0특-04문정언(f5.16)(189~207)

Similar documents
DBPIA-NURIMEDIA

09È«¼®¿µ 5~152s

09권오설_ok.hwp


06장소영(f2.4)(115~122)ok

433대지05박창용

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

02¿ÀÇö¹Ì(5~493s

03이경미(237~248)ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

09구자용(489~500)

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

05서찬양(521~529)ok

년AQM보고서_Capss2Smoke-자체.hwp

歯1.PDF

인문사회과학기술융합학회

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

#Ȳ¿ë¼®

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

02À±¼ø¿Á

±è¼ºÃ¶ Ãâ·Â-1

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

DBPIA-NURIMEDIA

Æ÷Àå½Ã¼³94š

45-51 ¹Ú¼ø¸¸

14.531~539(08-037).fm

<31325FB1E8B0E6BCBA2E687770>

09이훈열ok(163-

°í¼®ÁÖ Ãâ·Â

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

공휴일 전력 수요에 관한 산업별 분석

04-다시_고속철도61~80p

Microsoft Word - 크릴전쟁_당신이 모르는 남극 바닷속 쟁탈전_FINAL.docx

책임연구기관

µµÅ¥¸àÆ®1

04_이근원_21~27.hwp

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

<C7D1B1B9B1B3C0B0B0B3B9DFBFF85FC7D1B1B9B1B3C0B05F3430B1C733C8A35FC5EBC7D5BABB28C3D6C1BE292DC7A5C1F6C6F7C7D42E687770>

44-4대지.07이영희532~

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>


<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

04김이현(31~44)ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

DBPIA-NURIMEDIA

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

I

13장문현(541~556)ok

<352E20BAAFBCF6BCB1C5C320B1E2B9FDC0BB20C0CCBFEBC7D120C7D1B1B920C7C1B7CEBEDFB1B8C0C720B5E6C1A1B0FA20BDC7C1A120BCB3B8ED D2DB1E8C7F5C1D62E687770>

44-3대지.02이광률c

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

04김호걸(39~50)ok

Buy one get one with discount promotional strategy

에너지경제연구 제13권 제1호

04홍석영(509~520)(f.5)ok


01À̽ÂÈ£A9-832š

05 목차(페이지 1,2).hwp

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

<B9AEC8ADC4DCC5D9C3F7BFACB1B82D35C8A32833B1B3292E687770>

Can032.hwp

DBPIA-NURIMEDIA


1

50-5대지05장후은.indd

DBPIA-NURIMEDIA


2

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

04서종철fig.6(121~131)ok

10(3)-09.fm

untitled

Lumbar spine

82-01.fm

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

00내지1번2번

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: The Effect of Caree

03-서연옥.hwp

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;


DBPIA-NURIMEDIA

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

한국성인에서초기황반변성질환과 연관된위험요인연구

untitled

B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축

부문별 에너지원 수요의 변동특성 및 공통변동에 미치는 거시적 요인들의 영향력 분석

???? 1

44-6대지.08김정희-5


DBPIA-NURIMEDIA

Transcription:

Korean Journal of Remote Sensing, Vol.26, No.2, 2010, pp.189~207 Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI) Jeong-Eon Moon*, **, Yu-Hwan Ahn*, Joo-Hyung Ryu*, and Palanisamy Shanmugam*** *Korea Ocean Satellite Center, KORDI, **Department of Oceanography, Inha University ***Department of Ocean Engineering, IIT Madras, India Abstract : Several ocean color algorithms have been developed for GOCI (Geostationary Ocean Color Imager) using in-situ bio-optical data sets. These data sets collected around the Korean Peninsula between 1998 and 2009 include chlorophyll-a concentration (Chl-a), suspended sediment concentration (SS), absorption coefficient of dissolved organic matter (a dom ), and remote sensing reflectance (R rs ) obtained from 1348 points. The GOCI Chl-a algorithm was developed using a 4-band remote sensing reflectance ratio that account for the influence of suspended sediment and dissolved organic matter. The GOCI Chl-a algorithm reproduced in-situ chlorophyll concentration better than the other algorithms. In the SeaWiFS images, this algorithm reduced an average error of 46 % in chlorophyll concentration retrieved by standard chlorophyll algorithms of SeaWiFS. For the GOCI SS algorithm, a single band was used (Ahn et al., 2001) instead of a band ratio that is commonly used in chlorophyll algorithms. The GOCI a dom algorithm was derived from the relationship between remote sensing reflectance band ratio (R rs (412)/R rs (555)) and a dom (l). The GOCI Chl-a fluorescence and GOCI red tide algorithms were developed by Ahn and Shanmugam (2007) and Ahn and Shanmugam (2006), respectively. If the launch of GOCI in June 2010 is successful, then the developed algorithms will be analyzed in the GOCI CAL/VAL processes, and improved by incorporating more data sets of the ocean optical properties data that will be obtained from waters around the Korean Peninsula. Key Words : GOCI, Ocean Color, Chlorophyll, SS, DOM. a dom R rs yhahn@kordi.re.kr 189

