2000 to Dec. 2004, we investigated VOC emission characteristics from 1 large-scale, 5 midscale, and 2 small-scale landfill sites. The results of our 4-years study are used to provide valuable information for the management of landfill facilities in Korea. If annual emission rates of VOC are compared in terms of toluene, the magnitude of its emission differed between the closed and active landfills. Whereas closed landfills show emission rates from a few tens to 500 g/yr, those of active ones were recorded as 1,000 to 40,000 g/yr. Key words: landfill, VOC, methane, emission, emission inventory 1. l {»yw (volatile organic compounds: VOC) ƒ zy w»w. y VOC ƒ ƒ ƒ w. p td ü y w š, t ù œ mw VOC» w w w 1). w w, y w w w wš. w t w» w,,,», ³» w,, y w VOC p jš w ƒ ƒ w. VOC w ³ w w w» š w. 2,3) 2000 ù w., 2001 l 2004» ¾ w mw w y w. 2001 l x ¾ w w ³ w, VOC p ³ w» w w. 2003 ¾, Ÿ, t, 2 ( x, z ) w w ww To whom correspondence should be addressed.

96 ½»xÁ Á. š 2004 Ÿ ³ ³ 4,5) w w w ƒw. l 2004 ¾ y w š xk tw. š w 2004 6), w œ w w 2 ³ wš ww. p 7), e w y ƒw Ÿ w» VOC p w.» 2004 ƒw ³ w s ww, 2000 l 2004» ww wš w. k w w VOC ³ p w wš w. 2. 2.1. p 8 4» VOC p w. w m VOC p w. ƒ w Table 1 w. r 2.72 km 2 ³ ƒ ƒ j ù x w. w 1/10 ³ w w, z,, w, x w. š ³ 1/10 t, x x w. d 8 x w, ù ù y ƒ w. ù d ƒ j. x w ü ƒ wù. ù w d w, VOC p w. ù 2) w x d y 2000 9 w. t x, w w. ³ w w, z,, w 2005» y w w w w. wr w d VOC w ùkù VOC p ( ) q wš w. w d (2002 12 ) (2003 7 ), w. w (2004 1 ) (8 ) y dw. š ƒ w w œ w ³ Table 1. A list of Korean landfill sites investigated in this study: detailed information of all sites is provided. Order Name Short Name Location Operation type Size Operation period Area Start End (km 2 ) Volume (m 3 ) Study period (Sample collection) 1 Nan Ji Do NJ Seoul Nonsanitary Large 1978 1992 2.72 1.10x10 8 20 Sept.~4 Oct. '00 2 Woon Jung Dong WJ Gwang Ju Mixed* Medium 1991 Present 0.28 4.37x10 6 9~11 Dec. '02/ 4~5 Aug. '03 3 Sam Poong Dong SP Kyung San Mixed* Small 1989 1997 0.03 2.90x10 4 14~15 Jan. '03 4 Hoei Chun Dong HC Jeju Sanitary Medium 1992 Present 0.2 2.29x10 6 22~23 July '03 5 No Hyung Dong NH Jeju Nonsanitary Small 1980 1992 0.08 1.66x10 6 Same as above 6 Bang Chun BC Dae Gu Sanitary Medium 1990 Present 0.6 1900 t/d 13~16 Jan.,14~15 Aug. '04 7 Dong Hae DH-New Dong Hae Nonsanitary Medium 1981 1999 0.32 0.60x10 6 8~9 Oct., 6~7 Nov., 15~16 May, 14~15 Jul., 20~21 Dec., '04 8 Dong Hae DH-Old Dong Hae Sanitary Medium 1999 Present 0.35 0.32x10 6 Same as above *Mixed type denotes that non-sanitary treatment was applied in the early phase of operation, while sanitary one in the later phase.

