갯벌참굴양식장퇴적물중유기물및미량금속분포 1015 (Shim et al., 2009). 1960,, (eutrophication), (red-tide), (hypoxia) (Hwang et al., 2006).,,.,,,, (Shim et al., 2009), (Yang



Similar documents
한수지 48(4), , 2015 Original Article Korean J Fish Aquat Sci 48(4), ,2015 곰소만바지락 (Ruditapes phillippinarum) 양식장주변퇴적물내유기물과미량금속분포특성 최민규 이인석 김

433대지05박창용

hwp

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

03-서연옥.hwp

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

03이경미(237~248)ok

개최요강

19(4)-12(40).fm

DBPIA-NURIMEDIA

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

139~144 ¿À°ø¾àħ

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

untitled

012임수진

자기공명영상장치(MRI) 자장세기에 따른 MRI 품질관리 영상검사의 개별항목점수 실태조사 A B Fig. 1. High-contrast spatial resolution in phantom test. A. Slice 1 with three sets of hole arr


10 (10.1) (10.2),,

表紙(化学)

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

인문사회과학기술융합학회

jaeryomading review.pdf

DBPIA-NURIMEDIA

14.531~539(08-037).fm

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

Lumbar spine

1

04김호걸(39~50)ok

10(3)-02.fm

Microsoft Word - 크릴전쟁_당신이 모르는 남극 바닷속 쟁탈전_FINAL.docx

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

책임연구기관

02À±¼ø¿Á

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

12.077~081(A12_이종국).fm

06장소영(f2.4)(115~122)ok

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

02¿ÀÇö¹Ì(5~493s


09구자용(489~500)

DBPIA-NURIMEDIA

가자미식해의제조공정최적화 37., (Choi et al., 200).. 재료 재료및방법 (Verasper Jordan et Gilbert;, ), (, ), (, ) (, )., (, ), (, ), (, ), (, ), (, ), (, ). 가자미식해제조 (round

09È«¼®¿µ 5~152s

10(3)-10.fm

07.hwp

38(6)-01.fm

02ÇãÀÎÇý ~26š

untitled


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

°ø±â¾Ð±â±â

2.대상 및 범위(계속) 하천 하천 등급 하천명 연장 (km) 연장 (km) 시점 금회수립현황 종점 지방 하천 함안천 경남 함안군 여항면 내곡리 경남 함안군 함안면 함안천(국가)기점 검단천 경남 함안군 칠북면 검단리 칠원천 6.70

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

목 차 회사현황 1. 회사개요 2. 회사연혁 3. 회사업무영역/업무현황 4. 등록면허보유현황 5. 상훈현황 6. 기술자보유현황 7. 시스템보유현황 주요기술자별 약력 1. 대표이사 2. 임원짂 조직 및 용도별 수행실적 1. 조직 2. 용도별 수행실적

10(3)-12.fm

10(1)-08.fm

???춍??숏

< B3E2BFF8BAB828C8AFB0E629312E687770>

DBPIA-NURIMEDIA


(72) 발명자 이승원 강원도 고성군 죽왕면 오호리 정동호 강원도 고성군 죽왕면 오호리 이호생 강원도 고성군 죽왕면 오호리 이 발명을 지원한 국가연구개발사업 과제고유번호 PMS235A 부처명 국토해양부 연구사업명 해양자원개발 연구과제명

(

44-4대지.07이영희532~

<B8F1C2F72E687770>

환경중잔류의약물질대사체분석방법확립에 관한연구 (Ⅱ) - 테트라사이클린계항생제 - 환경건강연구부화학물질연구과,,,,,, Ⅱ 2010

DBPIA-NURIMEDIA

본문.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

<313120B9DABFB5B1B82E687770>

04_이근원_21~27.hwp

< C7D8BEE7BCF6BBEAC5EBB0E8BFACBAB82E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),


???? 1

DBPIA-NURIMEDIA

01À̽ÂÈ£A9-832š

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

04±èºÎ¼º

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

45-3대지.6송성대


82-01.fm

<4D F736F F F696E74202D20454D49A3AF454D43BAEDB7CEBCC52EBBEABEF7BFEBC6F7C7D428BBEFC8ADC0FCC0DA >

untitled

¨ë Áö¸®ÇÐȸÁö-¼Û°æ¾ðOK

10(단보).hwp


한수지 49(6), , 2016 Original Article Korean J Fish Aquat Sci 49(6), ,2016 음향산란층의식별을위한에코그램분석방법의비교 최석관 윤은아 1 * 한인우 1 오우석 1 국립수산과학원원양자원과, 1 전남

한수지 47(6), , 2014 Original Article Kor J Fish Aquat Sci 47(6), ,2014 한국남해연안에분포하는눈볼대 (Doederleinia berycoides) 의자원생태학적특성치 최정화 최승희 1 * 이동우

DBPIA-NURIMEDIA

25(6)-16(김영희).fm

γ

(72) 발명자 김창욱 경기 용인시 기흥구 공세로 , (공세동) 박준석 경기 용인시 기흥구 공세로 , (공세동) - 2 -

년AQM보고서_Capss2Smoke-자체.hwp

Transcription:

한수지 47(6), 1014-1025, 2014 Original Article Kor J Fish Aquat Sci 47(6),1014-1025,2014 태안반도갯벌참굴 (Crassostrea gigas) 양식장주변퇴적물의유기물및미량금속분포 황동운 * 이인석 최민규 최희구 국립수산과학원어장환경과 Distributions of Organic Matter and Trace Metals in Sediment around a Tidal-flat Oyster Crassostrea gigas Farming Area on the Taean Peninsula, Korea Dong-Woon Hwang*, In-Seok Lee, Minkyu Choi and Hee-Gu Choi Marine Environment Research Division, National Fisheries Research and Development Institute, Busan 619-705, Korea We measured the concentrations of various geochemical parameters [grain size, ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Fe, Cu, Cd, Pb, Cr, Mn, As, Zn, and Hg)] in the surface sediments of two intertidal oyster Crassostrea gigas farming areas (Iwon and Mongsan tidal flats) on the Taean Peninsula, Korea, to evaluate the pollution level of organic matter and trace metals in sediment. The intertidal sediments in the study region comprise mostly sand with a mean grain size of 2.5-3.5 Ø. The concentrations of IL, COD, AVS, and trace metals in the sediment of two study regions were either similar or lower in oyster farming areas relative to non-farming areas, apparently due to biological uptake or physical and biological sediment reworking. Based on the results for the pollution evaluation of organic matter and trace metals derived from sediment quality guidelines, enrichment factor, and geoaccumulation index, our results suggest that the sediment in these two intertidal oyster farming regions is not polluted by organic matter and trace metals. Key words: Intertidal sediment, Organic matter, Trace metal, Pollution, Taean Peninsula 서론 (Oyster, Crassostrea gigas),,, ( 390,000 ) 72% ( 280,000 ) (http://www.kosis.kr)., (Crassostrea gigas) (Lim et al., 2012).,, (Shim et al., 2009).,, -, 10 m,,,, (Hur et al., 2008; Lim et al., 2012). (filter feeder),, (Lee and Kim, 2000; Kimbrough et al., 2008)., http://dx.doi.org/10.5657/kfas.2014.1014 Kor J Fish Aquat Sci 47(6) 1014-1025, December 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens (http://creativecommons.org/licenses/by-nc/3.0/)which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 14 August 2014; Revised 22 October 2014; Accepted 13 November 2014 *Corresponding author: Tel: +82. 51. 720. 2542 Fax: +82. 51. 720. 2515 E-mail address: dwhwang@korea.kr Copyright 2014 The Korean Society of Fisheries and Aquatic Science 1014 pissn:0374-8111, eissn:2287-8815

갯벌참굴양식장퇴적물중유기물및미량금속분포 1015 (Shim et al., 2009). 1960,, (eutrophication), (red-tide), (hypoxia) (Hwang et al., 2006).,,.,,,, (Shim et al., 2009), (Yang et al., 1995; Lee and Kim, 2000; Noh et al., 2006; Lee et al., 2008; Kim et al., 2012; Woo et al., 2013).,,. (microphytobenthos). (Hwang et al., 2001; Ahn et al., 2006).,, (grain size), (ignition loss, IL), (chemical oxygen demand, COD), (acid volatile sulfide, AVS), (Fe), (Mn), (Zn), (Cu), (Cd), (Pb), (Cr), (As), (Hg). 연구해역개요 재료및방법 1990 11 2000 12 - ( 3.0 km) (Fig. 1A)., (beach) (Shin et al., 2004). 4.6 m ( 6.4 m, 2.8 m)., (Lee et al., 2004), 0.2-2.2 m/s (Shin et al., 2004).,. (Fig. 1B).,, (Choi et al., 2013).,.. 4.0 m, 0.4-0.7 m/s, (Lee and Park, 1991). 시료채취및분석 2012 3 21-22 (Iwon dyke) 14 ( 12, 2 ), 9 ( 7, 2 ) (Fig. 1). 1 0-2 cm (high density polyethylene bottle)