Korean Journal of Remote Sensing, Vol.26, No.2, 2010 a dom R rs R rs a dom l 190

Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI) dinoflagellate Ptychodiscus brevis Karenia brevis 191

Korean Journal of Remote Sensing, Vol.26, No.2, 2010 a dom Chl-a (mg/m 3 ) = 1.8528R _ 3.263 (1) Fig. 1. The observation map. 192

Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI) Table 1. The observation schedule during 1998-2009 no. Sampling Platform Time Period Sampling Location Number of Stations Visited 193

Korean Journal of Remote Sensing, Vol.26, No.2, 2010 Fig. 2. The relationships between in-situ chlorophyll-a concentration (Chl-a) and 2-bands remote sensing reflectance (R rs ) ratios. (a) Chl-a and R rs (443)/R rs (555), (b) Chl-a and R rs (490)/R rs (555). Fig. 3. The relationship between in-situ chlorophyll-a concentration (Chl-a) and 4-bands remote sensing reflectance ratio. {R rs (443) + R rs (490)} _ R rs (412) where, R = R rs (555) Table 2. The comparisons for chlorophyll-a algorithms Name Equation Reference RMSE OC2v2 10 (0.2974_ 2.2429R+0.8358R 2_ 0.0077R 3 ) _ 0.0929 R = log 10( R rs 490 R rs 555 ) O Reilly et al. (1998) 0.28 OC4v4 (SeaWiFS standard) YOC Chl-a GOCI Chl-a 10 (0.366_ 3.067R+1.930R 2 +0.649R 3_ 1.532R 4 ) R = log 10( Max(R rs 443, R rs 490, R rs 510) R rs 555 ) 10 (0.25484_ 3.12684R+0.14715R 2 ) R = log 10[( R rs 443 R )( rs 412 R rs 555 R rs 490 1.8528R _ 3.263 ) _ 0.8 R = (R rs443 + R rs 490) _ R rs 412 R rs 555 ] O Reilly et al. (1998) 0.30 Siswanto et al. (2010) 0.23 In this Study 0.19 194

Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI) Fig. 4. The relationships between in-situ chlorophyll-a concentration (Chl-a) and Chl-a obtained from algorithms. (a) GOCI Chl-a algorithm, (b) YOC Chl-a algorithm, (c) OC4v4 algorithm, (d) OC2v2 algorithm. Fig. 5. The comparison for chlorophyll distribution images obtained from GOCI Chl-a, YOC Chl-a, OC4v4 and OC2v2 algorithms using SeaWiFS data in March 19, 2006. 195 Table 3. The comparisons for chlorophyll-a concentration obtained from red box area of Fig. 5 GOCI Chl-a YOC Chl-a OC4v4 OC2v2 Average 1.18 mg/m 3 1.29 mg/m 3 2.48 mg/m 3 1.96 mg/m 3 vs. OC4v4 53 % 48 % decrease decrease 40 % 35 % vs. OC2v2 decrease decrease Selection Area: Lat. 33 _ 34, Long. 124 _ 125 (Red Box of Fig. 5)

Korean Journal of Remote Sensing, Vol.26, No.2, 2010 Fig. 7. The relationship between in-situ suspended sediment concentration (SS) and remote sensing reflectance at 555 nm (R rs (555)). Fig. 6. The relationships between in-situ suspended sediment concentration (SS) and 2-bands remote sensing reflectance (R rs ) ratios. (a) SS and R rs (412)/R rs (555), (b) SS and R rs (443)/R rs (555), (c) SS and R rs (490)/R rs (555). 196

Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI) SS(g/m 3 ) = 945.07(R rs (555)) 1.137 (2) Table 4. The comparisons for suspended sediment algorithms Name Equation Reference RMSE SS = 10 0.51897_ 2.24106R+1.20113R 2_ 4.35315R 3 +9.07162R 4_ 5.10552R Clark 5 TSM R = log 10( nl w (412) + nl w (443) MODIS ATBD (1997) 0.61 (include SeaDAS) nl w (510) ) YOC TSM SS = 10 0.73789+22.7885R1_ 0.57437R2 R1 = R rs (555) + R rs (670) R rs (490) R2 = R rs(555) Siswanto et al. (2010) 0.33 GOCI SS SS = 945.07R 1.137 R = R rs (555) In this Study 0.28 Fig. 8. The relationships between in-situ suspended sediment concentration (SS) and SS obtained from algorithms. (a) Clark TSM algorithm, (b) YOC TSM algorithm, (c) GOCI SS algorithm. 197

Korean Journal of Remote Sensing, Vol.26, No.2, 2010 a dom a dom a dom a dom a dom a dom a dom a dom a dom a dom (400)[m _1 ] = 0.2355R _ 1.3423 (3) a dom (412)[m _1 ] = 0.2047R _ 1.3351 (4) Fig. 9. The relationships between in-situ absorption coefficients of dissolved organic matter (a dom ) with wavelengths and 2-bands remote sensing reflectance (R rs ) ratios. (a) a dom (400) and R rs (412)/Rrs(555), (b) a dom (400) and R rs (443)/R rs (555), (c) a dom (400) and R rs (490)/R rs (555), (d) a dom (412) and R rs (412)/R rs (555), (e) a dom (412) and R rs (443)/R rs (555), (f) a dom (412) and R rs (490)/R rs (555). 198

Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI) R rs (412) where, R = R rs (555) 1 a dom (l) S = ( ) ln ( ) (5) l _ l 0 a dom (l 0 ) 1 a dom (412) S = ( ) ln ( ) (6) 12 a dom (400) a dom l a dom a dom Table 5. The comparisons for absorption coefficient of dissolved organic matter algorithms Name Equation Reference RMSE a dom (400) = 0.2355R _ 1.3423 GOCI a R rs (412) dom (400) In this Study 0.18 R = R rs(555) GOCI a dom (412) YOC a dom (440) a dom (412) = 0.2047R _ 1.3351 R rs (412) R = R rs(555) a dom (440) = 10 _ 1.11529 _ 1.38942R+0.51803R 2 R = log 10[( R rs (490) R )(R rs(443)) ] 0.1 rs(555) In this Study 0.18 Siswanto et al. (2010) 0.24 Fig. 10. The relationships between in-situ absorption coefficients of dissolved organic matter (a dom ) and a dom obtained from algorithms. (a) developed GOCI a dom (400) algorithm in this study, (b) developed GOCI a dom (412) algorithm in this study, (c) YOC a dom (440) algorithm. 199

Korean Journal of Remote Sensing, Vol.26, No.2, 2010 a dom Fig. 11. Schematic representation of the fluorescence line height (DFlu) estimation using the remote sensing reflectance spectrum (from Ahn and Shanmugam, 2007). D D DFlu = XY = CX _ YC (7) DFlu = XY = CX _ [( R L (l _ (F) l (S) )) _ R S l _ (L) l (S) + R S] (8) l l l D 730 DFlu (Area) = DFlu(l)dl (9) 600 D Fig. 12. Relationships between in-situ chlorophyll concentrations and (a) DFlu(681) and (b) DFlu (area). The solid line is the best-fit regression to our bio-optical dataset (N=118) (from Ahn and Shanmugam, 2007). 200

Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI) Table 6. The regression equations and squared correlation coefficients obtained for the fluorescence algorithms (from Ahn and Shanmugam, 2007) Algorithms Correlation coefficient (r (r 2 ) ) Chl-a = 605908[DFlu(681)] 1.48 0.88 Chl-a = 4142.3[DFlu(area)] 1.46 0.90 D D D D D D Fig. 14. The diagram for relationship among redtide index, chlorophyll-a concentration and suspended solid particle concentration. Fig. 15. (a) Scatterplot of RI calculated using Eq.(10) versus L w at 443 nm for data N=25. (b) Scatterplot of RI calculated using Eq.(10) versus L w at 443 nm for data N=375. Note that RI progressively increased with the decrease of L w at 443 nm (from Ahn and Shanmugam, 2006). Fig. 13. Comparison between the measured and predicted chlorophyll-a concentrations (from Ahn and Shanmugam, 2007). 201