Running Title 97 w 4 (2004 5, 7, 10, 11, 12 ) w š w. w ³ w œm w. w w 4 ³ w w k. w, ù ³ l ¾. t» ƒ w y š, x kœ j» w y w. š t œ» z» y. 2.2. VOC œ l ƒ w VOC ƒ d w. l w w œ ( z ) l w ( ù p ). œ w e w, ew w w. z x w k, œ w. ƒ w z mw z ƒ m š. z œ l w. x, k, œ. œ ƒ ƒw» w, ³ z l w., mw ƒ w. ƒ VOC p 10( 3) l j» l œx l w w. œ l VOC w w» w ƒ, y d (Model 8330-MBC, TSI Instrument) w d w. w ƒ w k, yk yw w w. d» w w d w, y» w VOC w ww. 2.3. œ l VOC y w d w w ƒ» w w. œ l ƒ ( w landfill gas LFG t») w w VOC ƒ w. w VOC w y w GC-FID (Model DS 6200, Donam Instrument, Korea) k» (Markes International Ltd., UK) ww l y w. 8) l ¼ w k» ü w rv MFC (mass flow controller) mw w (80 ml/min) 5 k» ü g ( 400 ml ). š rp i w -10 C o w, cold trap ƒ (cryo-focusing) w. k (320 C 10 ) e o z, GC (gas chromatography) column (DB-VRX, 60 m 0.32 mm 1.8 µm, SGE ) g, ww. GC oven» 50 C 5 w o z, 6 C/min o 230 C¾ o ƒ jš, 5 w. GC w ƒ w : H 2 = 30; N 2 (Makeup gas) = 30; Air = 300 ml/min. w gravimetric w t (EPA Volatile Organic Compounds Mix2, SUPELCO)»y j w. w t ƒ y j, 3 (10, 20, 40 ng) w y w. l t w, 9% w w

98 ½»xÁ Á ùkû. l y TO-14 t ƒ w w, 5% ü y.» w, y GC-FID l benzene» 0.1 ng w w. w TVOC GC/FID w VOC ƒ w ƒƒ wš, ù m» w.»»x k l (SPIS, Donam Instrument) w, Markes Unity k» w GC- FID w. ù 1» ( ) w š w { x GC-PID (Voyager Assay # 1, Photovac, Inc.) w. l» light, medium, heavy VOC w ƒƒ ü 3 e w w. š,»» p EPA 601 w w, EPA 602 w, EPA 624 w» k s sww 40 ƒ w ƒ w. w, x w 3z m w, BTEX 5% w. GC-PID l p GC-FID l y w. l 10% zw ü yw e. š ƒ w w, t w w, 5 % ü y w. 9) GC-PID l», 50 ppb w. 3. š 3.1. w VOC s Fig. 1 e w. Table 2 Table 3 BTEX w w VOC œ LFG y» w m w. š Fig. 2~5 (WJ), (BC), w (DH-New), w (DH-Old) dw VOC s d œ w. Table 2 w, ƒ w œ ü ƒ ù y w. m w, w y. w,, z, w, ƒ dw VOC ƒ ~ ppm» w ùkû. w ü wš, w VOC š ƒà. š, w VOC dw w, ƒ ppb š, ~ ppm w ùkû. 10) w, t, x, w ppb» w., w y w œ ƒ yƒ ú ƒ. ppb w, ƒ 10 ƒw. œ w wì y» w w y w w dw VOC VOC w œ { zw y (Table 3)., VOC ƒ w š w m w, j. Na et al. (2001) wƒ w ù dw m s ³ ƒƒ 3.9 2 ppb» w. 11) dw w { zw 10 ppb w ù w VOC ƒw. p Ÿ ü dw» y» ƒ 1 ppm w ùkù k 100. Table 4A ƒ k, yk, NMHC w ƒ w. š Table 4B VOC