1016 황동운ㆍ이인석ㆍ최민규ㆍ최희구 35 42'N 35 46' 35 50' 35 54' 35 58' 126 05'E 126 10' 126 15' 126 20' 126 25' Fig. 1. The map showing the sampling sites of intertidal sediment in the study region (A: Iwon tidal flat, B: Mongsan tidal flat). (grain size) IL, COD, AVS (Fe, Cu, Pb, Zn, Cd, Cr, Mn, Hg, As) Hwang et al. (2011). (H 2 O 2 ) (HCl) (CaCO 3 ) 4 Ø (0.0625 mm),,,,,., (mean grain size, Mz) Folk and Ward (1957), Folk (1968). IL, COD (KMnO 4 ), AVS. (Hg) (automatic mercury analyzer, Milestone, DMA-80), (HNO 3 :HF:HClO 4 = 2:2:1) 2% (HNO 3 ) (ICP-MS, Perkin Elmer, ELAN DRC-e)., 15-20 (National Research Council Canada, NRCC) (certified reference material). Hg MESS-3 (marine sediment, NRCC), Hg PACS- 2 (marine sediment, NRCC), Fe 116%, Cu 97%, Cd 90%, Pb 96%, Cr 98%, Mn 118%, As 110%, Zn 93%, Hg 99%., COD, AVS, (dry weight),. 퇴적물의미량금속오염평가, (bioassay), (Lee and Lee, 2002). (Loska et al., 1997; Chen et al., 2007; Hyun et al., 2007; Feng et al., 2011; Hwang et al., 2013a, 2013b) (sediment quality guidelines; SQGs), (enrichment factor, EF), (geoaccumulation index, I geo ) 3. (SQGs) (National Oceanic and Atmospheric Administration, NOAA) ERL (effect range low) (Buchman, 2008) (threshold effects level, TEL) (http://www.mof.go.kr)., EF I geo, (1), (2)., EF (Al), Fe (Hwang et al., 2011; Kim et al., 2012),

갯벌참굴양식장퇴적물중유기물및미량금속분포 1017 Al Fe (1) EF. EF= (Me/Fe) Observed (1) (Me/Fe) Crust I geo = log 2 C n (2) B n 1.5, (Me/Fe) observed Fe, (Me/Fe) crust Fe. C n, B n (background concentration). Fe,., (Feng et al., 2011), (Chen et al., 2007; Zhang et al, 2009; Hwang and Kim, 2011; Zhu et al., 2011; Jeon et al., 2012) Taylor (1964) Taylor and McLennan (1995) (Fe 3.5%, Mn 600 mg/kg, Zn 71 mg/kg, Cr 35 mg/kg, Pb 20 mg/kg, Cu 25 mg/kg, As 1.5 mg/kg, Cd 0.098 mg/kg, Hg 0.08 mg/kg) Fe. 자료의통계처리., t, (P) 0.05, SPSS 12.0 (SPSS Inc., USA). 퇴적물의조성 결과및고찰,,, + 0.0-0.4% ( 0.02 0.09%), 94.1-97.7% ( 96.4 0.9%), 2.3-5.6% ( 3.6 0.9%), 0.0%, 97.9-99.4% ( 98.6 0.5%), 0.3-1.1% ( 0.7 0.2%) (Table 1). 90%, (P>0.05). + (P<0.05), Mz. Mz 3.0-3.5Ø ( 3.3 0.1Ø) (fine sand) (very fine sand), 2.5-3.0Ø ( 2.8 0.1Ø) (medium sand) (fine sand),.,.,, + Folk (1968) (sedimentary type), I1 [slightly gravelly sand, (g)s], (sand, S), (S). 유기물함량 IL COD 0.90-1.96% ( 1.27 0.30%), 0.33-1.15 mgo 2 /g ( 0.63 0.26 mgo 2 /g) (Table 1). IL IR1 I6, COD I4~I6 1.2% 0.5 mgo 2 /g, IL COD (P>0.05, Fig. 2A). IL COD 0.87-1.13% ( 1.02 0.09%), 0.10-0.70 mgo 2 /g ( 0.33 0.19 mgo 2 /g) (Table 1). IL MR1, COD MR2 M5 1.0% 0.3 mgo 2 /g, IL COD (P>0.05, Fig. 2B). IL COD, (P<0.05, Fig. 3).., (Horowitz, 1991),

