50(6)-06.fm

Similar documents
19(1) 02.fm

50(1)-09.fm

69-1(p.1-27).fm

49(6)-06.fm

605.fm

10(3)-09.fm

16(1)-3(국문)(p.40-45).fm

26(3D)-17.fm

< DC1A4C3A5B5BFC7E22E666D>

50(5)-07.fm

18211.fm

11(5)-12(09-10)p fm

14.531~539(08-037).fm

9(3)-4(p ).fm

12.077~081(A12_이종국).fm

304.fm

50(6)-09.fm

16(5)-04(61).fm

07.051~058(345).fm

50(4)-10.fm

12(3) 10.fm

82-01.fm

16(5)-03(56).fm

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

<30332DB9E8B0E6BCAE2E666D>

82.fm

DBPIA-NURIMEDIA

10(3)-12.fm

한 fm

50(6)-03.fm

17.393~400(11-033).fm

untitled

DBPIA-NURIMEDIA

41(6)-09(김창일).fm

82-02.fm

51(4)-13.fm

51(2)-09.fm

27(5A)-15(5868).fm

untitled

93.fm

32(4B)-04(7455).fm

10(3)-10.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

4.fm

202.fm


14.fm

8(2)-4(p ).fm

hwp

15.101~109(174-하천방재).fm

27(5A)-07(5806).fm

12(2)-04.fm

한 fm

143.fm

06.177~184(10-079).fm

01.01~08(유왕진).fm

14(2) 02.fm

18(3)-10(33).fm

untitled

14.091~100(328-하천방재).fm

<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>

16(2)-03.fm

(163번 이희수).fm

한 fm

10(3)-02.fm

16(5)-06(58).fm

107.fm

00....

51(2)-06.fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

한 fm

15(2)-07.fm

27(5A)-13(5735).fm

<30312DC0CCC7E2B9FC2E666D>

16(2)-7(p ).fm

DBPIA-NURIMEDIA

50(6)-07.fm

416.fm

38(6)-01.fm

10.063~070(B04_윤성식).fm

15.fm

fm

64.fm

3-15(3)-05(이주희).fm

14(4) 09.fm

26(2)-04(손정국).fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

29(4)-07(김봉채).fm

69-1(p.1-27).fm

84-01.fm

02-47(2)-08(조현태).fm

fm

8(3)-15(p ).fm

415.fm

9(2)-12(p ).fm

07.045~051(D04_신상욱).fm

11(5)-7(09-37)p fm

3.fm

( )-83.fm

< C0E5BFC1C0E72E666D>

Transcription:

Journal of the Korean Chemical Society Printed in the Republic of Korea t w w - w Ÿ ½ w * û w yw (2006. 8. 10 ) New Research Tool for Understanding of Surfaces - Sum Frequency Generation Vibrational Spectroscopy Hackjin Kim* Department of Chemistry, Chungnam National University, Taejeon 305-764, Korea (Received August 10, 2006). x Ÿ wù w Ÿ (SFG-VS, sum frequency generation vibrational spectroscopy) t w k rp œw. w SFG-VS w t š. SFG-VS, x,, Ÿ» ƒ w r. : t, w Ÿ, x Ÿ ABSTRACT. The vibrational spectrum of molecules on surfaces can be measured with high selectivity and sensitivity using sum frequency generation vibrational spectroscopy (SFG-VS). Selectivity and sensitivity of this non-linear spectroscopy have made it an effective experimental tool in surface research. Surface systems studied with SFG_VS are surveyed, and experimental and theoretical background of SFG-VS is briefly reviewed. Keywords: Surface, Sum Frequency Generation Vibrational Spectroscopy (SFG-VS), Non-Linear Spectroscopy t w w ù (phase) š w. 1 š (condensed phase) t, t,,», g, w t y w. t t, s wš ³ w t. w, y,, t ù w yw ww wš. ü y w t w w ù k ƒ x v w. t w ƒ» y/ ƒ j y»ƒ. t w, t w k v w, m Ÿ w k ƒ š. w x w t w w j w,» w d ƒ t š. m t w» t w š œ w, œ k w t 429