Running Title Fig. 1. 99 A geographical location of five landfill sites investigated in this study (For details of each study site, refer to Table 1). 들간에 형성되는 농도비 값 등을 다각도로 제시하였 다. 매립가스들 간의 상대적인 농도분포를 비교해 보 면, VOC 성분들에 대한 매립장별 특성을 뚜렷하게 반 영하는 것으로 나타난다. 실제로 선행연구들의 결과를 보면, 매립가스의 구성 및 농도를 결정하는 요인으로는 매립물의 성분, 매립지 내부의 수분상태, 분해 진전단 계, (가스추출율에 따른) 가스 구성의 변동 등이 중요 한 것으로 보고된 바 있다. 앞서 살펴본 바와 같이, 각각의 매립장에서 관측한 VOC의 배출농도가 매립장 의 상태를 진단할 수 있는 중요한 인자로 간주할 수 10) 있다(Table 4A). 본 연구 결과에서 메탄농도는 매립장의 VOC 배출농 도와 어느 정도 강한 연계성을 찾을 수 있다. 대체로 매립이 종료된 매립시설물들에서는 앞서 VOC의 결과 와 유사하게 상당히 낮은 수준의 메탄농도를 보이는 것 으로 알려져 있다. 그렇지만 일부 매립장에서는 이러한 일반적인 경향과 달리, 고농도의 메탄이 종종 발견되는 경우도 나타났다. 난지도지역이나 노형 매립장의 경우, 메탄 농도가 다소 예외적으로 고농도를 유지하는 것으 로 발견되었다. 그러나 삼풍 및 동해 구매립장의 경우,

100 ½»xÁ Á Table 2. A statistical summary of major aromatic VOC concentrations determined as LFG for all landfill sites investigated in this study (all units in ppb). Landfill ID BEN* TOL EB MPX* OX STR A. NJ B. WJ [2]Summer C. SP 31.8Û61.8(14.9) 1 259Û287(204) - 10.4Û16.9(4.12) 45.1Û61.1(28.3) - 0.22~320(52) 2 3.58~1431(53) - 0.16~69.4(25) 0.14~311(51) - 234Û143(201) 10883Û10355(7218) 2978Û2286(2286) 2362Û1553(2142) - 2590Û1501(3015) 35~479(14) 1018~32316(14) 604~8133(15) 454~7072(15) - 895~4795(8) 924Û1054(494) 2610Û2354(1484) 982Û498(999) 1045Û522(960) - 91.5Û79.5(56.0) 135~2767(6) 661~6341(6) 412~1723(6) 509~1794(6) - 37.3~248(6) 2.51Û3.07(1.24) 34.4Û28.7(24.5) 11.1Û9.92(8.40) 10.2Û7.33(8.56) 13.4Û15.1(8.7) - 0.49~8.62(10) 6.03~102(10) 2.47~32.3(10) 3.22~24.5(10) 2.43~52(10) - D. HC** 828Û718(697) 1808Û1529(1566) 1264Û874(1624) 946Û691(1012) 1269Û886(1495) 65.8Û32.7(58.6) 184~1603(3) 414~3444(3) 267~1899(3) 225~1602(3) 292~2020(3) 37.3~101(3) E. NH 117 21.9 53.7 34.2 48.9 248 F. BC 1564Û1695(1178) 64765Û74438(28902) 5893Û3423(6120) 4431Û2656(4644) 1001Û745(1081) 1130Û2234(551) 126~7125(14) 411~253370(14) 686~10683(14) 472~8374(14) 64.7~1993(14) 40.0~8844(14) G. DH-New H. DH-Old 2674Û2186 39593Û37690 6954Û3027 401Û2164 2561Û1488 284Û102 831~8529(10) 2123~90965(10) 2988~11159(10) 