1018 황동운ㆍ이인석ㆍ최민규ㆍ최희구 Table 1. Results of sediment texture, mean grain size (Mz), and the concentrations of ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Fe, Mn, Cu, Pb, Zn, Cd, Cr, As, and Hg) in intertidal sediments of the study regions. Sample Sediment texture (%) Mz IL COD AVS Fe Mn Cu Pb Zn Cd Cr As Hg No Gravel Sand Silt+Clay (Ø) (%) (mgo 2 /g) (mgs/g) (%) (mg/kg) IR1 0.0 95.3 4.7 3.4 1.92 0.78 0.0 2.35 344 5.39 22.6 51.9 0.047 50.2 5.93 0.0044 IR2 0.0 97.4 2.6 3.3 1.20 0.45 0.0 2.50 413 5.05 21.8 61.3 0.027 54.1 6.16 0.0027 I1 0.3 94.1 5.6 3.2 1.21 0.86 0.0 1.63 304 3.69 15.8 36.7 0.045 33.5 4.04 0.0032 I2 0.0 95.7 4.3 3.2 1.26 0.54 0.0 1.55 276 3.39 16.0 34.2 0.032 31.5 3.56 0.0029 I3 0.0 96.2 3.9 3.2 1.13 0.46 0.0 1.58 262 4.17 15.0 34.0 0.036 29.7 4.24 0.0030 I4 0.0 97.6 2.4 3.0 1.20 1.15 0.0 1.73 361 4.12 15.9 42.5 0.044 34.4 4.84 0.0042 I5 0.0 96.1 3.9 3.3 1.25 1.08 0.0 1.44 222 3.36 14.6 29.7 0.019 27.9 3.97 0.0032 I6 0.0 96.4 3.6 3.2 1.96 0.82 0.0 1.63 280 3.36 16.5 34.4 0.049 32.0 4.21 0.0029 I7 0.0 96.3 3.7 3.3 1.20 0.58 0.0 1.75 323 3.63 17.5 40.1 0.028 34.6 4.23 0.0030 I8 0.0 96.9 3.1 3.4 1.16 0.37 0.0 1.54 253 3.23 15.2 34.4 0.033 31.2 3.89 0.0027 I9 0.0 96.2 3.8 3.2 1.12 0.43 0.0 1.77 323 3.55 16.3 40.0 0.036 35.4 3.95 0.0026 I10 0.0 96.3 3.7 3.5 1.16 0.48 0.0 2.12 282 4.44 22.8 48.5 0.028 44.1 4.39 0.0026 I11 0.0 96.9 3.1 3.2 0.90 0.51 0.0 2.43 427 5.06 22.7 65.5 0.033 52.0 5.16 0.0032 I12 0.0 97.7 2.3 3.5 1.12 0.33 0.0 1.19 142 2.37 11.2 25.5 0.015 24.1 1.26 0.0023 MR1 0.0 98.8 1.2 2.9 0.87 0.35 0.0 1.98 430 3.73 13.1 46.0 0.019 34.7 4.84 0.0018 MR2 0.0 98.7 1.3 2.7 1.10 0.70 0.0 1.59 288 3.72 14.2 30.8 0.034 26.4 4.70 0.0020 M1 0.0 98.0 2.0 2.8 1.13 0.36 0.0 1.49 267 3.68 11.8 30.5 0.021 25.2 4.37 0.0023 M2 0.0 98.1 1.9 2.8 1.11 0.21 0.0 1.47 262 3.58 12.6 28.8 0.012 27.1 4.74 0.0021 M3 0.0 98.3 1.7 2.8 1.03 0.15 0.0 1.68 325 4.21 12.6 36.7 0.022 28.2 4.69 0.0022 M4 0.0 99.4 0.6 2.5 0.92 0.22 0.0 1.62 270 3.80 12.4 30.6 0.026 27.3 4.49 0.0019 M5 0.0 99.1 0.9 2.7 0.98 0.10 0.0 1.63 275 3.41 13.1 32.1 0.020 28.9 4.50 0.0016 M6 0.0 98.8 1.2 2.9 1.00 0.49 0.0 1.50 292 3.53 12.4 33.8 0.014 24.8 3.80 0.0017 M7 0.0 98.7 1.3 3.0 1.03 0.42 0.0 1.63 292 3.74 13.2 33.7 0.017 28.5 5.07 0.0019

갯벌참굴양식장퇴적물중유기물및미량금속분포 1019 Concentration Concentration 1,000 100 10 1 0.1 0.01 0.001 1,000 100 10 1 0.1 0.01 0.001 No Farm Farm (A) Iwon (B) Mongsan IL COD Fe Cu Cd Pb Cr Mn As Zn Hg Analytical items Fig. 2. Comparison of ignition loss (IL), chemical oxygen demand (COD), and trace metals (Fe, Cu, Cd, Pb, Cr, Mn, As, Zn, and Hg) in oyster farming area (farm) and reference area (no farm) around Iwon (A) and Mongsan (B) tidal flats. The concentration units of IL and Fe, COD, and trace metal are %, mgo 2 /g, and mg/kg, respectively. The asterisk mark indicates the significant differences (P<0.05). (Hwang et al., 2010; Hwang and Koh, 2012; Hwang and Kim, 2013). AVS., Jung et al. (2010).., AVS., IL, COD, AVS (Table 2), (Jung et al., 2010), ~ (Hwang et al., 2010), ~ (Hwang et al., 2013b), (Hwang et al., 2011; Hwang and Kim, 2011) (Hwang and Koh, 2012). (Hwang et al., 2010),. 미량금속함량 Fe 1.19-2.50% ( 1.80 0.40%), Cu 2.37-5.39 mg/kg ( 3.92 0.84 mg/kg), Cd 0.015-0.049 mg/kg ( 0.034 0.010 mg/kg), Pb 11.2-22.8 mg/kg ( 17.4 3.6 mg/kg), Cr 24.1-54.1 mg/kg ( 36.8 9.4 mg/kg), Mn 142-427 mg/kg ( 301 74 mg/kg), As 1.26-6.16 mg/kg ( 4.27 1.16 mg/kg), Zn 25.5-65.5 mg/kg ( 41.3 11.6 mg/kg), Hg 0.0023-0.0044 mg/kg ( 0.0031 0.0006 mg/kg) (Table 1), Fe > Mn > Zn > Cr > Pb > As > Cu > Cd > Hg. Hg 2-3., Fe, Cu, Pb, Cr, As, Zn (P<0.05, Fig. 2A). (microphytobenthos) (redeposition) (bioturbation). Fe 1.47-1.98% ( 1.62 0.15%), Cu 3.41-4.21 mg/kg ( 3.71 0.22 mg/kg), Cd 0.012-0.034 mg/kg ( 0.021 0.007 mg/kg), Pb 11.8-14.2 mg/kg ( 12.8 0.7 mg/kg), Cr 24.8-34.7 mg/kg ( 27.9 2.9 mg/kg), Mn 262-430 mg/kg ( 300 52 mg/ kg), As 3.80-5.07 mg/kg ( 4.58 0.36 mg/kg), Zn 28.8-46.0 mg/kg ( 33.7 5.2 mg/kg), Hg 0.0016-0.0023 mg/ kg ( 0.0020 0.0002 mg/kg) (Table 1), Fe > Mn > Zn > Cr > Pb > As > Cu > Cd > Hg.,, Pb