430 ½ w. 1980 z w š w x w ƒ t sw, x t yw y w w w œw w. w w œw Ÿw, w k w t y wš. Ÿ wù t y Ÿ (SERS, surface enhanced Raman scattering) ù ƒ Ÿ w Ÿ wù ü Ÿ (TIR, total internal reflection) t y Ÿw,, k, ƒ š. x Ÿ w Ÿ (SFG, sum frequency generation), Fig. 1(a), Fig. 1. (a) SFG w w w š (coherent) y w x x, œ w ƒ Ÿ Ÿ w. q y SFG rp. (b) C-H HMX,, SFG rp. 3 SFG rp, rp w. w w w ƒ y w 3 q yw (three-wave mixing process) wù. q (scan)w 2, Fig. 1(b) rp d w. Fig. 1(b) rp š s HMX(cyclotetramethylene tetranitramine(ch 2NNO 2) 4) rp. HMX 3 SFG, rp. SFG rp w p k ³e, œ d ù ü e d e(asymmetric) SFG y. Ÿw y ƒ š wš ü - w e» SFG y. t», t w e ƒ, w t ü SFG y w v e w. w SFG k ³e w t w wù k ƒ w. SFG Ÿ w x Ÿ w š (coherent) y» t w j. w rÿ(polarization) y w Ÿ mw t w ƒ. fs ps r w t w w r s w w ƒ ƒ w. 1960 w x w, ƒ Ÿ 4 ã 2 (SHG, second harmonic generation) w w SFG x š, SFG w 1980 z j w Shen z y š 5 SFG Ÿ (SFG-VS, SFG vibrational spectroscopy) ƒ k. 2000 z x SFG-VS( w SFG) w r š w. v ƒ x ü SFG x twš w w ½ q w, š w 6 Journal of the Korean Chemical Society

t w w - w Ÿ 431 Fig. 2. ƒw, sl w ƒ w ƒ ƒw» w (blue shift), y y y sl w ƒ ƒ w» (red shift) w. SFG rp d t ü, sl w y ƒw ù w. w ü x ƒ rp» w. sl w y rp e s y ƒ. yw w sww yw q SFG x wš. rp Ÿ rp ƒ yw y.»» y y w ƒ» w», rp w y w. p, Fig. 2 V=kx 2 /2 t y sl w» w. sl w ƒ w rp w. w y y w y sl w ƒ rp û w. t ü rp» wš, z ƒ t y z ƒ rp» w. SFG rp t w rp w rp ƒ e,», s, rp p ³ w. ü y w rp», SFG rp t, ù ƒ t p w œw. SFG t p t t, t e w p w» w. ƒ, t ƒw ù w. y t j t w. t d w z w ( yw ), Table 1. SFG» t t - - ƒ z x-ray, neutron reflectivity š t - š ellipsometry, š w x ( q ) / - /», y / š - t š / š - š / š, Brewster angle microscopy TIR, SPR t -, UHV t -, SERS, SPR š w x LB film, SAM, CVD, coating, colloid t, SPR LB = Langmuir-Blodgett SAM = self-assembled monolayer CVD = chemical vapor deposit TIR = total internal reflection SPR = surface plasmon resonance UHV = ultra-high vacuum SERS = surface enhanced Raman scattering