1588~7659(10) 107~4732(10) 95~417(10) 642Û405 5141Û3101 1991Û745 1081Û394 536Û273 168Û94 285~1220(4) 1962~9036(4) 996~2703(4) 693~1519(4) 244~820(4) 77~264(3) 5091Û3695 6142Û6749 3353Û3216 2556Û1719 1760Û1062 488Û263 1276~8611(4) 719~15984(4) 568~6320(4) 374~4503(4) 212~2587(4) 138~719(4) 171Û150 1364Û899 1778Û1226 777Û501 80.3Û85.9 707Û450 17.2~329(4) 390~2148(4) 133~3030(4) 113~1312(4) 0.12~184(4) 74.4~1130(4) 139Û112 538Û363 1293Û1013 536Û435 142Û 123 1515Û1351 16.9~238(3) 133~834(3) 124~1909(3) 88.2~ 957(3) 18.3~264(3) 42.3~2696(3) 29.5Û10.8 303Û49.5 107Û62.5 123Û70.9 53.3Û24.4 60.7 22.8~42(3) 246~333(3) 51.1~175(3) 49.4~191(3) 25.5~71.2(3) 60.7(1) 7.73Û0.69 21.1Û8.45 19.4Û21 12.6Û13 9.34Û9.09 2.93Û2.03 7.31~8.53(3) 13.5~30.2(3) 0.94~42.3(4) 0.18~26.2(3) 1.77~19.4(3) 1.26~5.19(3) 0.44Û0.15 8.83Û 5.04 4.33Û1.79 2.96Û1.17 2.59Û2.66 1.89Û0.76 0.27~0.6(4) 2.51~13(4) 1.75~ 5.62(4) 1.22~3.67(4) 0.37~6.15(4) 0.76~2.40(4) 52.7Û101 582Û753 174Û226 128Û180 83.9Û158 96.1Û133 0.35~ 203(4) 6.78~1613(4) 3.02~488(4) 2.36~387(4) 0.43~321(4) 1.41~ 286(4) Superscript 1 denotes mean and 1SD with the median value in the parenthesis. Superscript 2 shows the concentration range with the total number of measurements. *Short names of BEN through STR denote benzene, toluene, ethylbenzene, m, p-xylene, o-xylene, and styrene, respectively. **In the case of HC site, the values were derived from 3 LFG samples that cover both vent pipes (2 sites) and a centralized collection system. x w % w w ùkû. k ƒ x w û ƒ» (20%) w ù kû. VOC l w, ƒ w (Table 4B). w m / 1.24 š 55 ¾ y. p, z m / 50 y. w, 10. m ƒ w w, w w w.»

Running Title 101 Table 3. A statistical summary of aromatic VOC compositions determined from ambient air samples collected in the vicinity of landfill sites. Landfill ID BEN* TOL EB MPX* OX STR A. NJ B. WJ [2]Summer C. SP D. HC** 0.96Û0.65(0.72) 8.99Û6.10(6.32) - 0.89Û0.72(0.66) 0.21Û0.20(0.16) - 0.28~3.24(28) 0.27~22.6(28) - 0.00~2.78(28) 0.07~0.70(10) - 13.0Û19.9(2.44) 1023Û1650(110) 250Û401(26.3) 151Û241(16.1) 184Û300(15.9) - 0.58~36.0(3) 30.4~2927(3) 10.8~714(3) 