1020 황동운ㆍ이인석ㆍ최민규ㆍ최희구 (P>0.05, Fig. 2B). (resuspension) (reworking). Cd, Pb, Cr, Zn, Hg (P<0.05, Fig. 3). (Cho et al., 2001; Shin et al., 2002; Hwang et al., 2010)..,.,,., (Table 2), Concentration 1,000 100 10 1 0.1 0.01 0.001 Mongsan Iwon IL COD Fe Cu Cd Pb Cr Mn As Zn Hg Analytical items Fig. 3. Comparisons of ignition loss (IL), chemical oxygen demand (COD), and trace metals (Fe, Cu, Cd, Pb, Cr, Mn, As, Zn, and Hg) in surface sediments of Iwon and Mongsan tidal flats. The concentration units of IL and Fe, COD, and trace metal are %, mgo 2 /g, and mg/kg, respectively. The asterisk mark indicates the significant differences (P<0.05). Table 2. The mean grain size (Mz) and the average of ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Fe, Cu, Pb, Zn, Cd, Cr, Mn, As, and Hg) in intertidal sediments from the western coast of Korea Metal (%) Metals (mg/kg) Reference Fe Cu Pb Zn Cd Cr Mn As Hg AVS (mgs/g) COD (mgo 2 /g) IL (%) Mz (Ø) Region Saemanguem (inner part) - 2.2 3.5 0.75 2.7 21 26 85-47 610 - - Kim et al. (2003) Byeonsan peninsula 2.8 1.4 3.9 ND 1 - - - - - - - - - Jung et al. (2010) Julpo bay 7.1 - - - 2.8 15 19 84 0.10 52 494 11.3 - Kim et al. (2008) Yeonggwang-Muan coast 5.5 2.9 8.5 ND 2.3 10 25 70 0.05 51 448 5.6 0.012 Hwang et al. (2010) Hampyeong Bay 5.6 4.5 8.1 0.01 - - - - - - - - - Hwang and Koh (2012) Aphae island 6.9 3.9 7.4 0.04 2.8 13 22 84 0.06 63 476 7.1 0.009 Hwang et al. (2011) Mokpo-Wando coast 3.2 - - - 2.6 22 33 66-51 600 - - Shin et al. (2002) Coastal islands of Shinan 5.3 3.2 5.8 0.05 2.2 11 24 74 0.06 58 416 5.1 0.007 Hwang and Kim (2011) Mokpo-Haenam coast 6.7 5.4 11.9 0.03 3.5 13 24 74 0.06 58 669 5.8 0.013 Hwang et al. (2013b) Taean coast (Iwon and Mongsan) 3.1 1.2 0.5 ND 1.7 4 16 38 0.03 33 301 4.4 0.003 This study 1 ND, Not detected.

갯벌참굴양식장퇴적물중유기물및미량금속분포 1021 ~ (Shin et al., 2002) (Kim et al., 2008) (Kim et al., 2003), ~ (Hwang et al., 2010), ~ (Hwang et al., 2013b), (Hwang et al., 2011; Hwang and Kim, 2011) 1/2., (Kim et al., 2008; Hwang and Kim, 2011; Hwang et al., 2013b).,. 유기물및미량금속오염현황 IL, COD, AVS (total organic carbon, TOC), (total nitrogen, TN), (total phosphorus, TP).,., (Yoon, 2003; Hyun et al., 2003; Noh et al., 2006; Hwang et al., 2010; Hwang and Koh, 2012) COD AVS. COD 20 mgo 2 /g, AVS 0.2 mgs/g (Yokoyama, 2000). COD AVS, 20.,,. (sediment quality guidelines; SQGs), (enrichment factor, EF), (geoaccumulation index, I geo )., SQGs NOAA ERM (effect range median) PEL (probable effects level) (Hwang et al., 2006) ERL TEL,. ERL NOAA, Al, Fe 9 (Cu, Pb, Zn, Cd, Cr, As, Ni, Hg, Ag). (Ni) (Ag) ERL Cu 34 mg/kg, Pb 46.7 mg/kg, Zn 150 mg/kg, Cd 1.2 mg/kg, Cr 81 mg/kg, As 8.2 mg/kg, Hg 0.15 mg/kg., ERL (Fig. 4).., ( 2013-186 ) NOAA Ag 8, Ni TEL Cu 20.6 mg/kg, Pb 44.0 mg/kg, Zn 68.4 mg/kg, Cd 0.75 mg/ kg, Cr 116 mg/kg, As 14.5 mg/kg, Hg 0.11 mg/kg. Cu Zn Li., Li Cu Zn., Pb, Cd, Cr, As, Hg. TEL (Fig. 4) EF Al, Fe, Li., 1.5, (Zhang and Liu, 2002; Hyun et al., 2007).,., Birth (2003) EF 7, (1) EF Table 3. Cu Hg EF 1 (no enrichment), Cd (I1 I6), EF 1 (no enrichment). Mn EF 0.7-1.3, (I1, I2, I4, I6, I7, I9, I11) 1 EF (no enrichment)