432 ½ w d w» w ( ). SFG mw t w t p w. Table 1 ù SFG ƒ l v w. t t. k, m, hexane» t w SFG 7 w t ƒ ñ t t.» 8 C-H rp s, O-H rp w w s. t w SFG r p 3700 cm s rp, t w w O-H w. 3000-3500 cm ùkù rp y w p rp w (deconvolute). ù ƒ s w d(double layer) x w t yƒ», w y SFG rp mw. š t. SFG w ƒ š š. 9 e,,,» p š p»» w š t w w œw. š SFG rp (solvent cast, spin coating extrusion) ù»(rubbing) w. w š 10 š,,, š s ƒ š t SFG w. 11,12 q q (buried interface)», š, š t ƒ k. 13 w š w x ƒ w, SFG w w œw. q w» w m w w SFG q w w.. yk w O-H» /œ» t O-H» SFG rp. yk w w O-H» œ» w w O-H» û ùkù, 3000 cm l ùkù w w s rp yk /, hexane/. hexane/ w w O-H» rp. w y 14 w / p w š. 15 /š. ƒ w š /š»yw t. t ƒ w z t ù yw SFG w, p»yw w y w. SFG rp mw t w yw y w w. w š t 16 ww w SFG mw w, q (Al 2O 3) t w w ƒ. q t w ph, t w. 17 š. š /š ƒ ñ., w œ»,,, x,», r p, j, y t, s x ù w š. ƒ ƒ y ƒ»yw» y š, w. t ù yw y w w w. epoxy, š ƒ» ƒ»» ( xk w w»» yw»» ). SFG rp OCH 3»»ƒ š /š sw. 18 Journal of the Korean Chemical Society

t. š ƒ w. w -yw m œ(uhv, ultrahigh vacuum). w œ x w ù ƒ. š œ» t SFG w. ƒ t ù CO y, y ƒ w s ƒ š. w 19 SFG t y w ù t w w š. p 20 fs r w SFG x w w, t ù w ps w w œw. w 21 (chromophore) w SFG y CO. CO w w» w w Ÿw y w Ÿw. š t Ÿyw TiO 2 y ù t w w SFGƒ. 22»d (,» ) ƒ Ÿw p ùkù. w»d p SFG rp w ùkù. w. š t (biosensor) w. SFG rp š t w 2 w, w š t y - t (wettability) ù» y w œw. 23 ƒ -y(gold-sulfur) w w alkanethiol t w w - w Ÿ 433 d» d (SAM, self-assembled monolayer), t w ƒ p. ³ w t ù, ³ w SAM w SFG rp š š. w t d 24 x w ù LB(Langmuir-Blodgett) w SFG rp d ƒ w. 25 LB», Ÿ»», x» ƒ š. yw (CVD, chemical vapor deposition) CaP w SFGƒ š. 26»k SFG š w x wù NSOM(near-field scanning optical microscopy) ww w ƒ œ w» w. 27 w, SFG ƒ œ w - w ù wù œ w w SFG yƒ. 28 Ÿw y (chirality) ƒ w SFG ñ. Ÿw y ƒ š» Ÿw y SFG (OA-SFG, optically active SFG) w y», ƒ w rÿ SFG x w y. Ÿw y ƒ, v, d w SFG ƒ š, SFG w. 29 SFG x Ÿw x» Ÿ, y», y» ƒ v w. Fig. 3 Fig. 1(b) SFG rp x e, 12 SFG rp w x e w d š. Ti:sapphire r (~200 fs, ~800 nm) š rp x