7.12~429(3) 6.61~530(3) - - - - - - - - - - - - - 0.99Û0.81(0.80) 9.18Û9.63(6.03) 1.86Û2.86(0.76) 0.88Û0.18(0.86) 0.72Û0.26(0.62) - 0.20~1.97(6) 2.74~28.3(6) 0.46~7.68(6) 0.67~1.17(6) 0.49~1.18(6) - 0.79Û0.66(0.72) 9.59Û5.01(8.80) 10.4Û7.17(8.52) 9.86Û6.87(7.82) 15.3Û10.8(12.9) 3.59Û2.75(3.85) 0.15~1.83(5) 3.63~16.2(5) 2.74~18.7(5) 2.66~18.2(5) 3.75~27.1(5) 0.76~7.06(5) E. NH - - - - - - F. BC G. DH-New 0.91Û1.14(0.63) 8.42Û5.38(8.28) 1.34Û1.44(0.99) 1.01Û0.96(0.79) 0.24Û0.19(0.21) 0.45Û0.44(0.31) 0.15~6.69(43) 0.57~17.7(43) 0.19~7.82(43) 0.18~5.37(43) 0.05~1.03(43) 0.10~2.50(43) - - - - - - - - - - - - 3.35Û2.06 15.3Û12.4 1.96Û1.30 4.00Û2.70 0.352 0.51Û0.44 0.58~6.58(9) 2.50~35.98(9) 0.44~4.14(9) 1.05~8.19(9) 0.352(1) 0.18~1.42(9) 8.34Û12.6 11.2Û7.63 1.72Û0.60 2.01Û0.59 3.11Û6.74 1.02Û0.30 1.78~37.9(8) 4.27~29.3(8) 0.97~2.63(8) 1.19~3.19(8) 0.20~19.8(8) 0.67~1.70(8) 0.47Û0.07 2.72Û0.65 0.45Û0.13 1.11Û0.28 0.45Û0.13 0.49Û0.11 0.43~0.58(4) 1.92~3.37(4) 0.28~0.58(4) 0.77~1.42(4) 0.35~0.62(4) 0.39~0.64(4) 0.56Û0.06 23.11Û8.08 35.2Û8.87 31.1Û7.78 17.8Û4.10 0.48Û0.54 0.48~0.61(4) 14.69~32.4(4) 27.89~48.1(4) 25~42.4(4) 14.8~ 23.7(4) 0.12~1.26(4) Table 4. A statistical summary of the major LFG components and their concentration ratios (all units in %). A. The concentrations of major LFG components A. NJ B. WJ [2]Summer C. SP ¾ Major gases in percent unit NMHC CH 4 CO 2 O 2-58.0Û4.38(59.9) 27.7Û3.15(29.3) - ¾ 50.4~63.4(44) 20.7~31.0(44) ¾ 0.51Û0.38(0.39) 26.8Û17.7(26.0) 18.9Û9.36(17.2) 9.40Û4.64(10.0) 0.20~1.05(4) 6.93~48.3(4) 9.80~31.4(4) 3.50~14.2(4) 0.62Û0.32(0.53) 28.6Û13.5(25.9) 21.4Û11.2(18.0) 7.85Û5.24(9.40) 0.25~1.01(6) 12.9~44.8(6) 8.10~35.2(6) 1.30~13.6(6) 0.06Û0.10(0.01) 1.53Û3.01(0.20) 3.35Û4.95(0.15) 17.4Û 4.41(20.3) 0.00~0.32(10) 0.00~9.41(10) 0.00~13.4(10) 8.40~20.5(10) 0.80Û0.36(1.00) 38.1Û11.5(44.7) 29.7Û9.24(34.8) 4.83Û7.59(0.50) D. HC** 0.38~1.01(3) 24.8~44.8(3) 19.0~35.2(3) 0.40~13.6(3) E. NH 2.45 37.7 21.5 1.50 F. BC 0.71Û0.28(0.73) 40.0Û12.7(44.3) 38.0Û7.54(41.7) 2.19Û2.60(0.98) 0.28~1.25(14) 15.5~52.4(14) 23.0~44.9(14) 0.60~8.80(14)