1022 황동운ㆍ이인석ㆍ최민규ㆍ최희구 Fig. 4. The concentrations of trace metals (Fe, Mn, Cu, Pb, Zn, Cd, Cr, As, and Hg) with each station in intertidal sediments of the study regions. The solid and dotted lines represent the values of effect range low (ERL) in United States and threshold effects level (TEL) in Korea as the sediment quality guidelines for evaluating the trace metal pollution in sediment, respectively., (M4 M5) EF 1 (minor enrichment). Zn, (MR2, M2, M4, M5) EF 1.0-1.5, Pb Cr EF 1.1-1.9 1.6-2.2 (minor enrichment)., As (I10~I12) EF 5.1-6.6, EF 5.6-7.6 (moderately severe enrichment). I geo, Müller (1979), EF 7 (Müller, 1981). (2) I geo Table 4. Fe, Mn, Cu, Pb, Zn, Cd, Hg, Cr (IR2 I11) I geo class 0 (practically unpolluted)., As EF I12 Table 3. Classification of enrichment factor (Birth, 2003) and the number of EF for the ratios of trace metals relative to Fe in surface sediment of Iwon and Mongsan tidal flats and in earth crust reported by Taylor (1964) and Taylor and McLennan (1995) EF range Designation of sediment quality Number of EF Mn Cu Pb Zn Cd Cr As Hg > 50 Extremely severe enrichment 0 0 0 0 0 0 0 0 25-50 Very severe enrichment 0 0 0 0 0 0 0 0 10-25 Severe enrichment 0 0 0 0 0 0 0 0 5-10 Moderately severe enrichment 0 0 0 0 0 0 20 0 3-5 Moderate enrichment 0 0 0 0 0 0 2 0 1-3 Minor enrichment 14 0 23 19 2 23 1 0 < 1 No enrichment 9 23 0 4 21 0 0 23 Average of EF 1.01 0.31 1.58 1.08 0.60 1.91 5.94 0.07

갯벌참굴양식장퇴적물중유기물및미량금속분포 1023 Table 4. Classification of geoaccumulation index (Müller, 1981) and the number of I geo for the metal concentrations in intertidal sediment of Iwon and Mongsan tidal flats I geo range I geo class Designation of sediment quality Number of I geo Fe Mn Cu Pb Zn Cd Cr As Hg > 5 6 Very strongly polluted 0 0 0 0 0 0 0 0 0 4-5 5 Strongly/very strongly polluted 0 0 0 0 0 0 0 0 0 3-4 4 Strongly polluted 0 0 0 0 0 0 0 0 0 2-3 3 Moderately/strongly polluted 0 0 0 0 0 0 0 0 0 1-2 2 Moderately polluted 0 0 0 0 0 0 0 13 0 0-1 1 Practically unpolluted/moderately polluted 0 0 0 0 0 0 2 9 0 < 0 0 Practically unpolluted 23 23 23 23 23 23 19 1 23 I geo class 0, I4, I10, I11 0.7-0.9 I geo class 1, 1.0-1.5 I geo class 2, (moderately polluted), M6 1.0-1.2 I geo class 2,., As (Fe, Mn, Cu, Pb, Zn, Cr, Cd, Hg). As (Hwang et al., 2013a).,. 사사. (RP-2014-ME-038). References Ahn IY, Ji J, Choi H, Pyo SH, Park H and Choi JW. 2006. Spatial variations of heavy metal accumulation in Manila clam Ruditapes philippinarum from some selected intertidal flat of Korea. Ocean Polar Res 28, 215-224. Birth G. 2003. A scheme for assessing human impacts on coastal aquatic environments using sediments. In: Proceedings of Coastal GIS 2003. Woodcoffe CD and Fumess RA, eds. Wollongong University Papers in Center for Maritime Policy, Australia, 14. Buchman MF. 2008. NOAA screening quick reference tables, NOAA OR&R Report 08-1, Seattle WA, Office of response and restoration division, National Oceanic and Atmospheric Administration, 34. Chen CW, Kao CM, Chen CF and Dong CD. 2007. Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere 66, 1431-1440. Choi YS, Park KJ, Yoon SP, Chung SO, An KH and Song JH. 2013. The geochemical characteristics and environmental factors on the marine shellfish farm in Namhae-po tidal flat of Taean. Korean J Malacol 29, 51-63. Feng H, Jiang H, Gao W, Weinstein MP, Zhang Q, Zhang W, Yu L, Yuan D and Tao J. 2011. Metal contamination in sediments of the western Bohai Bay and adjacent estuaries, China. J Environ Manage 92, 1185-1197. Folk RL. 1968. Petrology of sedimentary rock, Hemphill Publishing Co., Austin TX, U.S.A., pp. 170. Folk RL and Ward WC. 1957. Brazos river bar: A study in the significance of grain size parameters. J Sed Petol 27, 3-26. Horowitz AJ. 1991. A primer on sediment trace element chemistry. 2 nd Ed Lewis Publishers Inc., Chelsea MI, USA, 136. Hur YB, Min KS, Kim TE, Lee SJ and Hur SB. 2008. Larvae growth and biochemical composition change of the Pacific oyster, Crassostrea gigas, larvae during artificial seed production. J Aquacul 21, 203-212. Hwang DW, Jin HG, Kim SS, Kim JD, Park JS and Kim SG. 2006. Distribution of organic matters and metallic elements in the surface sediments of Masan harbor, Korea. J Kor Fish Soc 39, 106-117. Hwang DW and Kim PJ. 2013. Evaluation of organic matter and trace metal contaminations of intertidal sediments from coastal islands in the southern region of Jelloanam Province. Kor J Fish Aquat Sci 46, 626-637. http://dx.doi.org/10.5657/