434 ½ w Fig. 3. Fig. 1(b) SFG rp d w x e. (seed) wš, Nd:YAG rv(pump) w Ti:sapphire s»(amplifier) ù SFG w Ÿ w. (ethalon) w 1cm w s ƒ Ÿ (800 nm ) Ÿ OPA(optical parametric amplifier) mw ~300 cm s Ÿ. Ÿ f ul LiNbO 3 w ƒ 1000-8000 cm w. SFG y Ÿ» (spectrograph) CCD(charge coupled device) d w. w r ƒ rp, w rp w. ƒw SFG Ÿ w. wù (etalon) mw 1 cm w s ƒ xs (narrow band) r š, wù OPA(optical parametric amplifier) mw ~300 cm s ƒ Ÿs(broad band) r. xs r ƒ Ÿ (vis) Ÿ, xs r (IR) Ÿ. SFG y Ÿ» (spectrograph) CCD(charge-coupled device) w d w. SFG rp w xs r s(1 cm w). Fig. 1(b) SFG rp 1 khz 30 y w rp. 1980» SFG ns Nd:YAG 2 (532 nm) q CO 2 Ÿ w. [SFG Ÿ ƒ Ÿ w, SFG Ÿ ƒ Ÿ (visible) (IR) w» ¼.] x Ÿ, Ÿ p Ÿ z p w. y» y» x Ÿ j. 1970, 80 x Ÿw w» w. SFG Ÿ wš,» ns Nd:YAG modelocked ps Nd:YAG, OPA mw q IR Ÿ w. w SFG rp» w IR Ÿ q» SFG y d w. q» 5» rp d w ¼ y/ rp. w rp w 8 cm.[d» w».] r p» w Cs»ù» w q»(raman shifter)ù (stimulated Raman) w» w rp ƒ j w. q» w rp x e 1 SFG Ÿ» w. 1990 z Ti:sapphire ry Ÿw» y j w. Ti:sapphire w OPA s 200 cm Ÿs Ÿ. Fig. 4 Fig. 4. (gold) t octadecanethiol(odt) SFG rp. rp -œ w w rp, ODT CH 3» œ w w rp y t t w q (dip) ùkù. w yƒ - w rp ùkù. 2877 cm -1 CH 3 e (symmetric stretch), 2937 cm -1 CH 3 e / ƒ r œ (symmetric stretch/bending Fermi resonance), 2964 cm -1 CH 3 e (asymmetric stretch) rp y t t. SFG y w SFG Ÿ» y w t. Journal of the Korean Chemical Society

t w w - w Ÿ 435 rp Ÿs rp. Ÿs w q» w š w r l rp. rp š, y/ j w k. t y(fourier-transform) Ÿ w y, w Ÿs w Ÿ»ƒ 2 SFG Ÿ». Ti:sapphire w 2 Ÿ» 800 nm ƒ Ÿ Ÿ w, ƒ Ÿ Ÿ (electronic transition) œ j, SFG y 10 4-10 5 w.» œ j». SFG Ÿ œ w œ (double resonance) mw SFG rp d w Ÿ» 3 SFG Ÿ» w. œ w Ÿ Ti:Sapphire 2 3 w ù (free electron laser) w. x ew. 3 SFG Ÿ»ƒ š» ryw. Fig. 1(a) Fig. 3 x t w SFG yƒ, n w ù y q t n w SFG r p d w. SFG Ÿ» ƒ», x Ÿ y ƒ š r Ÿw» q š. 20-30 x ã w Ÿw» - r s d w» (autocorrelator) - t w. x y x Ÿ» Ÿ»(transient absorption spectrometer)ƒ w ƒ. [Ÿ x Ÿ x Ÿ w ƒ û.] x Ÿ» yw» w, Ÿ» w x x Ÿ mw ƒ v w. Ÿ» ƒ y, NMR Ÿ» ƒ š w ƒ ƒ w ƒ j ƒ. x Ÿ» y Ÿ»ƒ œw r ƒ w. t w. t rp Ÿ» w mw, SFG Ÿ» t w x j ƒ Ÿ»»ƒ. w v w x Ÿ, y w». w wš» q š w, x w. w Ÿw», wš. SFG Ÿ (optical alignment) yw x w Ÿ» w SFG Ÿ» y. x Ÿ w Ÿ, š w x xw j» œw ƒw w. v w j» œw j š. š (feedback control)ƒ ƒ w x», q y yw ù Ÿ» w f ul w yw. rÿ,» w w, w œ» yk w, q w vl, ƒ