102 ½»xÁ Á Table 4. Continued F. BC G. DH-New H. DH-Old 1.63Û0.88 38.0Û15.5 41.3Û17.9 28.8Û12.4 0.32~3.08(10) 9.84~57.1(10) 10.2~63.4(10) 6.70~41.1(10) - 15.2Û11.1 12.9Û6.19 - - 3.20~26.8(4) 5.79~20.83(4) - - 3.82Û2.35 2.37Û1.22 - - 0.66~6.22(4) 0.77~3.70(4) - - 24.5Û9.46 18.8Û7.5 - - 13.3~33.3(4) 12.1~28.2(4) - - 1.51Û1.19 1.08Û0.67 - - 0.16~2.41(3) 0.34~1.65(4) - - 0.01Û0.01 0.07Û0.02 - - 0.001~0.02(3) 0.06~0.10(3) - - 0.01 - - - 0.01(1) - - - 0.10 - - - 0.10(1) - - - 0.10 - - - 0.10(1) - - B. The volume-to-volume ratios between major components. ¾ T/B ΣBTEX/NMHC* CH 4 /NMHC A. NJ B. WJ [2]Summer C. SP 9.84Û1.67(10.2) - - 7.89~11.7(5) ¾ ¾ 55.4Û30.3(53.9) 1.88Û1.66(1.40) 53.7Û16.6(56.6) 7.63~103(13) 0.57~4.16(4) 34.0~67.6(4) 6.28Û4.41(6.07) 1.18Û0.63(1.10) 48.47Û11.1(48.2) 0.75~12.9(6) 0.53~2.17(6) 32.0~65.2(6) 39.8Û53.8(15.6) 0.85Û2.42(0.02) 1.04Û0.03(1.03) 5.06~174(10) 0.00~7.30(9) 1.01~1.09(9) D. HC** 2.59Û0.07(2.62) 0.83Û0.68(0.90) 51.4Û11.9(44.7) 2.51~2.63(3) 0.12~1.48(3) 44.4~65.2(3) E. NH 0.22 0.04 32.0 F. BC G. DH-New H. DH-Old 52.6Û56.5(37.4) 0.09Û0.10(0.06) 59.6Û17.6(57.8) 1.35~207(14) 0..00~0.31(14) 31.1~108(14) 15.8Û13.6 0.03Û0.01 29.08Û16.97 0.79~36.5(10) 0.005~0.04(10) 9.46~61.5(10) 8.65Û4.60 - - 4.98~15.4(4) - - 1.24Û0.64 - - 0.57~1.86(3) - - 21.4Û20.8 0.13Û0.10 6.35Û3.16 1.19~46.9(4) 0.01~0.25(4) 3.24~9.57(4) 5.13Û2.38 - - 3.50~7.86(3) - - 10.94Û3.29 - - 7.94~14.5(3) - - 2.68Û0.85 - - 1.85~3.54(3) - - 20.1Û11.5 - - 9.42~35.5(4) - - 19.5Û28.9 - - 3.5~62.9(4) - - *Computation based on carbon based concentration (such as ppb C or ppm C); results are shown in percent unit.

Running Title 103 ƒ 4~5 ü w, w x w. ƒ VOC m w w. 3.2. VOC s» œ VOCd w w Ÿ,, w w 4 w.,» ƒ ƒ j d. ƒƒ Fig. 2 Fig. 3 w. w, ƒ¾ w w,, ƒ, 4 š (Fig. 4, 5). 3 4 w œ mw VOC s w w. ƒ d ùkû., Ÿ, ƒ ùkù. š m, 10 ppm 3, 4 2.6 ppm ùkû (Fig. 2)., ƒ w. ùkù. p m 2 ùkù. ù, p (Fig. 3~5). w, p wš ù kû.,, ƒ,. w, w, Fig. 2. The LFG concentration of major aromatic VOC determined from the WJ site during winter 2002 period are compared as a function of vent number.