1024 황동운ㆍ이인석ㆍ최민규ㆍ최희구 KFAS.2013.0626. Hwang DW, Kim PJ, Jeon SB, and Koh BS. 2013a. Geochemical characteristics of intertidal sediment in the semi-enclosed bays of the southern region of Jelloanam Province. Kor J Fish Aquat Sci 46, 638-648. http://dx.doi.org/10.5657/ KFAS.2013.0638. Hwang DW, Kim PJ, JungRH, and Yoon SP. 2013b. Distributions of organic matter and trace metals in intertidal surface sediment from the Mokpo-Haenam coast. Kor J Fish Aquat Sci 46, 454-466. http://dx.doi.org/10.5657/kfas.2013.0454. Hwang DW and Kim SG. 2011. Evaluation of heavy metal contamination in intertidal surface sediments of coastal islands in the western part of Jellanam province using geochemical assessment techniques. Kor J Fish Aquat Sci 44, 772-784. Hwang DW and Koh BS. 2012. Sedimentary and benthic environment characteristics in macroalgal habitats of the intertidal zone in Hampyeong Bay. Kor J Fish Aquat Sci 45, 694-703. Hwang DW, Park SE, Kim PJ, Koh BS, and Choi HG. 2011. Assessment of the pollution levels of organic matter and metallic elements in the intertidal surface sediments of Aphae Island. Kor J Fish Aquat Sci 44, 759-771. Hwang DW, Ryu SO, Kim SG, Choi OI, Kim SS and Koh BS. 2010. Geochemical characteristics of intertidal surface sediments along the southwestern coast of Korea. Kor J Fish Aquat Sci 43, 146-158. Hwang GS, Shin HS, Kim K, Yeo SK and Kim JS. 2001. Concentration and distribution of heavy metals in sediment and bivalves (Solen Strictus Gould) from tidal flats along the mid-western coast, Korea. Kor J Env Hlth Soc 27, 25-34. Hyun S, Lee CH, Lee T and Choi JW. 2007. Anthropogenic contributions to heavy metal distributions in the surface sediments of Masan Bay, Korea. Mar Pollut Bull 54, 1031-1071. Hyun S, Lee T, Choi JS, Choi DL and Woo HJ. 2003. Geochemical characteristics and heavy metal pollutions in the surface sediments of Gwangyang and Yeosu Bay, south coast of Korea. The Sea-J Kor Soc Oceanogr 8, 380-391. Jeon SB, Kim PJ, Kim SS, Ju JS, Lee YH, Jang DS, Lee JU and Park SY. 2012. Characteristics of spatial distribution of geochemical components in the surface sediments of the Deukryang Bay. J Kor Soc Environ Anal 15, 203-214. Jung RH, Hwang DW, Kim YG, Koh BS, Song JH and Choi HG. 2010. Temporal variations in the sedimentation rate and benthic environment of intertidal surface sediments around Byeonsan Peninsula, Korea. Kor J Fish Aquat Sci 43, 723-734. Kim JG, You SJ and Ahn WS. 2008. Evaluation of characteristics of particle compostion and pollution of heavy metals for tidal flat sediments in the Julpo Bay, Korea. J Kor Soc Mar Environ Safety 14, 247-256. Kim JG, You SJ, Cho EI and Ahn WS. 2003. Distribution characteristics of heavy metals for tidal flat sediments in the Saemankeum area. J Kor Fish Soc 36, 55-61. Kim PJ, Shon SG, Park SY, Kim SS, Jang SJ, Jeon SB and Ju JS. 2012. Biogeochemistry of metal and nonmetal elements in the surface sediment of the Gamak Bay. J Kor Soc Mar Environ Safety 18, 67-83. Kimbrough KL, Johnson WE, Lauenstein GG, Christensen JD and Apeti DA. 2008. An assessment of two decades of contaminant monitoring in the nation s coastal zone. Silver Spring, MD. NOAA technical memorandum NOS NCCOS 74, 105. Lee BG and Lee JS. 2002. The foreign and domestic trends on the evaluation and regulation of heavy metals in the coastal oceans. In: Proceedings of the Autumn meeting, 2002 of the Korean Society of Oceanography. Oh IS and Park GR, eds. Han Yang University, Seoul, Korea, 141-176. Lee DS, Kim YS, Jeong SY, Kang CK and Lee WJ. 2008. Environmental characteristics and distributions of marine bacteria in the surface sediments of Kamak Bay in winter and summer. J Environ Sci 17, 755-765. Lee IS and Kim EJ. 2000. Distribution of heavy metals in sediment, seawater, and oyster (Crassostrea gigas) around Jinhae Bay. Korean J Ecol 23, 59-64. Lee JH, Yu OH, Lee HG and Park JY. 2004. Effect of environmental variables on the inter- and subtidal macrobenthic communities in the Iwon dike area. J Kor Fish Soc 37, 295-306. Lee SD and Park SC. 1991. Sedimentation pattern in a macrotidal bay (Namhaepo Bay), west coast of Korea. J Oceanol Soc Kor 26, 332-339. Lim HJ, Back SH, Lim MS, Choi EH and Kim SK. 2012. Reginal variations in Pacific Oyster, Crassostrea gigas, growth and the number of larvae occurrence and spat settlement along the west coast, Korea. Korean J Malacol 28, 259-267. Loska K, Cebula J, Pelczar J, Wiechula D and Kwapulinski J. 1997. Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Bybnik water reservoir in Poland. Water Air Soil Pollut 93, 347-365. Müller G. 1979. Schwernetalle in den sedimenten des Rheins- Verderyngen Seit. Umschau 24, 778-783. Müller G. 1981. Die schwermetallbelastung der sedimente des Neckars und seiner Nebenflüsse Eine Bestandasufnahme. Chemiker Zeitung 105, 157-164. Noh IH, Yoon YH, Kim DI and Park JS. 2006. The Spatio-temporal distribution of organic matter on the surface sediment and its orgin in Gamak Bay, Korea. J Kor Soc Mar Environ Engin 9, 1-13. Shin DH, Kum BC, Park EY, Lee HI and Oh JK. 2004. Seasonal sedimentary characteristics and depositional environments after the construction of seawall on the Iwon macrotidal flat. J Korean Earth Sci Soc 25, 615-628. Shin SE, Kang SB, Koh YK, Park BY, Youn ST, Kim JY and