436 ½ w w w x š»(sample holder) y mw. t w w SFG rp (library) ƒ w. SFG w x Ÿw. 2 +... P (0) + P (1) + P (2) + P (3) +... p, µ w p, µ,», Eƒ w ƒw w., v p (bulk polarization), P t, w, P (i) w Ÿw y ƒ. m» w p» w w, αe w d w w. w w pƒ,», w x x w w d w w ùkù. x αƒ (polarizability), x β, γ 1, 2 (hyperpolarizability)., P»» w, χ (1) 1 ( x) (susceptibility), χ (2) χ (3) ƒƒ 2, 3 x. ε o œ (permittivity). ü,» z (multipole) z wš, z - z (local effect) wš. SFG w ü š, ƒw j. SFG µ = µ o + αe + βe 2 + γe 3 P = P o + ε o ( χ ( 1) E + χ ( 2) E 2 + χ ( 3) E 3 +... ) = SFG β χ (2) w ù, ƒ. 30 χ (2) =( /ε o)<β >» N, β w y s³ w. χ» l (2) l P w 3 l (third rank tensor). SFG rp χ d w (2), SFG k ³e χ p l (2) ù. w P w SFG y», I(ω SFG). I(ω SFG) χ (2) eff 2 I(ω vis)i(ω IR)» I(ω vis) I(ω IR) w», ƒ w ω SFG=ω vis+ω IR w. z χ (2) eff w. χ (2) eff = χ (2) NR + χ (2) R = χ (2) NR e i + Σ q A q» Χ NR (2) χ R ƒƒ (2) -œ (non-resonant), œ (resonant), w ( ). ƒ w œ q w. œ w» A q w. χ NR w (2), j j χ NR (2) 0. - rp w χ Rƒ SFG (2). Fig. 4 Ÿs w d w (gold) t x octadecanethiol (ODT) SAM SFG rp. χ (2) NR w s rp š, ( Ÿs rp w w ), SAM χ R w y q (dip) ùkù (2). χ (2) R χ (2) NR w, w ww xk(constructive interference) ùkú š, Fig. 4 ùkù (destructive interference) ùkú. x t dw. 3 l χ R 27 ƒ š (2) [xyz t 3=27 3 Journal of the Korean Chemical Society

w ], œ e w. t (isotropic surface) χ (2) R 7 0 ƒ, 4. rÿ(polarization) w 0 χ (2) R w d w. 31 [SFG rÿ w ppp, ssp txw, l SFG y, ƒ Ÿ, rÿ w ùkü. p» w s, s rÿ ƒ k.] (centrosymmetric medium) χ (2) R 0 SFG yƒ w. ü e» SFG y, w t w SFG k ùkù. SFG rp SFG rp w rp ry. β wš, w w, w. (crystal) e y š w w j, eƒ š w w»ƒ. MD (molecular dynamics) mw w» w, j»ƒ j w. l w» w ƒ t y v w. w w» A q. A q = N Σ Β q,lmn <(i l)( j m)(k n)> β q,lmn = -(1/2ε oω o) ( α lm/ Q) ( µ n/ Q)/(ω IR-ω o+iγ) q w β q,lmn ü š t lmn w w z, x t ijk yw w w w. ü t t» t ywš, t w x t yw w. w t y w y w š. 32 β q,lmn p Ÿ p. ω IR ω o ƒ t w w - w Ÿ 437 ƒ. Γ r p s w, k (relaxation) (damping factor). w» - w ƒ š. w w p x ww w w. w w» w ƒ w» w x w, e» x. w w x w C-H yw. 33, w ab initio mw wš, p y w w. e w š ƒ v w. 30 ƒ tx sw, ü, (local field) z s wwš. w w, w Hamiltonian sww x (time-dependent formalism) - w (time-correlation function) tx w. w w» w w lƒ v w, w MD w. 34 SFG rp SFG wš, t y(fourier transform)w rp. Ÿ Schrodinger t w, w (density matrix) w t w. 35 e w». SFG x Ÿ w ƒ wš. SFG