104 ½»xÁ Á Fig. 3. The LFG concentration of major aromatic VOC determined from the BC site between winter (Jan) and summer (Aug.) 2004 period are compared as a function of vent number. ƒ š,,, ƒ. w w, dw VOC ƒ w ùkù. w w ù x» w., w w.» x w w, w s w e ƒ w. œ ƒ d. t, ƒ œ mw ƒ w. œ LFG ƒ x w y w x. w w e w w. (2003)ƒ ³ w,

Running Title 105 Fig. 4. Comparison of major aromatic VOC in LFG samples, collected from the new landfill site in Dong Hae, is made as a function of vent number. t VOC w ùkû. 12) p ƒ, t k m œ w t VOC, œ ƒw ƒ w. š, 2 w w ƒ z e w, œ s.» d 6 œ w. w w š w, ü yù VOC y w» w. 3.3. LFG wù ƒ VOC yw w. w y sƒw» y w. w, w VOC ƒ w. w Kim & Kim(2002) w ù œ mw w w. 3) œ l ƒ œ d ƒ p ü w w. œ 16 cm š 5 l ¾ t mw ü d. œ v w» w, œ s 5m w. œ ù, œ v w w ƒ ƒ 1z w. œ ü

106 ½»xÁ Á Fig. 5. Comparison of major aromatic VOC in LFG samples, collected from the old landfill site in Dong Hae, is made as a function of vent number. w w j ƒ ƒ w š., p, d» w, ƒ w. ƒƒ p tw LFG w, p w ƒ w. w VOC w t»w (Table 5). dw» x mw. w ƒ w. w e y w w s ƒw» w. ƒ VOC ³ w» w ƒ», d mw y w LFG œ š w, œ w VOC w. ùkù, LFG w j. p œ w w, w x w ƒ. m» w y w. w 1000 g/yr (ƒ w ) 40,000 g/yr (, )¾ y. w, ( t, w ) 500 g/yr zw (ù )¾ w ùkù. w w w wš ww» w, ³ ù ƒ y

Running Title 107 Table 5. A statistical summary of landfill gas (LFG) fluxes of major aromatic VOCs from all landfill sites. LFG fluxes are computed as mean values for all vent pipes (all units in g yr -1 ). ¾ BEN TOL EB MPX* OX STR A. NJ 58.8Û148 494Û689-22.4Û39.2 97.3Û133-0.17~902(42) 1.33~2979(43) - 0.13~113(15) 0.04~632(41) - B. WJ [2]Summer C. SP D. HC** 588Û633 30952Û46279 10308Û14176 7360Û5886-6152Û4298 62.7~2558(14) 2394~180985(14) 1636~59042(15) 1227~22589(15) - 1811~14571(15) 1230Û1186 4078Û2279 2130Û960 2190Û714 4895Û1836 169Û66.1 221~3018(6) 2058~7131(6) 917~3417(6) 1167~3125(6) 2289~6960(6) 99.2~282(6) 1.28Û1.57 19.8Û13.5 7.64Û6.88 14.2Û10.2 9.36Û11.4-0.24~4.91(10) 3.80~42.7(10) 1.40~25.0(10) 3.16~38.0(10) 1.23~40.3(10) - 1607Û1390 4136Û3757 3338Û2515 4985Û3973 3345Û2557 143Û38.81 236~3196(3) 627~8100(3) 466~5147(3) 784~8683(3) 509~5474(3) 99.2~173(3) E. NH 100 22.1 62.3 79.4 56.8 282 F. BC G. DH-New H. DH-Old 762Û927(405) 43627Û57676(14689) 4374Û5545(3927) 6637Û8475(5439) 557Û467(596) 653Û 1076(305) 35.4~3148(14) 136~117687(14) 145~22325(14) 218~34038(14) 32.0~1200(14) 14.9~4065(14) 702Û628 13908Û18129 2787Û2502 1790Û1670 1057Û1006 108Û89.2 97.6~1878(10) 184~54698(10) 267~7891(10) 134~5416(10) 8.70~3229(10) 14.3~288(10) 608Û411 4947Û1490 2621Û1556 1339Û421 626Û220 160Û45.9 239~1188(4) 3474~6971(4) 1490~4861(4) 838~1722(4) 452~939(4) 124~212(3) 6989Û2873 8679Û7021 5861Û4156 4407Û1566 3011Û1053 919Û154 3157~9593(4) 4302~19120(4) 940~9840(4) 2576~6207(4) 