Korean Journal of Remote Sensing, Vol.26, No.2, 2010 [L w (510)/L w (555) _ L w (443)] RI = (10) [L w (510)/L w (555) + L w (443)] RI (D1) = 10 (_ 2.4394 X 3 +5.2587 X 2_ 4.117 X+0.8782) (11) RI (D1) = 10 (_ 0.1069 X 3 +0.6259 X 2_ 1.3936 X+0.919) (12) Fig. 16. Comparison between OC4-Chl-a (a) and RI (b) from SeaWiFS image of 19 September 2000 in the Korea South Sea. The (c) image is red tide information obtained from NFRDI in same date (from Ahn and Shanmugam, 2006). 202

Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI) a dom l a dom a dom a dom a dom a dom a dom 203

Korean Journal of Remote Sensing, Vol.26, No.2, 2010 D D Ahn, Y. H., J. E. Moon, and S. Gallegos, 2001. Development of suspended particulate matter algorithms for ocean color remote sensing. Korean Journal of Remote Sensing, 17(4): 285-295. Ahn, Y. H., P. Shanmugam, and S. Gallegos, 2004. Evolution of suspended sediment patterns in the East China and Yellow Seas. Journal of the Korean Society of Oceanography, 39(1): 26-34. Ahn, Y. H., P. Shanmugam, K. I. Chang, J. E. Moon, and J. H. Ryu, 2005. Spatial and temporal aspects of phytoplankton blooms in complex ecosystems off the Korean coast from satellite ocean color observations. Ocean Science Journal, 40(2): 67-78. Ahn, Y. H. and P. Shanmugam, 2006. Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia Coastal waters. Remote Sensing of Environment, 103(4): 419-437. 204

Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI) Ahn, Y. H., P. Shanmugam, J. H. Ryu, and J.C. Jeong, 2006. Satellite detection of harmful algal bloom occurrence in Korean waters. Harmful Algae, 5(2): 213-231. Ahn, Y. H. and P. Shanmugam, 2007. Derivation and analysis of the fluorescence algorithms to estimate phytoplankton pigment concentreations in optically complex coastal waters. Journal of Optics A: Pure and Applied Optics, 9(4): 352-362. Bricaud, A., A. Morel, and L. Prieur, 1981. Absorption by dissolved organic matter in the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography, 26(1): 43-53. Carder, K. L. and R. G. Steward, 1985. A remotesensing reflectance model of a red-tide dinoflagellate off west Florida. Limnology and Oceanography, 30(2): 286-298. Carder, K. L., R. G. Steward, G. R. Harvey, and P. B. Ortner, 1989. Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll. Limnology and Oceanography, 34(1): 68-81. Carder, K. L., S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B.G. Mitchell, 1991. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products. Journal of Geophysical Research, 96(C11): 20599-20611. Carder, K. L., F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, 1999. Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophylla and absorption with bio-optical domains based on nitratedepletion temperatures. Journal of Geophysical Research, 104(C3): 5403-5421. Carder, K. L., F. R. Chen, J. P. Cannizzaro, J. W. Campbell, and B. G. Mitchell, 2004. Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a. Advances in Space Research, 33(7): 1152-1159. Corsini, G., R. Grasso, and P. Cipollini, 2002. Regional bio-optical algorithms for the Alboran Sea from a reflectance model and in situ data. Geophysical Research Letters, 29(15), 1739, 10.1029/2001GL013861. Darecki, M. and D. Stramski, 2004. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sensing of Environment, 89(3): 326-350. Doerffer, R. and J. Fischer, 1994. Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods. Journal of Geophysical Research, 99(C4): 7457-7466. Doerffer, R. and H. Schiller, 2007. The MERIS Case 2 water algorithm. International Journal of Remote Sensing, 28(3-4): 517-535. Garver, S. A. and D. Siegel, 1997. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea. Journal of Geophysical Research, 102(C8): 18607-18625. Gohin, F., J. N. Druon, and L. Lampert, 2002. A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International Journal of Remote Sensing, 23(8): 1639-1661. Gordon, H. R. and A. Morel, 1983. Remote assessment of ocean color for interpretation of satellite visible imagery: a review. In: Lecture Notes on Coastal and Estuarine Studies, edited by Barker, R. T., N. K. Mooers, M. J. Bowman and B. Zeitzschel, Springer-Verlag, New York. Hansell, D. A. and C. A. Carlson, 2002. Biogeochemistry of Marine Dissolved Organic Matter. Academic Press. Hu, C., F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, 205