438 ½ w ù w d w t k w k š, w t w š. x SFG t w w k Ÿ wš. SFG x»» wš, x Ÿ»» ƒ ƒ š. SFG w w r x ƒ y w w. û w w. x 1. t» ù œ, (interface) ƒ j, w š t» w. 2. Shen, Y. R.GThe Principles of Nonlinear Optics, Wiley, New York, 1984. 3. Kim, HU; Lagutchev, A.; Dlott, D. D. unpublished resultsu 4. Bass, M.; Franken, P. A.; Hill, A. E.; C. W. Peters, C. W.; and G. Weinreich, G. Phys. Rev. Lett. 1962, 8, 18. 5. Shen, Y. R. Nature, 1989, 337, 519. 6. Sung, J.; Park K.; Kim, D. J. Phys. Chem. B 2005, 109, 18507. 7. (a) Yeh, Y. L.; Zhang, C.; Held, H.; Mebel, A. M.; Wei, Z.; Lin, S. H.; Shen, Y. R. J. Chem. Phys. 2001, 114, 1837. 8. (a) Shultz, M. J.; Baldelli, S.; Schnitzer, C.; Simonelli, D. J. Phys. Chem. B, 2002, 106, 5313. (b) Richmond, G. L. Chem. Rev. 2002, 202, 2693. (c) Shen, Y. R.; Ostroverkhov, V. Chem. Rev. 2006, 106, 1140. 9. Chen, Z.; Shen, Y. R.; Somorjai, G. A. Annu. Rev. Phys. Chem. 2002, 53, 437. 10. (a) Kim, D.; Oh-e, M.; Shen, Y. R. Macromolecules, 2001, 34, 9125. (b) Ge, J. J.; Li, C. Y.; Xue, G.; Mann, I. K.; Zhang, D.; Wang, S. Y.; Harris, F. W.; Cheng, S. Z. D.; Hong, S. C.; Zhuang, X. W.; Shen, Y. R. J. Am. Chem. Soc. 2001, 123, 5768. (c) Hong, S. C.; Zhang, C.; Shen, Y. R. Appl. Phys. Lett. 2003, 82, 3068. 11. (a) Koffas, T. S.; Amitay-Sadovsky, E.; Kim, J.; Somorjai, G. A. J. Biomater. Sci. Polymer, Edn, 2004, 15, 475. (b) Wei, X.; Miranda P. B.; Shen, Y. R. Phys. Rev. Lett. 2001, 86, 1554. (c) Chin, R. P.; Huang, J. Y.; Shen, Y. R.; Chuang T. J.; Seki, H. Phys. Rev. B 1996, 54, 8243. 12. Kim, H,; Lagutchev, A.; Dlott, D. D. Propel. Explos. Pyrotech. 2006, 31, 116. 13. Williams, C. T.; Beattie, D. A. Surf. Sci. 2002, 500, 545. 14. Watry, M. R.; Brown M. G.; Richmond, G. L. Appl. Spect. 2001, 55, 321A. 15. Conboy, J. C.; Messmer, M. C.; Richmond, G. L. J. Chem. Phys. 1996, 100, 7617. 16. Chou, K. C.; Kim, J.; Baldelli, S.; Somorjai, G. A. J. Electroanal. Chem. 2003, 554-555, 253. 17. Vidal F.; Tadjeddine, A. Rep. Prog. Phys. 2005, 68, 1095. 18. Loch, C. L.; Ahn, D.; Chen, Z. J. Phys. Chem. B 2006, 110, 914. 19. (a) Rupprechter, G. Annu. Rep. Prog. Chem. Sect. C. 2004, 100, 237. (b) Marsh A. L.; Somorjai, G. A. Topics Catal. 2005, 34, 121. 20. Dellwig, T.; Hartmann, J.; Libuda, J.; Meusel, I.; Rupprechter, G.; Unterhalt, H.; Freund, H.-J. J. Mol. Catal. A, 2000, 162, 51. 21. Bonn, M.; Hess, C.; Funk, S.; Miners, J. H.; Perssen, B. N. J.; Wolf, M.; Ertl, G. Phys. Rev. Lett. 2000, 84, 4653. 22. Wang, C.-Y.; Groenzin, H.; Shultz, M. J. J. Am. Chem. Soc. 2005, 127, 9736. 23. (a) Chen, X.; Wang, J.; Sniadecki, J. J.; Even, M. A.; Chen, Z. Langmuir, 2005, 21, 2662. (b) Wang, J.; Clarke, M. L.; Chen, X.; Even, M. A.; Johnson, W. C.; Chen, Z. Surf. Sci. 2005, 587, 1. (c) Cheng, X.; Canavan, H. E.; Stein, M. J.; Hull, J. R.; Kweskin, S. J.; Wagner, M. W.; Somorjai, G. A.; Castner, D. G.; Ratner, B. D. Langmuir, 2005, 21, 7833. 24. (a) Humbert, C.; Busson, B.; Abid, J.-P.; Six, C.; Girault, H. H.; A. Tadjeddine, A. Electrochim. Acta 2005, 50, 3101. (b) Kudelski, A. Vib. Spect. 2005, 39, 200. (c) Zhang, H.; Romero, C.; Baldelli, S. J. Phys. Chem. B 2005, 109, 15520. 25. (a) Bordenyuk, A. N.; Jayathilake, H.; Benderskii, A. V. J. Phys. Chem. B 2005, 109, 15941. (b) Holman, J.; Davies, P. B.; Nishida, T.; Ye, S.; Neivandt, D. J. J. Phys. Chem. B 2005, 109, 18723. 26. (a) McCall, S. J.; Davies, P. B.; Neivandt, D. J. J. Phys. Chem. A 2005, 109, 8745. (b) Yeganeh, M. S.; Dougal, S. M.; Silbernagel, B. G. Langmuir, 2006, 22, 637. 27. Schaller, R. D.; Johnson, J. C.; Wilson, K. S.; Lee, L. F.; Haber, L. H.; Saykally, R. J. J. Phys. Chem. B 2002, 106, 5143. 28. (a) Mani, A. A.; Dressen, L.; Humbert, C.; Hollander, P.; Caudano, Y.; Thiry, P. A.; Peremans, A. Surf. Sci. 2002, 502-503, 261. (b) Raschke, M. B.; Hayashi, M.; Lin, S. H.; Shen, Y. R. Chem. Phys. Lett. 2002, 359, Journal of the Korean Chemical Society