1461~3756(4) 706~1069(4) 109Û97 1665Û1291 1721Û1321 779Û600 94Û84 712Û547 21~248(4) 112~3024(4) 220~2856(4) 186~1539(4) 33~190(4) 123~1246(4) 205Û182 979Û809 2835Û2972 1333Û1601 265Û212 3016Û2937 29.8~392(3) 276~1863(3) 296~6104(3) 43.1~464(3) 43.1~464(3) 102~5974(3) 11.0Û6.06 128Û34.3 56.2Û41.4 64.4Û45.7 27.5Û16.0 34.5 6.48~17.9(3) 106~167(3) 19.7~101(3) 19.0~110(3) 9.8~41.2(3) 34.5(1) 2.90Û0.78 9.7Û5.33 11.1Û12.3 7.20Û7.57 5.23Û5.43 1.56Û1.26 2.08~3.63(3) 4.53~15.2(3) 0.36~24.5(3) 0.07~15.1(3) 0.68~11.2(3) 0.48~2.95(3) 0.25Û0.07 5.30Û2.83 3.18Û1.24 2.16Û0.77 1.75Û1.59 1.40Û0.53 0.20~0.36(4) 2.11~8.60(4) 1.57~4.56(4) 1.11~2.88(4) 0.34~3.75(4) 0.68~1.95(4) 1.31Û1.36 122Û208 55.4Û61.8 32.9Û36.5 3.38Û4.58 27.0Û29.6 0.29~3.32(4) 6.49~433(4) 3.33~140(4) 2.60~84(4) 0.46~10.2(4) 1.56~66.9(4) *In the case of NH site, samples were collected from a centralized collection system. Hence, for the computation of fluxes, vent pipes of the same physical condition as the HC site were assumed. w» w ƒ w. 4. y 2000 l 2004» LFG xk VOC p ³ w» w ww. w w mw, w w w x d y wš» w., ùkù VOC w w xk VOC y w., VOC w x w û ùkû. ù y» 10 ƒ¾ ¾ ã š y w. š m», œ

108 ½»xÁ Á m ( t, w ) 500 g/yr zw (ù )¾ w ùkû. w, w m 1000 g/yr (ƒ w ) 40,000 g/yr (, ) ¾ s y. m VOC p» w. w w, ù p w ùkú y. p w w w» w, w ƒ v w. p w VOC w p yw w» w ³,, z z w p w ƒ w. y, BTEX w w VOC š. w w w,» dw VOC ü w ùkù zw y., ü p w w w. p y w ù œw» l ƒ w š ƒ» sw w. š w ƒ z w» v ƒ š sƒ. p» xw w» w w. w» y w., š, w» w w w, w y xw. w ƒ q wš œ w» w, x x w w š w w. š x 1. James, K. J. and M. A. Stack, The impact of leachate collection on air quality in landfills, Atmospheric Environment, 1997, 34(8), pp. 1713-1721. 2. ½,,, ½»x, œ mw VOC ³ p w : ù w, w y wz, 2002, 5(1), pp. 13-24. 3. Kim, K. H. and M. Y. Kim, The distributions of BTEX compounds in the ambient air of the Nan-Ji-Do landfill site in Seoul, Atmospheric Environment, 2002, 36(14), pp. 2433-2446. 4. ½»x,,,,, ƒ VOC ³ : ³ w, w y wz, 2003a, 6(1), pp. 7-14. 5. ½»x, ³z,,,,,, Ÿ Ÿ w VOC p w, w wz, 2003b, 16(5) pp. 407-417. 6. ½»x, ½,,,. w VOC p w.. 2004. 5(3). pp. 99-116.7. 7., ½»x,,,, ³ w ƒ VOC d p - w, w ý y wz, 2005, 4(1), pp. 5-14. 8.,, ½»x, {»yw d, w»y wz, 2003, 19(5), pp. 491-502. 9. Ebersold, P. and W. Young, Here and now, Environmental Protection, May 2002. 2002, 10. Schweigkofier, M. and R. Niessner, Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC-MS/AES analysis, Environmental Science & Technology, 1999, 33, pp. 3680-3685. 11. Na, K., YP Kim, K.-C. Moon, I. Moon, and K. Fung, Concentrations of volatile organic compounds in an industrial area of Korea, Atmospheric Environment, 2001, 35, pp. 2747-2756. 12., w, ½ x, ½ x,, œ, ½ x,» t VOC p, w y œwz, 2003, 25(10), pp. 1258-1270.