Oh KH. 2002. Sedimentary facies and geochemical characteristics of upper intertidal zone, southwestern coast, Korea. J Korean Earth Sci Soc 23, 722-735. Shim KB, Ha KS, Yoo HD, Kim JH and Lee TS. 2009. Evaluation of the bacteriological safety for the shellfish growing area in Jaranman Saryangdo area, Korea. Kor J Fish Aquat Sci 42, 442-448. Taylor SR. 1964. Abundance of chemical elements in the continental crust: A new table. Geochem Cosmochim Acta 28, 1273-1285. Taylor SR and McLennan SM. 1995. The geochemical evolution of the continental crust. Reviews of Geophys 33, 241-265. Woo HY, Lim JH, Lee JK, Lee JH, Han KS and Lee TY. 2013. Characterization and estimation of heavy metal contents of Tongyong marine products breeding ground sediments. J Kor Solid Waste Engin Soc 30, 213-219. Yang HS, Kim SS and Kim GB. 1995. Pollution of heavy metals and sedimentation rates in sediment cores from the Chinhae Bay, Korea. J Korean Environ Sci Soc 4, 489-500. Yokoyama H. 2000. Environmental quality criteria for aquaculture farms in Japanese coastal area a new policy and its potential problems. Bul Natl Res Inst Aquacult 29, 123-134. Yoon YH. 2003. Spatio-temporal distribution of organic matters in surface sediments and its origin in Deukryang Bay, Korea. J Environ Sci 12, 735-744. Zhang J and Liu CL. 2002. Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54, 1051-1070. Zhang W, Feng H, Chang J, Qu J, Xie H and Yu L. 2009. Heavy metal contamination in surface sediment of Yangtze River intertidal zone: An assessment from different indexes. Environ Pollut 157, 1533-1543. Zhu L, Xu J, Wang F and Lee B. 2011. An assessment of selected heavy metal contamination in the surface sediments from the South China Sea before 1998. J Geochem Explor 108, 1-14. 갯벌참굴양식장퇴적물중유기물및미량금속분포 1025