t w w - w Ÿ 439 367. (c) Ishibashi T.-A.; Onishi, H. Chem. Lett. 2004, 33, 1404. 29. (a) Simpson, G. J. ChemPhysChem 2004, 5, 1301. (b) Fischer P.; Hache, F. Chirality, 2005, 17, 421. (c) Belkin M. A.; Shen, Y. R. Internat. Rev. Phys. Chem. 2005, 24, 257. (d) Ji, N.; Zhang, K.; Yang, H.; Shen, Y. R. J. Am. Chem. Soc. 2006, 128, 3482. 30. Hore, D. K.; Beaman, D. K.; Parks, D. H.; Richmond, G. L. J. Phys. Chem. B 2005, 109, 16846. 31. Lambert, A. G.; Davies, P. B.; Neivandt, D. J. Appl. Spect. Rev. 2005, 40, 103. 32. Hirose, C.; Akamatsu, N.; Domen, K. Appl. Spect. 1992, 46, 1051. 33. Morita, A.; Hynes, J. T. Chem. Phys. 2000, 258, 371. 34. (a) Pouthier, V.; Hoang, P. N. M.; Girardet, C. J. Chem. Phys. 1999, 110, 6963. (b) Morita, A.; Hynes, J. T. J. Phys. Chem. B 2002, 106, 673. (c) Morita, A. J. Phys. Chem. B 2006, 110, 3158. 35. Cho, M. J. Chem. Phys. 2002, 116, 1562.