Korean Journal of Remote Sensing, Vol.26, No.2, 2010 2005. Red tide detection and tracing using MODIS Fluorescence data: A regional example in SW Florida coastal waters. Remote Sensing of Environment, 97(3): 311-321. Huot, Y., C. A. Brown, and J. J. Cullen, 2005. New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products. Limnology and Oceanography: Methods, 3: 108-130. Kahru, M. and B. G. Mitchell, 1999. Empirical chlorophyll algorithm and preliminary SeaWiFS validation for the California Current. International Journal of Remote Sensing, 20(17): 3423-3429 Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press. Lee, Z. P., K. L. Carder, and R. Arnone, 2002. Deriving inherent optical properties from water color: A multi-band quasi-analytical algorithm for optically deep waters. Applied Optics, 41(21): 5755-5772. Lee, Z. P., K. P. Du, and R. Arnone, 2005. A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research, 110, C02016, doi:10.1029/2004jc002275. Letelier, R. M. and M. R. Abbott, 1996. An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sensing of Environment, 58(2): 215-223. Loise, H. and A. Morel, 1998. Light scattering and chlorophyll concentration in case 1 waters: A reexamination, Limnology and Oceanography, 43(5): 847-858. Maritorena, S., D. A. Siegel, and A. R. Peterson, 2002. Optimization of a semianalytical ocean color model for global-scale applications. Applied Optics, 41(15): 2705-2714. Meroni, M., M. Rossini, L. Guanter, L. Alonso, U. Rascher, R. Colombo, and J. Moreno, 2009. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sensing of Environment, 113(10): 2037-2051. Miller, R. L., C. E. D. Castillo, and B. A. McKee, 2005. Remote Sensing of Coastal Aquatic Environments. Springer. MODIS ATBD Report, 1997. Bio-Optical Algorithms- Case 1 Waters. edited by Clark, D.K.. Morel, A. and L. Prieur, 1977. Analysis of variations in ocean color. Limnology and Oceanography, 22(4): 709-722. O Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, 1998. Ocean color chlorophyll algorithm for SeaWiFS. Journal of Geophysical Research, 103(C11): 24937-24953. Pradhan, Y., A. V. Thomaskutty, A. S. Rajawat, and S. Nayak, 2005. Improved regional algorithm to retrieve total suspended particulate matter using IRS-P4 ocean colour monitor data. Journal of Optics A: Pure and Applied Optics, 7(7): 343-349. Schalles, J. F., 2006. Optical remote sensing techniques to estimate phytoplankton chlorophyll a concentration in coastal waters with varying suspended matter and CDOM concentrations. In: Remote Sensing of Aquatic Coastal Ecosystem Processes, edited by Richardson, L.L. and E.F. LeDrew, Springer, pp.27-79. Schiller, H. and R. Doerffer, 1999. Neural network for emulation of an inverse model-operational derivation of Case II water properties from MERIS data. International Journal of Remote Sensing, 20(9): 1735-1746. Shanmugam, P., Y. H. Ahn, and P. S. Ram, 2008. SeaWiFS sensing of hazardous algal blooms and their underlying mechanisms in shelfslope waters of the Nothwest Pacific during summer. Remote Sensing of Environment, 206

Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI) 112(8): 3248-3270. Siswanto, E., J. Tang, Y. H. Ahn, J. Ishizaka, S. J. Yoo, S. W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, 2010. Ocean color algorithms to retrieve chlorophyll-a, total suspended matter and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas. (in preparation). Tang, D. L., H. Kawamura, H. Doan-Nhu, and W. Takahashi, 2004. Remote sensing oceanography of a harmful algal bloom off the coast of southeastern Vietnam. Journal of Geophysical Research, 109, C03014, doi:10.1029/2003jc002045. Tassan, S., 1988. The effect of dissolved yellow substance on the quantitative retrieval of chlorophyll and total suspended sediment concentrations from remote measurements of water colour. International Journal of Remote Sensing, 9(4): 787-797. Tassan, S., 1994. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters. Applied Optics, 33(12): 2369-2378. Zhang, M., J. Tang, Q. Dong, Q. T. Song, and J. Ding, 2010. Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sensing of Environment, 114(2): 392-403. 207